
Weighted Matching and

Linear Programming

Jonathan Turner

March 19, 2013

We’ve seen that maximum size matchings can be found in general graphs
using augmenting paths. In principle, this same approach can be applied to
maximum weight matchings. The main difference is that we need to choose
an augmenting path that produces the largest possible increase in weight
at each step. This is illustrated in Figure 1. Note that if we augment the

c

b

d

4

7 6

3

3

e a

f

2

5 5

2

Figure 1: Max weight augmenting paths

matching shown using the path bcef, we get a larger matching with a weight
that is one larger than that of the original matching. On the other hand,
the augmenting path badf leads to a decrease in the matching weight. The
augmenting path that produces the largest increase in weight is bdacef.

Define the weight of an augmenting path to be the total weight of its
non-matching edges minus the total weight of its matching edges. This path
weight is the net gain possible from flipping the edges in the path. Suppose
M is a max weight matching of size k (that is, among all matchings with
k edges, M has maximum weight) and p is a maximum weight aumenting
path with respect to M . If we can show that flipping the edges of p yields a
max weight matching of size k + 1 then we could use this to find maximum
weight matchings of arbitrary size.

1

To shows this, assume that M ′ is a max weight matching on k+ 1 edges
and let N be the set of edges that is in M or M ′ but not both. Note that
N consists of alternating paths and cycles with respect to M , and its cycles
all have even length.

Let the weight of a path or cycle in N be the total weight of its edges
that are not in M minus the total weight of its edges that are in M . Observe
that any even length cycle in N must have weight ≤ 0 since otherwise we
could increase the weight of M without increasing its size by flipping the
edges in the cycle. The same observation holds for paths of even length.

Now, since N has one more edge from M ′ than from M , we can pair up
all but one of the odd length paths, so that each pair has an equal number
of edges from M and M ′. By the same argument as before, each such pair
of paths must have weight ≤ 0.

The remaining path must be a maximum weight augmenting path with
respect to M , since if it were not, we could use a max weight augmenting
path to produce a matching of size k+1 with larger weight than M ′. Hence,
we have the following theorem.

Theorem 1 Let M be a matching of maximum weight among matchings of
size k, and let p be a maximum weight augmenting path for M . Then the
matching obtained by flipping the edges of p has maximum weight among
matchings of size k + 1.

This theorem provides the basis for a weighted matching algorithm. Finding
a maximum weight augmenting path is difficult to do directly, especially for
general graphs. However, we can use linear programming duality to facilitate
the search for max weight augmenting paths.

We start by defining a 0-1 selection variable xe for each edge in the
graph; xe = 1 will correspond to the inclusion of edge e in the matching.
The matching problem is then equivalent to the integer linear program

maximize weight(X) =
∑

e xew(e)

subject to
∑

e={u,v} xe ≤ 1 for all vertices u

xe ∈ {0, 1} for all edges e

The objective function maximizes the weight of the edges in the matching,
while the constraints limit us to one edge per vertex. If we replace the 0-1
constraints on the selection variables with inequalites of the form xe ≤ 1
we get the linear program relaxation of this ILP. We actually don’t need
to include these inequalities explicitly, since the form of the standard LP
already constrains the xe to be non-negative and consequently, the other

2

constraints prevent them from being larger than 1. Edmonds showed that
for bipartite graphs, the LP relaxation has optimal solutions in which all the
selection variables are integers, even though they are not constrained to be.
The essential property that makes this true is that the coefficient matrix for
the linear program is totally unimodular. Edmonds also showed a similar
property for general graphs but we will defer that for now.

We can use duality to develop an efficient algorithm for the bipartite
case. The dual problem is

minimize
∑

u zu

subject to zu + zv ≥ w(e) for all edges e = {u, v}

The dual variables are referred to as vertex labels. For convenience, we
define ze = zu + zv for e = {u, v}. The complementary slackness condition
tells us that for optimal values of the primal and dual variables, if ze > w(e)
then xe must be zero, and if

∑
e={u,v} xe ≤ 1, zu must be zero. This is

equivalent to saying that for any edge e in the optimal matching, ze = w(e)
and for any free vertex u, zu = 0.

Moreover, if we can find values of the xe and zu that satisfy the comple-
mentary slackness conditions, these must correspond to optimal solutions,
hence the xe values define a maximum weight matching. We can use this
to construct an algorithm that systematically adjusts the primal and dual
variables until the complementary slackness conditions are satisfied. The
following theorem captures these observations.

Theorem 2 Let G = (V,E) be a bipartite graph with edge weights w(e), let
M be a matching in G, let each vertex u have a non-negative label zu and
let ze = zu + zv for e = {u, v}. If

(1) ze ≥ w(e) for all e

(2) ze = w(e) for e ∈M
(3) zu = 0 if u is free

then M is a maximum weight matching.

Although, we arrived at Theorem 2 using LP duality, it can actually be
proved independently, without reference to linar programming at all. If N
is any matching, then∑

e∈N
w(e) ≤

∑
e∈N

ze ≤
∑
u

zu ≤
∑
e∈M

ze =
∑
e∈M

w(e)

3

The first inequality follows from condition (1) in the theorem; the second
follows from the fact that N is a matching; the third follows from condition
(3); and the final equality follows from condition (2).

An edge e = {u, v} with ze = zu + zv = w(e) is called an equality edge.
Note that if p = u0, . . . , u2k+1 is an augmenting path, then conditions (1)
and (2) in the theorem imply that the weight of p satisfies the following.

weight(p) = (w(u0, u1) + w(u2, u3) + · · ·+ w(u2k, u2k+1))

−(w(u1, u2) + w(u3, u4) + · · ·+ w(u2k−1, u2k))

= (w(u0, u1) + w(u2, u3) + · · ·+ w(u2k, u2k+1))

−(zu1 + zu2 + · · ·+ zu2k
)

≤ (zu0 + zu2 + · · ·+ zu2k+1
)− (zu1 + zu2 + · · ·+ zu2k

)

= zu0 + zu2k+1

Also, note that if p is constructed entirely from equality edges, its weight is
exactly equal to zu0 + zu2k+1

. Hence, any augmenting path that uses only
equality edges is a max weight path, while any augmenting path that uses
at least one non-equality edge is not a max weight path.

This leads directly to an algorithm for finding a max weight matching.
At all times, we maintain labels that satisfy conditions (1) and (2) and
we construct a collection of trees using only equality edges. Whenever we
find such an augmenting path, we flip the edges, as usual. Note that this
maintains the validity of condition (2) because all edges in the augmenting
path are equality edges. At various points in the algorithm, we may use
up all the equality edges, preventing us from expanding the collection of
trees any further. When this happens, we adjust the labels so as to create
additional equality edges, taking care to maintain the validity of conditions
(1) and (2). Eventually, the label adjustments cause condition (3) to be
satisfied, causing the algorithm to terminate.

Here’s a more complete description. First, initialize M = {} and for all u,
let zu be half of the largest edge weight. This clearly satisfies conditions (1)
and (2). We search for augmenting paths by building a set of trees rooted
at the free vertices, as we have done before. At each step, we consider
a previously unexamined equality edge e = {u, v} with u even. If v is
unreached, we extend the tree by adding e and the matching edge incident
to v. If v is even, then we have found an augmenting path that we can use to
extend the tree. Every time we extend the matching, we discard the current
set of trees and the odd/even status information. However, we retain the
vertex labels.

4

If the search examines all equality edges without finding an augmenting
path, we adjust the vertex labels as follows. Let

δ1 = min{zu | u is even}
δ2 = min{ze − w(e) | e = {u, v}, u is even, v is unreached}
δ3 = min{(ze − w(e))/2 | e = {u, v}, u is even, v is even}
δ = min{δ1, δ2, δ3}

Note that while the algorithm is running, there must be at least one even
vertex, so δ1 is always defined. However, δ2 and δ3 may be undefined due
to the lack of an edge that satisfies the condition. If either or both are not
defined, the definition of δ is adjusted to ignore the undefined δi values.

We adjust the labels by subtracting δ from the labels of even vertices and
adding δ to the label of odd vertices. Notice that this maintains the validity
of condition (2), since matching edges either have both endpoints unreached
or have one odd endpoint and one even endpoint. It also maintains existing
equality edges that are part of a tree, since these edges also connect an even
vertex to and an odd one. In addition, it maintains the validity of condition
(1), since no zu is reduced enough to create a violation. Note however, that
equality edges with two odd endpoints may become inequality edges, as a
result of a label adjustment.

Observe that if δ = δ1, then after the adjustment, condition (3) is sat-
isfied, so the current matching is a max weight matching. If δ = δ2 < δ1
or δ = δ3 < δ1, the adjustment produces at least one new equality edge,
allowing the search for an augmenting path to resume.

Let’s look at an example of the algorithm in action. In Figure 2 we see

a

d

c

b

e

u

v

y x z

4+ 4+ 4+

4+ 4+

4+ 4+ 4+

4+
4–

7

3

2 6

7 6

3 2

4 5

8

3

8 5

Figure 2: Getting started

the state of the algorithm after the first two steps. The initialization set all
vertex labels equal to 4. Then, the first step discovered the augmenting path

5

a

d

c

b

e

u

v

y x z

3.5+ 3.5 3.5+

3.5+ 3.5

3.5 3.5+ 3.5

3.5+
4.5–

7

3

2 6

7 6

3 2

4 5

8

3

8 5

a

d

c

b

e

u

v

y x z

2.5+ 3.5– 2.5+

2.5+ 3.5+

3.5 2.5+ 3.5

2.5+
5.5–

7

3

2 6

7 6

3 2

4 5

8

3

8 5

a

d

c

b

e

u

v

y x z

2 4 2

2
3

3.5 1+ 3.5

1+
6

7

3

2 6

7 6

3 2

4 5

8

3

8 5

a

d

c

b

e

u

v

y x z

2 4 2

2 3

3.5 2+ 3.5

2+
6

7

3

2 6

7 6

3 2

4 5

8

3

8 5

Figure 3: Example of labeling algorithm

from b to u and added {b, u} to the matching. The second step added the
edges {b, y} and {b, u} to the tree rooted at y. Note that these are the only
equality edges at this point, so after the second step, the algorithm relabels
vertices. In this case, δ = 0.5 and edges {c, z} and {e, v} become equality
edges. These are also augmenting paths, so the algorithm finds them and
augments the matching. It then rebuilds the tree consisting of edges {b, u}
and {b, v} giving the state shown in the top left of Figure 3.

At this point, we must again pause to relabel the vertices. In this case,
δ = 1, making {c, y} an equality edge, allowing the tree to expanded further,
giving us the state shown in top right of the figure. Once more, we must
relabel the vertices, this time using δ = 0.5. This, makes {a, u} an equality
edge and leads to the augmenting path auby and the state shown in the
bottom left of the figure. Two more steps produces the final matching
shown in the bottom right of the figure.

Now let’s consider how to implement this most efficiently. We can use
heaps to quickly determine the δi values when a relabeling is required.

• Let h1,e be a heap containing all the even vertices with z(u) as the key
for vertex u. We’ll maintain a second heap h1,o for the odd vertices.

• Let h2 be a heap containing all edges e with one even and one un-

6

reached endpoint, and let key(e) = ze − w(e).

• Let h3 be a heap containing all edges e with two even endpoints, and
let key(e) = ze − w(e).

We can also use these heaps to update the labels efficiently if we use a heap
with an efficient addtokeys operation. This operation adds a value x to the
keys of all items in a heap and allows the labels to be adjusted implicitly.
When we remove a vertex u from h1,e or h1,o, its key value is used to update
the label zu, but while u is in either of the heaps, its label value is represented
implicitly by the key of the heap item. We’ll explain later how to extend
the d-heap to implement addtokeys in constant time. This makes each label
adjustment a constant time operation.

Now, there are at most n/2 augmenting path searches and within each
search, all but the last step either extends the tree or performs a relabeling.
When extending the tree, we make one unreached vertex odd and another
one even. These must also be added to either h1,o or h1,e. In addition, the
edges incident to the new even vertex must be examined, and added to h2 or
h3 as appropriate (we may have to remove an edge from h2 here also). Since
no vertex becomes even more than once in an augmenting path search, these
heap operations contribute O(m log n) to the time for each path search and
O(mn log n) altogether.

The time for each relabeling operation is O(1). During any single aug-
menting path search, an edge can become an equality edge at most one time.
Since all but the last relabeling operation creates at least one new equality
edge, the number of relabeling operations per augmenting path search is at
most m and so the run time for all relabeling operations is O(mn). The
remaining operations and hence the overall run time is O(mn log n).

What remains is to explain how the d-heap can be extended to implement
addtokeys in constant time. This can be done by adding a single variable ∆
to the heap. Each addtokeys(x) adds x to ∆. When an item is inserted into
the heap with a key of k, we substitute k−∆ as the internal key value stored
in the heap. Subsequent addtokeys operation do not change this stored key
value, just the value of ∆. To recover the “true” value of a heap item’s key,
we simply add the current value of ∆ to the stored key.

7

