Maintaining a Partition

Jonathan Turner

January 31, 2013

This note is largely based on the analysis in Chapter 2 of Data Struc-
tures and Network Algorithms by Robert Tarjan, SITAM Press, 1985. The
presentation has been expanded and adapted to provide a more step-by-step
path leading up to the final result.

1 Introduction

A partition of a set is a collection of subsets that are pair-wise mutually
exclusive and whose union includes every member of the set. In many graph
algorithms it’s useful to have a data structure for maintaining a partition on
the vertices of the graph that allows us to quickly determine if two vertices
are in the same subset, and to quickly combine two subsets. More precisely,
the partition data structure maintains a partition on an underlying set S
and supports the following operations.

e partition(S). Create a partition on the set S with each element of S
belonging to a distinct set.

e find(z). Return the canonical element of the set containing x.

e link(x,y). Merge the two sets whose canonical elements are z and .
The original sets are destroyed, and the canonical element of the new
set is returned.

The canonical element of a set is just some element that is used by the data
structure as a representative of the set. The canonical element of a set is
not changed by the find operation. We can determine if two elements are in
the same set by comparing their canonical elements. This data structure is
easy to implement and has a wide range of applications. It is often referred
to as the union-find data structure. We will describe a particularly efficient
implementation and analyze its performance.

partition {acf} {be} {d}, {g.i}, {h}

- ALY

vector of abcdefghi
parent pointers p:[cle[c[d[e]c]i]nh]i]

Figure 1: Example of partition data structure

2 Representing a Partition as a Collection of Trees

The partition data structure can be represented by a collection of trees or
forest. Each element in the set is represented by a node in the forest and the
trees are defined by parent pointers which identify the parent of each non-
root node. To simplify the expression of the analysis, we define the parent
pointer of a root node to be the node itself. Figure 1 shows an example
of a partition, its conceptual representation as a collection of trees and its
concrete implementation as a vector of parent pointers.

If we define the root of a tree to be the canonical element of its set, we
can find the canonical element of a set by following parent pointers, and we
can combine two sets by re-directing the parent pointer of one tree root to
point to the other tree root. To get the most efficient implementation, we
add two refinements to this basic idea. The first is called path compression.
During each find operation, we re-direct each of the parent pointers along
the path followed during the operation to point to the root of the tree. This
requires a second pass along the path, but helps speed up later operations.
The second refinement, called linking by rank, requires the addition of a new
field to each tree node called its rank. For each node z, rank(z) is initialized
to zero and may be modified as a side effect of link operations. The ranks are
used during link operations to decide which of the two tree roots becomes
the child of the other. If one node has larger rank, then it becomes the new
root and the ranks don’t change. If both nodes have the same rank, one is
chosen to be the root (arbitrarily) and its rank is increased by 1.

The following program implements the three operations.

procedure partition(set S);
for v € S = p(x) := x; rank(z) := 0; rof;
end;

int function find(int x);
ri=x;
do p(r) #r = r:=p(r); od;
do p(z) #r = z,p(z) :== p(z),r; od;
return z;
end;

int function link(int z,y);
if rank(x) > rank(y) =
p(y) := x; return z;
| rank(x) = rank(y) =
rank(y) := rank(y) + 1; p(x) := y; return y;
fi;
end;

3 Elementary Analysis

The initialization of the data structure takes O(n) time and the link opera-
tion takes constant time. So, the only question is how much time is required
for the find operation? This depends on the depth of the tree. We start
by noting that the link-by-rank heuristic ensures that rank(x) is an upper
bound on the height of x in the tree. So, if x is a tree root, the time for
a find operation starting within z’s tree is at most rank(x). So, if we can
find an upper bound on rank(z), we can bound the running time of the find
operation. The key to bounding the rank is to observe that for any tree root
x with rank(x) = k the number of nodes in z’s tree is at least 2¥.

This can be proved by induction on the number of link operations, as
illustrated in Figure 2, giving us the following lemma.

Lemma 1 The number of nodes in a tree with a root that has rank = k is
at least 2F.

This implies that if a tree root has rank k, then 2 < n and so k < lgn.
This gives us an O(logn) bound on the time required for the find operation.

rank(a)=k rank(b)=k+1 b

rank(b)=k @ b o
‘ 22k+1
>2k >2k

Figure 2: Relationship between rank and tree size

Note that this result does not depend on the path compression heuristic.
Also, note that some find operations can take time proportional to logn,
so we can’t get a better bound on the time for an arbitrary find operation.
However, it turns out that we can get a better bound on a whole sequence of
find operations, using a more sophisticated analysis that takes into account
the effects of path compression.

4 A Better Analysis

As a first step in our more detailed analysis, we make a few observations
about the ranks. First, note that the rank of a non-root node is strictly
less than the rank of its parent. Second, the rank of a node can increase as
a result of link operations, but it can never decrease. Third, once a node
becomes a child of another node, its rank can no longer change. Finally,
rank(p(z)) can increase (as a result of either link operations or find opera-
tions that change p(x)), but it can never decrease. These observations are
collected in the next lemma.

Lemma 2 If z is any node, rank(x) < rank(p(x)) with the inequality strict
if p(x) # x. The value of rank(x) is initially 0 and increases with time
until p(z) is assigned a value other than x. Subsequently, rank(z) does not
change. The value of rank(p(x)) is a nondecreasing function of time.

To facilitate the analysis, we consider each find operation as consisting
of a series of find steps, one for each node along the path followed by the
operation. Our objective is to put an upper bound on the total number of
find steps. We note that the number of find steps at root nodes is at most
m, so in our analysis, we focus only on find steps at non-root nodes.

We define A(z) = rank(p(z)) — rank(z) and note that A(z) < lgn and
that A(x) = 0 initially and increases, as = acquires a parent and participates

in find operations. Also, define a node x to be dominant if A(x) > 2A(y)
for all proper ancestors y of x.

We will break the analysis into two cases, one covering find steps that
occur at dominant nodes, and the other covering find steps that occur at
non-dominant nodes. The analysis of the first case rests on the observation
that there can be at most lglgn dominant nodes along the path from any
node to the root of its tree. This means that, each find operation can include
at most lglgn find steps at dominant nodes. Consequently, in a sequence of
m find operations, at most mlglgn find steps occur at dominant nodes.

Proceeding to the second case, note that if x is not dominant, then z
must have some proper ancestor y with A(y) > A(z)/2. This implies that
rank(p(y)) — rank(z) > 1.5 x rank(z) before the find. After the find com-
pletes, x’s parent has rank at least as large the original value of rank(p(y)).
Consequently, the find operation causes A(z) to increase by a factor of at
least 1.5. This is illustrated in Figure 3.

A(y)=rank(p(y))-rank(y) >A(x)/2

-

A(X)=rank(p(x))—rank(x)

Figure 3: Find at a non-dominant node x increases A(x) by at least 50%

Since every find step that occurs at x at times when z is not dominant
causes A(z) to increase by a factor of 1.5, there can be fewer than 21glgn
find steps at a node x when it is not dominant. Consequently, the total
number of find steps at non-dominant nodes is O(nloglogn) and the total
number of find steps is O((m + n) loglogn).

5 A Still Better Analysis

From a practical perspective, there is little reason to carry the analysis
further, since for any practical value of n, lglgn is very small. However, it
is possible to do better and it’s instructive to see how.

The new analysis requires some additional technical machinery. Rather
than go straight to the final analysis, we will build up to it in several steps,
with each step providing some improvement on what has gone before. In the
first step, we will show that the number of find steps is at O(m+mnloglogn).

We start by dividing the non-negative integers into a series of blocks
by defining block(0) = [0, 1], block(1) = [2,3], block(2) = [4,5,6,7] and in
general for j > 1, block(j) = [27,...,2971 — 1]. We say that a node z is on
level 1 if there is some block(j) that contains both rank(x) and rank(p(z)).
All other nodes are on level 2. Note that once a node becomes a level 2 node,
it can never again become a level 1 node (since rank(z) does not change once
x acquires a parent and rank(p(x)) never decreases). In the example shown
in Figure 4, nodes a and d are on level 1, while nodes b and c are on level 2
We say that a node is singular if none of its proper ancestors is on the same
level as it is. So for example, in Figure 4, nodes ¢ and d are singular.

[01]23]4..7]8..15]16..31[32..63|64..128 |

block(4)
Figure 4: Example showing levels

As before, we divide the analysis into two cases. The first counts the find

steps that occur at singular nodes, while the second counts the find steps
that occur at non-singular nodes. For the first case, note that any path from
a node to the root of its tree can contain at most one singular node on each
of the two levels. Hence, each find operation includes at most two find steps
at singular nodes.

We divide the find steps at non-singular nodes into two sub-cases, one
for the find steps involving level 1 nodes and another for the find steps
involving level 2 nodes. Let’s consider the second case first. Suppose z
is a non-singular node on level 2. Because x is non-singular, it has some
ancestor y that is also on level 2. Because x is on level 2, rank(p(z)) is in
a different block than rank(z). Similarly, rank(p(y)) is in a different block
than rank(y). Consequently, if we let z be the root of the tree, then rank(z)
is in a different block than rank(p(z)). After the find, z = p(z), so the find
operation causes rank(p(z)) to move into a different (and larger) block than
it was in before the find. Since successive blocks double in size, this can
happen at most lglgn times before rank(p(z)) exceeds lgn, so the number
of find steps that can occur at node x while x is a non-singular node on
level 2 is at most lglgn. Hence, the total number of find steps that occur
at non-singular nodes on level 2 is O(nloglogn).

This leaves the case of non-singular nodes on level 1. Let’s suppose that
x is such a node and assume that block(j) is the subset of the integers that
includes rank(z). A find involving x will assign a new parent to = causing
rank(p(z)) to increase by at least 1. Since block(j) contains 2/ values, this
can happen no more than 2/ times while z is on level 1.

To bound the total number of find steps at non-singular level 1 nodes,
we need a bound on the number of nodes in block(j) for each value of j. To
get this bound, we need one more piece of information, which is expressed
in the following lemma.

Lemma 3 For any integer k > 0, the number of nodes of rank k is at most
n/2F. Consequently, the number of nodes with rank > k is less than 2n/2F.

Proof. Suppose that when a node x is assigned a rank of k, all nodes in
the subtree with root 2 are labeled (z,k). By Lemma 1, at least 2¥ nodes
are labeled when x receives a rank of k. If the root of the tree containing z
changes, the new root must have rank at least k£ 4+ 1, so no node is labeled
more than once with a label of the form (y, k) for a particular value of k.
Since there are n nodes, there are at most n labels of the form (y, k) for any
particular k and there are at least 2 such labels for each node of rank k.
Hence, at most n/2* nodes can be assigned a rank of k. Summing n/27 for

all values of j > k yields 2n/2¥, so the number of nodes with rank > k is at
most 2n/2%. O

Now, since a node with rank in block(j) has rank at least 27, the number
of nodes in block(j) is at most 2n/22’. Consequently, the number of find
steps experienced by non-singular on level 1 with rank in block(j) is at most

27 (2n/ 22j). There are no non-singular nodes with rank in block(0), so if
we sum this expression over all values of j > 1, we get

ony 21 /9% <on " j/2 <dn

7>0 7>0

The first inequality above holds because every term in the summation on
left-hand side is also present in the summation on the right-hand side (along
with many additional terms). The second inequality follows directly from the
formula for an unbounded arithmetic-geometric series. Hence, the number
of find steps at non-singular nodes on level 1 is O(n). Combining this with
the results from the other cases we get that the total number of find steps
is O(m + nloglogn).

Before we proceed further, let’s recap. In the analysis just completed,
we divided the find steps into three categories.

e Steps at singular nodes. For each find operation, there are at most
two of these, for a total of at most 2m.

e Steps at non-singular nodes on level 1. The total number of these steps

is O(n).

e Steps at non-singular nodes on level 2. Each vertex experiences at
most lglgn of these, for a total of at most nlglgn.

To improve on this result, we need to get a better bound on the number
of find steps in the last category. We can do that by dividing this case into
two sub-cases. We first define a second, coarser partition on the integers, by
letting

block(2,0) = [0..3]
block(2,1) = [4..15]:[22..2211}

2
block(2,2) = [16..65535] = [222..222 —1]

and in general
block(2, j) = [2“1..2[3'“1 _1

where 21 = 22 and 20 = 22" for j > 1. For notational consistency, we
use block(1, j) to denote our original partition of the integers.

Now, we say that a node x is on level 1 if there is some block(1, 7) that
contains both rank(x) and rank(p(z)). We say that z is on level 2 if it is
not on level 1 and there is some block(2, j) that contains both rank(z) and
rank(p(x)). Nodes that are on neither level 1 nor level 2 are on level 3. So,
in Figure 4, nodes a and d are on level 1 and nodes b and ¢ are on level 3.
As before, we say a node is singular if none of its ancestors is on the same
level that it is. So, in Figure 4, nodes ¢ and d are singular.

As before, we proceed using a case analysis. We have four cases to
consider.

e Steps at singular nodes. Since there are just three levels, each find
operation can have at most three find steps at singular nodes. This
gives a total of at most 3m find steps in this category.

e Steps at non-singular nodes on level 1. Our previous analysis applies
directly to this case, so as before, the number of find steps for non-
singular nodes on level 1 is O(n).

e Steps at non-singular nodes on level 2. We show below that the number
of find steps in this group is O(n).

e Find steps at non-singular nodes on level 3. We show below that the
number of find steps in this group is O(nS(n)), where S(n) is a very
slowly growing function.

Let’s proceed with the analysis of the third case. Let x be a non-singular
node with rank(x) in block(2, j). Because z is on level 2, its parent’s rank
is in a different level 1 block than its rank. Because it is non-singular, it
has a proper ancestor y that is also on level 2. Consequently, the root of
the tree has rank that is in a different level 1 block than rank(p(x)). This
means that a find involving z causes rank(p(z)) to move to a different level
1 block. Hence, the number of find steps experienced by x while it is on level
2 and non-singular is less than the number of level 1 blocks that intersect
block(2, j), and this at most 2V — 2U=1 < 2l as illustrated in Figure 5.

Since the number of nodes with rank in blocka(j) is < 2n/22m = 2n /201
for j > 0, the number of find steps at non-singular nodes on level 2 is at

block(2,) block(2, j+1)

olil 2[J+1]
22[]*1] 22[]-1]+1 22[]-1]+2 22[]]
block(1,207) block(1,21)

Figure 5: Intersections of block, and blocks

most 2] (2n/ 2l +1]) for 7 > 0. There can be no non-singular nodes on level
2 with rank in block(2,0), so, the total number of find steps that occur at
non-singular nodes on level 2 is at most

203" 20122 <20 N j/07 < an

7>0 7>0

That leaves us with just the fourth case. Let x be a non-singular node
with rank(z) in block(2, 7). Because x is on level 3, its parent’s rank is in
a different level 2 block than its rank. Because it is non-singular, it has a
proper ancestor y that is also on level 3. Consequently, the root of the tree
has a rank that is in a different level 2 block than rank(p(z)). This means
that a find involving x causes rank(p(z)) to move to a different level 2 block.
This means that the number of find steps that x can experience while it is
non-singular and on level 3 is bounded by the number of level 2 blocks that
include values < lgn. If we define S(n) to be the smallest integer i > 0
for which 20 > Ign, then the number of level 2 blocks that includes values
< lgn is f(n) and the number of find steps at any non-singular node on
level 3 is at most B(n). The function 5(n) grows extremely slowly with n;
in general B(2F) = k.

Putting together the results from the four cases above, we find that the
total number of find steps is O(m +nf(n)). Now it turns out that even this
analysis can be improved, by further sub-dividing the fourth case.

6 The Final Analysis

The key to this final analysis of the number of find steps is to allow the
number of distinct cases to grow further. To do this, we define a series of

10

partitions on the integers, block(1,*), block(2,x), block(3,*), and so forth.
Each partition is coarser than the previous one with the last partition re-
quiring relatively few blocks to span the range up to lgn. Specifically, for all
i > 0, block(i,0) starts at 0 and for all j > 0, block(i, j) starts with A(4, j),
where A is Ackerman’s function and is defined as follows. A(1,j) = 2/ for
all 7 >0, A(i,1) = A(i — 1,2) for all i« > 1 and

A(Z’j) = A(Z - 17A(Z7] - 1))

for all i > 1 and j > 1. Notice that with this definition, A(2,7) = 2U! for
all j > 1. Consequently this definition of the blocks is consistent with our
earlier definition of block(1,) and block(2,*). We also define a functional
inverse o of Ackerman’s function.

a(m,n) = min{i > 1|A(i, |m/n]) > lgn}

and note that block(a(m,n),j) contains no values < lgn for all j > |m/n].

We use the blocks to define levels, much as before. Specifically, we say
that a non-root node z is on level 1 if rank(x) and rank(p(z)) are both in
some block(1,7). For 1 < i < a(m,n), we say that x is on level 7 if it is
not on level i — 1 and there is some block(i, j) that contains both rank(x)
and rank(p(z)). Finally, a node x is on level a(m,n) + 1 if there is no
block(c(m,n), j) that contains both rank(z) and rank(p(z)). We say that
x is singular if it has no proper ancestor on the same level as .

As before, the analysis can be broken down into cases.

e Steps at singular nodes. Since there are a(m,n)+ 1 levels, the number
of find steps at singular nodes is at most m(a(m,n) + 1).

e Steps at non-singular nodes on level 1. Our previous analysis applies
directly to this case, so the number of find steps in this case is O(n).

e Steps at non-singular nodes on level i for 1 < i < a(m,n). We show
below that the number of find steps covered by this case is O(n).

e Steps at non-singular nodes on level a(m,n)+1. A node can experience
at most |m/n] find steps while it is non-singular and on level a(m, n)+
1. Hence the total number of find steps covered by this case is < m.

Proceeding with the analysis of the third case, let be a non-singular
node on level i (1 < i < «a(m,n)) and assume that block(i,j) includes
rank(z). Because x is on level 7, its parent’s rank is in a different level i — 1
block than its rank. Because it is non-singular, it has a proper ancestor

11

y that is also on level i. Consequently, the root of the tree has rank that
is in a different level ¢ — 1 block than rank(p(x)). Hence, a find involving
x causes rank(p(z)) to move to a different level i« — 1 block. This means
that the number of find steps that x can experience while it is non-singular
and on level ¢ is bounded by the number of level ¢ — 1 blocks that intersect
block(i, j). Call this number b; ; and note that b; o = 2 for all ¢ and that for
J>0,b; <A@, j5)—A(i,j — 1) < A(4,7), as illustrated in Figure 6.

block(i, j) block(i, j+1)

Ai.j) A(i,j+1)

Ai-1,A(i,j-1)) . A(I-LA(])
block(i-1, A(i,j-1)) block(i-1, A(i,j))

Figure 6: Level i — 1 blocks that intersect block(i, j)

Since the number of nodes with rank in block(i,) is < 2n/2409) the
number of find steps experienced by non-singular nodes on level 2 whose
rank is in block(i, j) is at most A(i,) (2n/2A(i7j)) for 7 > 0. There are no
non-singular nodes with rank in block(i,0) for all 4, so the total number of
find steps experienced by non-singular nodes on levels 2 through a(m,n) is
at most

o Y Y AN < am Y Y
2<i<a(m,n) j>0 2<i<a(m,n) j>0
< 2(a(m,n) — 1)n2j/2j
3>0
< 5(a(m,n) —1)n
Combining the bounds in the four cases gives O((m + n)a(m,n)) find steps.
To compare this result with the previous one, we need to compare the
growth rates of o and 8. Note that o grows most quickly when m = n. In
this case, a(n,n) = min{i > 1|A(4,1) > lgn} and applying the definition
a(4,4) =1, a(16,16) = (2P, 20)) = 2, (28], 2B]) = 3 and a(21'7, 207]) =
4. Since B(2P)) = 4, we can see that although f is a very slowly growing
function, a grows even more slowly. Also, it’s worth noting that for m >

12

nlglgn, a(m,n) = 1. So, when the number of find operations grows even a
little bit faster than n, the total number of find steps is O(m + n).

13

