& Washington University in St.Louis

Engineering

Minimum Spanning Trees
Kruskal’s Algorithm and Partitions

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst




& Washington University in St.Louis

Engineering

Kruskal’s Algorithm

m Kruskal's algorithm applies following rule to the edges
in non-decreasing order of cost

» Coloring Rule 1: if the current edge e has both ends in the
same blue tree, color it red; otherwise color it blue

m The algorithm can also be expressed as
procedure minspantree(graph G=(V,E), modifies set bl/ue)

vertex u,v; set edges;
blue := {}; edges := E;
Sort edges by cost;
for {u,v}€ edges =

if U and v are in different blue trees =

blue := blue U {u,v};

fi;

rof, // edges not added to blue are implicitly red
end;




& Washington University in St.Louis

Engineering

Partition Data Structure

m To make Kruskal's algorithm fast, need a fast way to
determine if two vertices are in same blue tree

» use a data structure that maintains a partition on set of all
vertices, with a separate set for the vertices in each blue tree

» requires operations that allow us to merge two sets and to
determine whether or not two vertices are in the same set
m Operations on partition data structure

» partition(S): create a partition on the set S with each element
of S forming a separate subset

» find(x): return the canonical element of the set containing x
» link(x,y): merge the two sets with canonical elements x and y
e original sets replaced with new set; returns new canonical element

m Efficient, easy to implement and has many applications
» often referred to as union-find data structure




& Washington University in St.Louis

Engineering

Using Partitions in Kruskal’s Algorithm

procedure minspantree(graph G =(V,E), modifies set blue)
vertex u,v; set edges; partition(V );
blue := {}; edges := E;
Sort edges by cost;
for {u,v}e€ edges =
if find(v) = find(v) =
link(find(u),find(v)); blue := blue U {u,v}
fi;
rof;
end;

m Sorting can be done in O(m log m)=0(m log n) time
m Remaining time determined by the partition operations

» n-1 links and at most 4m finds
» these operations can be done in O(m log n) time

m So, overall time is O(m log n)




& Washington University in St.Louis

Engineering

C++ Version

void kruskal(Wgraph& wg, Wgraph& mstree) {
edge e, el; vertex u,v,cu,cv; weight w; int i = 0;
Partition vsets(wg.n());
edge *elist = new edge[wg.m()+1];
for (e = wg.first(); e != 0; e = wg.next(e))

ellSt[l-H-! mELE so, wg.weight(elist[i])w
sortEdges(elist,wqg); <wg.weight(elist[i+1])
for (el = 1; el <= wg.m(); el++) { -

e = elist[el]; eisi-th |

u = wg.left(e); v = wg.right(e); “lightest” edgeJ

w = wg.weight(e);

cu = vsets.find(u); cv = vsets.find(v);
if (cu != cv) {
vsets.link(cu,cv);
e = mstree.join(u,v); mstree.setWeight(e,w);




& Washington University in St.Louis

Engineering

Implementing Partition

m Represent each set as a tree
» each tree node contains a set element x and a pointer to its
parent p(x) in the tree; the root points to itself

m Link operation limits depth of trees using auxiliary

variable rank(x) for each node x
procedure partition(set S)
for xS = p(x) := x; rank(x) := 0; rof; end;
int function find(integer x);
do p(x)=x = x := p(x) od; return Xx;
end;
int function link(integer x,y);
if rank(x)>rank(y) = p(y):=x; return Xx;
| rank(x)=rank(y) = rank(y):=rank(x) + 1;
fi;
p(x) := y; return y;
end;




& Washington University in St.Louis Engineering

Basic Analysis of Partition

mLemma 2.1. If x is any node, rank(x)<rank(p(x)) with
inequality strict if p(x)=x; rank(x)=0 initially and
increases with time until p(x) is assigned value other
than x; after that, rank(x) does not change; rank(p(x))

is nondecreasing function of time
Proof. By induction on number of find and /link ops &

mLemma 2.2. Number of nodes in tree with root x is
> Qrank(x)

Proof. By induction on number of /ink operations m

rank(a)=k rank(b)=k+1 b

rank(b)=k @ b
)
>2k =2k




& Washington University in St.Louis

Engineering

mLemma 2.3. For any integer k=0, the # of nodes with
rank k is at most n/2k; so, every node has rank <Ig n
Proof. Suppose that when a node x is assigned a rank of k, all
nodes in the tree with root x are labeled (x,k)
By Lemma 2.2, at least 2¥ nodes are labeled when x gets rank k

If root of tree containing x changes, new root must have rank at
least k+1, so no node is labeled more than once with a label of the
form (y,k) for any particular value of k

Since there are n nodes, there are <n labels of form (y,k) for any
particular k and there are at least 2k for each node of rank k

Hence, at most n/2k nodes can be assigned a rank of k. m
= Running time
» initialization takes O(n) time and each /ink operation takes O(1)

» by Lemmas 2.1-2.3, the height of any tree is <Ig n; so find
takes O(log n) time

» s0 any sequence of m ops takes at most O(m log n) time




& Washington University in St.Louis

Engineering

Speeding Up Partition

m Simple optimization makes partition significantly faster
int function find(integer x);

] first pass finds root
integer r; r := Xx; second pass re-direct%
do p(r)=r = r := p(r); od; parent pointers |
do p(x)=r = x, p(x) := p(x), r; od;
return r;

end;

m Called path compression — speeds up later finds.
m Note: earlier lemmas remain true when path

compression is used
m Recursive version (used in analysis)
int function find(integer x); each recursive |
if x=p(x) = p(x) := find(p(x)) fi; ﬁ call referred toJ
return p(x); as a “find step”
end;




& Washington University in St.Louis

Engineering

Bounding Number of Find Steps

m For a node X, let A(x)=rank(p(x))-rank(x)
» A(x)=0 initially and may then increase but is always <Ig n

mCall x dominant if A(x)>2A(y) for all ancestors y of x
» there are at most 1+Ig Ig n dominant nodes along a “find path”
» s0, total number of find steps at dominant nodes is O(m Ig Ig n)

m If x not dominant, it has ancestor y, with A(y)=A(x)/2
» a find involving x increases A(x) by a factor of at least 1.5
» this can happen to x at most 2 Ig Ig n times
» s0 O(n Ig Ig n) find steps at nodes that are not dominant

A(y)=rank(p(y))-rank(y)=A(x)/ K/g
e A'(x)=1.5 A(x)

A(x)=rank(p(x))-rank(x) ﬁ —
10




& Washington University in St.Louis

Engineering

Understanding Partition Analysis

<m(1+lg lg n)
A
f \

11




& Washington University in St.Louis

Exercises

1.The figure below shows an intermediate
state in Kruskal’s algorithm. The tree
edges are shown in bold and the non-
singleton sets in the partition data
structure are listed as sets.

Engineering

Show the state of the algorithm after
the next three edges are considered for
inclusion by the algorithm.

{a,b}
{e,d.f,h}

{c.g}

12




& Washington University in St.Louis

2.The figure below shows an instance of
the partition data structure.

@o (@)1 ()1 1
(F)o (Go (bo 0 o (9o
Show the data structure after the

following operations are performed:
link(i,a), link(d,e), link(i,e).

Engineering

Then, show the data structure after the

following operations are performed as
well (show the effects of path
compression): find(j), find(a).

13




& Washington University in St.Louis

3.The height of a node in a tree is the
length of a longest path from the node
to one of its descendants. Show that if
we leave out the path compression
feature of the find operation from the
partition data structure, then the rank
of a node is equal to its height.

By induction on the number of link
operations. Initially all nodes have 0
rank and are leaves (which have height
0), so initially all nodes have rank equal
to their height. When a link operation is
performed on two nodes of different
rank (height), the node with the larger
rank (height) becomes the tree root
and neither its rank nor its height
changes. On the other hand, if the link
operation joins two nodes of equal
rank, the new height of the new root
node increases by 1, as does the rank.
The heights (and ranks) of other nodes
are unaffected by the link, so the link
operation preserves the equivalence
between ranks and heights.

Engineering

Show that with path compression, the
rank of a node is an upper bound on the
height.

By induction on number of link and find
operations. As before, the claim is true
initially because all nodes have zero rank
and height. For a link operation, there are
two cases. If the tree roots have different
ranks, the height of the resulting tree can
be no larger than the height of the
“higher” tree, which is bounded by the
larger rank. So making the node with the
larger rank the tree root preserves the
property. If the nodes have equal rank,
the height of the new tree is at most one
plus the old height which is at most one
plus the rank of the roots.

A find operation with path compression
can only reduce the height of any node in
the tree and does not change the rank of
any node. So, for any node x, if
rank(x)=height(x) before the operation,
then this remains true after the

operation. 14




& Washington University in St.Louis

4.Lemma 2.2 was proved for the
partition data structure without path
compression. Explain why it remains
true when path compression is
included.

The lemma states that a tree whose
root has rank k contains at least 2k
nodes. Path compression does not
change the value of any rank and does
not change the number of nodes in any
tree (although it can change the
number of nodes in certain subtrees).
Therefore, find operations with path
compression will preserve the property
stated in the lemma.

5. In the analysis of path compression,

explain why A(x) cannot decrease over
time.

Engineering

A(x) is the difference between the rank of
a node’s parent and its rank. As long as a
node is the root of its tree, this difference
is zero. Once a node acquires a parent it
becomes non-zero and its own rank can
no longer change. If the parent of the
node is a tree root, link operations can
cause the rank of the parent to increase,
causing A(x) to increase along with it. If
the parent is not a tree root, then its
parent’s rank may increase as a result of
a find operation that assigns it a new
parent. But since its new parent was an
ancestor of its old parent, and since
ranks increase as you go up a tree, the
rank of the new parent must be larger
than the rank of the old parent. So once
again, A(x) increases.

Can A(x) can decrease as you follow
parent pointers in the tree?

Yes. While the ranks increase as you go
up the tree, the differences between
successive rank values can both increase

and decrease as you go up the tree. 15




& Washington University in St.Louis

Engineering

6.Show that if we implement the

partition data structure without linking
by rank, but with path compression, we
can do a sequence of m operations in
O(m log n) time.

Redefine the rank of a node as follows.
Initialize rank(x)=1. While x is a tree
root, whenever x acquires a new child
y, add rank(y) to rank(x). Do not
change rank(x) once it becomes the
child of some other node. With this
definition of rank, define A as on page
11. Note that A is O for all nodes
initially, it never decreases and it can
never be larger than n.

We can then adapt the argument on
page 11 to show that the number of
dominant nodes on any find path is at
most Ig n. So, there are at most m Ig n
find steps involving dominant nodes.

Similarly, when a non-dominant node
is involved in a find step, its A value
increases by a factor of at least 1.5.
This can happen at most 2 Ig n times
to any node. Hence the number of find
steps at non-dominant nodes is at
most 2n Ig n.

16




