
Matchings in General Graphs

Jonathan Turner

February 24, 2013

We have studied two approaches to finding matchings in bipartite graphs.
This first involved transforming the matching problem into a maximum flow
problem. The second used the concept of augmenting paths. In this sec-
tion, we’ll see how the augmenting path method can be extended to general
graphs. Recall that an augmenting path with respect to a matching M is a
path with two unmatched endpoints and with alternate edges in the match-
ing. Given an augmenting path, we can increase the size of the matching
by one, by “flipping” the edges in the path; that is, removing the matching
edges from M and replacing them with the remaining edges on the path.
This is illustrated in Figure 1. Note that this does not create any con-
flicts with other matching edges and that every vertext that was originally
matched remains matched.

P 

Figure 1: Flipping an augmenting path

To find an augmenting path in a bipartite graph, we build a collection of
trees rooted at the unmatched vertices. Each vertex is assigned a state that
can be odd, even or unreached. Initially the tree roots are even and all other
vertices are unreached. Each step in the algorithm examines a previously
unexamined edge {v, w} with v even. If w is unreached, then it must be
incident to a matching edge {w, x} In this case, {v, w} and {w, x} are added
to the tree with p(w) = v and p(x) = w, the state of w is changed to odd
and the state of x to even. If w is odd, we proceed to the next edge, but if w

1



is even, then the path from the root of v’s tree to v, concatenated with the
edge {v, w} and the path from w to the root of its tree forms an augmenting
path.

This last statement is justified in bipartite graphs, by the observation
that if two even vertices in the same tree were connected by an edge, then
that edge together with the tree paths to their nearest common ancestor
would form an odd length cycle. Since bipartite graphs have no odd-length
cycles, any edge joining even vertices, must join vertices in different trees.
On the other hand, when we extend the algorithm to a general graph, it is
possible for an edge to join two even vertices in the same tree, as illustrated
in Figure 2. In this diagram, the tree root is at the left, the plus signs

a c b 

w d 

v e 

+ – + 

– 

+ 

+ 

– 

Figure 2: Blossom in a general graph

indicate even vertices, the minus signs indicate odd vertices and the arrows
represent the parent pointers. The dashed edge at the right forms an odd
length cycle with the tree edges leading back to vertex c. Such a cycle is
referred to as a blossom and the edge that completes the blossom ({v, w} in
this case) is referred to as the bridge of the blossom. The nearest common
ancestor of the vertices in the blossom (c in this case) is called the base of
the blossom. Note that while all other vertices in a blossom must be incident
to a matching edge, the base of a blossom may be unmatched, if it is the
root of its tree.

To extend the augmenting path algorithm to general graphs, we replace
each blossom we discover with a single vertex and proceed with the path
search in this new graph. This strategy is justified by the following theorem.

Theorem 1 If G′ is formed from G by shrinking a blossom b, then G′ con-
tains an augmenting path if and only if G does.

For now, we only show that if G′ contains an augmenting path, then G does
also. First, note if p is an augmenting path in G′ that does not include b,

2



then p is also an augmenting path in G. On the other hand, if b is on p,
we can construct an augmenting path in G by expanding the blossom, as
illustrated in Figure 3. If b has two incident edges in G′, then one must be

G’ 

G 

Figure 3: Expanding a blossom

matching edge incident to the base of b, while the other is a non-matching
edge incident to some vertex x in b (possibly the base). If x is an even
vertex, the augmenting path passes from x up the tree to the base of b. If
x is an odd vertex, the augmenting path passes through the bridge of the
blossom on its way to the base.

The blossom shrinking algorithm is known as Edmonds algorithm and
can be formally defined as follows. First, to simplify the description, we
treat each original edge {x, y} as a pair of directed edges, [x, y] and [y, x].
To find an augmenting path, we build a set of trees much as we did in the
case of bipartite graphs. In each step we select a previously unexamined
edge [v, w] with v even and examine it.

• If w is unreached, it must be incident to a matching edge. Let x be the
other endpoint of that matching edge. We extend the tree by making
p(w) = v and p(x) = w. We also change the state of w to odd and the
state of x to even.

• If w is even and is in a different tree from v, then the edge, together
with the two tree paths leading to the tree roots forms an augmenting
path, and the algorithm terminates.

• If w is even and in the same tree as v, we form a new blossom b. If the
nearest common ancestor of v and w is u, then the blossom consists of
the vertices on the tree paths from v to u and from w to u. In the new
graph that results from shrinking the blossom, the state of b is even.

A vertex is called shrunken if at some point in the algorithm, it has been in-
cluded in a blossom. Also note that all steps in the description above should
be interpretes as taking place in the “current graph”, which may include one

3



or more shrunken blossoms. In addition, note that when we shrink a blos-
som, the edges with one endpoint in the blossom and one endpoint outside
the blossom become edges in the new graph, and these edges all have an
even endpoint in the new graph (the blossom).

a h 

b c 

d e 

f g 

i 

j 

k 

l 

m 

n + 

+ 

eligible edges 
ab,ac,ah,ai, 
kh,ki,kl,kn 

select 
ab,cd,ki,kl 

a h 

b c 

d e 

f g 

i 

j 

k 

l 

m 

n + 

+ 

+ – 

+ 

– 

+ 

– 

lk 

Figure 4: Example of Edmond’s algorithm

Let’s look at an example of Edmond’s algorithm in action. The left side
of Figure 4 shows a graph with two unmatched vertices a and k. At the
start of the algorithm, these are the only even vertices and so the only edges
that are “eligible”; to be considered by the algorithm are the edges incident
to a and k. If the first step examines the edge [a, b], the tree rooted at a is
extended to b and c. This makes c even and its incident edges eligible for
consideration. If the next few steps select edges [c, d], [k, i] and [k, l], the
tree rooted at a is extended further, while a blossom is formed in the tree
rooted at k. Note that in this blossom, k is the base of the blossom and the
edge joining k and l is the bridge.

4



select 
ac,ij,lm 

select 
ce,fg,ej 

a h 

b c 

d e 

f g 

i 

j 

k 

l 

m 

n + 

+ 

+ – 

+ 

– 

+ 

– 

+ 

– 

lk 

ml 

ca 

a h 

b c 

d e 

f g 

i 

j 

k 

l 

m 

n + 

+ 

+ – 

+ 

– 

+ 

– 

+ 

– 

+ 

– 

lk 

ml 

ca 

gf 

fg 

path:((abc)dfge)(jm(lik)) 

Figure 5: Continuing the example

Continuing the example in Figure 5, if the next three steps examine
edges [a, c], [i, j], and [l,m], we form two additional blossoms, as shown on
the left side of the figure. Again, take note of the base and bridge of each of
these blossoms. If we next examine edges [c, e] and [f, g], we form yet another
blossom in the tree rooted at a. Now, note that at this point, vertices e and j
are both contained within blossoms, so the edge [e, j] joins two even vertices
in the current graph, even though both e and j are odd. If the next step
selects the edge [e, j], we have a single edge joining two unmatched blossoms.
That edge is an augmenting path in the current graph. If we expand the
blossoms, we get the path ((abc)dfge)(jmlik) where the parentheses identify
blossom boundaries. Note that in order to extend an augmenting path in
the current graph to an expanded blossom, we need to be prepared to go
around the blossom in either direction (straight up the tree, or across the
bridge). The parent pointers can be used to go up the tree, but we also need
the bridge information in order to traverse a blossom in the other direction.

5


