
Weighted Matchings in

General Graphs

Jonathan Turner

March 28, 2013

In the previous section we saw how we could use LP duality theory
to develop an algorithm for the weighted matching problem in bipartite
graphs. In this section, we’ll see how to extend that algorithm to handle
general graphs. As in the unweighted case, blossom-shrinking plays a central
role. However, in weighted graphs we will handle blossoms a bit differently.
In particular, we will maintain blossoms across multiple augmenting path
searches.

Let’s start by reviewing the matching ILP and its LP relaxation.

maximize weight(X) =
∑

e xew(e)

subject to
∑

e={u,v} xe ≤ 1 for all vertices u

xe ∈ {0, 1} for all edges e

The objective function maximizes the weight of the edges in the matching,
while the constraints limit us to one edge per vertex. If we replace the 0-1
constraints on the selection variables with inequalites of the form xe ≤ 1
we get the linear program relaxation of this ILP. As noted in the previ-
ous section, we don’t need to include these inequalities explicitly, since the
form of the standard LP already constrains the xe to be non-negative and
consequently, the other constraints prevent them from being larger than 1.

Edmonds showed that for bipartite graphs, the LP relaxation has optimal
solutions in which all the selection variables are integers, even though they
are not constrained to be. This property does not hold for general graphs,
but if we add some additional constraints to the LP relaxation, we get a
linear program that has optimal solutions that correspond to the optimal
solutions of the original ILP.

The new contraints take the form∑
e⊆B

xe ≤ kB

1

where B is a set of 2kB + 1 vertices and kB ≥ 1. The LP contains one such
constraint for every odd subset B with at least three vertices. Note that
although the number of constraints is now exponential in the size of the
graph, since we will not be solving the LP directly, this need not interfere
with our ability to obtain an efficient algorithm.

We can put this LP in standard matrix form by defining a matrix G =
[gB,e] with a row for every odd subset B of the vertices (including those
with a single vertex); gB,e = 1 if B is a singleton set containing one of e’s
endpoints or e ⊆ B; otherwise gB,e = 0. Let W = [we] be a column vector
containing the edge weights and X = [xe] be a column vector containing the
LP variables. Then, let K = [kB] be a column vector with an entry for each
odd subset of B, where kB = 1 if B is a singleton and 2kB +1 = |B| if B has
more than one vertex. Notice that if B defines an odd blossom, then kB is
the number of matching edges joining vertices in B. With these definitions,
the LP becomes maximize W TX subject to GX ≤ K.

The dual of this LP is minimize KTZ subject to GTZ ≥ W . Here, the
vector Z = [zB] contains a dual variable for every odd subset. The objective
function can be expanded to

∑
B kBzB and the constraints can be written

ze ≥ w(e). For e = {u, v}, ze is defined as zu + zv plus the sum of all zB for
which e ⊆ B.

The complementary slackness conditions for this pair of problems can be
written

(GTZ∗ −W)TX∗ = [0] and (K −GX∗)TZ∗ = [0]

where X∗ and Z∗ are optimal solutions. The first condition means that for
every edge in the matching, ze = w(e). The second means that for every
free vertex u, zu = 0 and that for every B with more than one vertex, the
number of matching edges connecting vertices in B is kB. Our weighted
matching algorithm finds solutions to the primal and dual that satisfy these
condtions, and then uses the complementary slackness property to conclude
that the matching defined by the primal variables has maximum weight.
The following theorem captures these observations.

Theorem 1 Let G = (V,E) be a graph with edge weights w(e), let M be a
matching in G and let each odd subset B of V have a non-negative label zB.
If

(1) ze ≥ w(e) for all e

(2) ze = w(e) for e ∈M
(3) zB = 0 if B is a free vertex or includes < kB matching edges

2

then M is a maximum weight matching.

Although, we arrived at this using LP duality, it can actually be proved
independently, without reference to linear programming at all. If N is any
matching, then∑

e∈N
w(e) ≤

∑
e∈N

ze

=
∑

{u,v}∈N

(zu + zv) +
∑
e∈N

∑
B:e⊆B

zB

=
∑

{u,v}∈N

(zu + zv) +
∑

B:|B|>1

zB

(
of edges in N with
both endpoints in B

)
≤

∑
u∈V

zu +
∑

B:|B|>1

zBkB

The first inequality follows from condition (1) in the theorem; the second
line follows from the definition of ze and the third is effectively just reversing
the order of the summations. The final inequality follows from the fact that
N is a matching and the fact that an odd subset B can contain at most kB
edges in a matching. Continuing, this last expression is

=
∑

{u,v}∈M

(zu + zv) +
∑

B:|B|>1

zB

(
of edges in M with
both endpoints in B

)
=

∑
e∈M

ze =
∑
e∈M

w(e)

Here, the first equality follows from condition (3). The second follows from
the definition of ze and the final equality follows from condition (2).

As in the bipartite case, an equality edge is defined as one for which
ze = w(e), but here we use the more general definition of ze given above.
If we define zB = 0 for any odd subset B with three or more vertices that
does not correspond to a blossom, we can show that augmenting paths
constructed from equality edges have maximum weight. To see why this
is true, let p = u0, . . . , u2k+1 be an augmenting path that does not pass
through any blossom. Then, conditions (1) and (2) in the theorem imply
that the weight of p satisfies the following.

weight(p) = (w(u0, u1) + w(u2, u3) + · · ·+ w(u2k, u2k+1))

−(w(u1, u2) + w(u3, u4) + · · ·+ w(u2k−1, u2k))

3

= (w(u0, u1) + w(u2, u3) + · · ·+ w(u2k, u2k+1))

−(zu1 + zu2 + · · ·+ zu2k
)

≤ (zu0 + zu2 + · · ·+ zu2k+1
)− (zu1 + zu2 + · · ·+ zu2k

)

= zu0 + zu2k+1

Now consider how this argument changes if p does pass through a blossom B
with label zB. The edges in p that are inside the blossom form an even-length
sub-path that alternates between edges that are in the matching and edges
that are not. If the length of this sub-path be 2r, we have the following.

weight(p) = (w(u0, u1) + w(u2, u3) + · · ·+ w(u2k, u2k+1))

−(w(u1, u2) + w(u3, u4) + · · ·+ w(u2k−1, u2k))

= (w(u0, u1) + w(u2, u3) + · · ·+ w(u2k, u2k+1))

−(zu1 + zu2 + · · ·+ zu2k
+ rzB)

≤ (zu0 + zu2 + · · ·+ zu2k+1
+ rzB)

−(zu1 + zu2 + · · ·+ zu2k
+ rzB)

= zu0 + zu2k+1

This argument extends directly to multiple blossoms and nested blossoms.
Also, note that if p is constructed entirely from equality edges, its weight
is exactly equal to zu0 + zu2k+1

, as in the bipartite case. Hence, any aug-
menting path that uses only equality edges is a max weight path, while
any augmenting path that uses at least one non-equality edge is not a max
weight path.

We will search for augmenting paths by building a set of trees using only
the equality edges. The labels are chosen to satisfy conditions (1) and (2),
and for odd subsets B with at least three vertices, zB will be non-zero only
if B defines a blossom. Note that this means that the only violations to
condition (3) in the theorem arise from free vertices u with non-zero zu.

The algorithm initializes M = {} and sets zu to half the largest edge
weight for all vertices u. This satisfies conditions (1) and (2) in the theorem.
As it proceeds, the algorithm maintains the validity of (1) and (2) while
eliminating violations of (3).

Whenever an augmenting search stalls for lack of eligible equality edges,
it adjusts the labels. If this eliminates all violations of condition (3), the
algorithm terminates. If it produces additional equality edges, the algorithm
resumes its search. For general graphs, there is also a third possibility that
we will discuss shortly.

4

Whenever an augmenting path is found, the edges on the path are flipped
as usual, but unlike the bipartite case, the blossoms B with zB > 0 are
preserved along with their labels. This is illustrated in Figure 1. In this

a +

– b

c

g e

f d

p +

– q

r

v t

u s

+ +

a

b

c

g e

f d

p

q

r

v t

u s

Figure 1: Augmenting matching while preserving blossoms

example, notice that after the edges on the augmenting path are flipped, f
is the base of the blossom on the left, while t is the base of the blossom on
the right.

Because blossoms may be preserved at the end of a path search, each new
search may start with a number of previously-formed blossoms. The path
search will operate over the condensed graph that includes these blossoms.
Consequently, as blossoms are added to the trees constructed by the path
search, they may be either odd or even, unlike the bipartite case, where
blossoms are always even. For a vertex contained in a blossom, we say that
the vertex is odd, even or unreached, if the outer-most blossom containing
the vertex is.

When a label adjustment is needed, we compute a value δ and adjust the
labels as follows. For each vertex u, we subtract δ from zu if u is even, and
we add δ to zu if u is odd. For each top-level blossom B, we add 2δ to zB if
B is even and subtract 2δ if zB is odd. Notice that for any edge e = {u, v}
contained within a blossom, this leaves ze unchanged, since the changes to
zu and zv are balanced by the changes to the label of the top-level blossom
containing e. Similarly, if e is a tree edge that is not contained within any
blossom, ze is unchanged since one of e’s endpoints is odd and the other is
even. Finally, if both endpoints are unreached ze is also unchanged. If e is
not contained in a blossom and has an even endpoint that is not balanced
by an odd endpoint, ze may change and we need to take care to ensure that
the label adjustment does not lead to a violation of condition (1).

5

We compute δ = min{δ1, δ2, δ3, δ4} where the δi are defined as follows.

δ1 = min{zu | u is even}
δ2 = min{ze − w(e) | e = {u, v}, u is even, v is unreached}

δ3 = min

{
(ze − w(e))/2

∣∣∣∣ e = {u, v}, u, v are both even and
e is not contained in any blossom

}
δ4 = min{zB/2 | B is a top-level odd blossom}

Whenever any of the δi are undefined, they are simply omitted from the
definintion of δ. Note that while the algorithm is running, δ1 is always is
defined, so δ is also.

Now, observe that the label adjustments maintain the validity of condi-
tion (1) and ensure that all labels remain non-negative. Also note that if
δ = δ1, then after the adjustment, condition (3) is satisfied, so the current
matching is a max weight matching. If δ = δ2 < δ1 or δ = δ3 < δ1, the
adjustment produces at least one new equality edge, allowing the search for
an augmenting path to resume.

If δ = δ4 < δ1, δ2, δ3 then the label adjustment makes zB = 0 for some
odd blossom B. The algorithm then expands all such odd blossoms. If
this does not produce any new equality edges, another label adjustment
is performed. Note that expanding such a blossom B cannot lead to any
violations of condition (1).

When an odd blossom is expanded, the algorithm must update the state
variables and parent pointers for vertices and sub-blossoms contained within
the blossom, as illustrated in Figure 2. Notice that this will typically make

+

a

+

–

b c

g

e

f

d

h

i

+

–

–

a

+

– b c

g

e

f

d

h

i

+

Figure 2: Expanding an odd blossom

some blossoms (and the vertices they contain) unreached. Such blossoms
may be added to a tree at some later stage in the some augmenting path
search as odd blossoms. Consequently, a vertex may alternate between being
odd and unmatched multiple times during the course of a single path search.
This behavior requires more complicated data structures than are needed
for the bipartite case. We’ll discuss the implications of this below.

6

Before we do that, however, let’s look at the number of basic steps needed
to complete one augmenting path search.

• At most n/2 steps expand a tree. Each such step may make one
unreached blossom (or vertex) odd and one unreached blossom even.
The edges incident to vertices in the even blossom must all be exam-
ined, but since a blossom only makes the transition from unreached to
even once per augmenting path search, the number of edges that are
examined during one augmenting path search is O(m).

• At most n/2 steps form new blossoms. This is true because every new
blossom formed is even, and even blossoms are not expanded during
a search. In addition, the total length of these blossoms is at most
3n/2. During the formation of the blossom, the edges incident to its
odd sub-blossoms must be examined, but since each odd blossom joins
an even blossom at most once in a path search, the number of edges
examined during one augmenting path search is O(m).

• No edge becomes an equality edge more than once, and consequently
the number of label adjustments that add equality edges is at most m.

• Any odd blossom that gets expanded must have originally been formed
before the start of the current path search, and consequently the num-
ber of steps that expand odd blossoms is at most n/2 and the total
length of their blossom cycles is at most 3n/2.

A straightforward implementation of Edmond’s algorithm takes O(mn2)
time. This can be improved to O(mn log n) with the help of some addi-
tional data structures. In the remainder of this section we give an overview
of the required data structures, while omitting some details.

The first data structure that we need is a blossom structure forest. This
is a forest with a node for every vertex and blossom (including sub-blossoms)
in the current graph. For each vertex or blossom that is contained in an-
other blossom, its parent in the tree is the node for the inner-most blossom
containing it. Vertices and blossoms that are not contained within a blos-
som correspond to tree roots in the forest. The tree is implemented using
doubly-linked circular sibling lists connecting all nodes with a common par-
ent. Each tree node has a child pointer, to one of the nodes in its list of
children (if any). Tree roots are also joined in a circular root list. The blos-
som structure tree is also used to define a total order on the vertices and
blossoms/sub-blossoms. This order is simply the order in which the nodes in

7

the blossom-structure forest would be visited in a post-order traversal (with
different trees visited in the order defined by the root list).

To determine the top-level blossom that contains a vertex u, we could
simply go up to the root of the tree in the blossom-structure forest that
contains u. Unfortunately, this can take Ω(n) time, which is too slow to
support the most efficient implementation. We can speed this up by adding
another data structure that implements split-join sets. This is a data struc-
ture that defines a set of disjoint sets on a base set of elements, where the
elements are ordered relative to one another. This data structure supports
three operations.

• split(s, j) divides a set s into two subsets, one containing items that
are ≤ j (using the underlying order of the elements) and the other
containing items that are > j.

• join(s1, s2) joins two sets where the elements of s1 are all strictly less
than the elements in s2.

• find(j) returns the id of the set containing item j.

The join and split operations could be implemented using a collection of
doubly-linked circular lists. However, this does not enable an efficient im-
plmentation of the find operation. To make all three efficient, the data
structure can be implemented as a collection of binary search trees, where
the left-right order of nodes in the search tree corresponds to the underlying
order of the elements. With this representation, all three operations can be
implemented to run in O(log n) time, where n is the number of elements
in the underlying set. This data structure can be used in conjunction with
the blossom-structure forest to allow us to quickly determine the top-level
blossom containing a vertex. As blossoms are formed and expanded, the
data structure is modified to reflect the changes in the set of blossoms.

In the previous section, we described an extension to the d-heap data
structure that supports the addtokeys operation, and showed how it could
be used to speed up the computation of δ and the updating of vertex and
blossom labels, for the version of the algorithm that handles bipartite graphs.
Unfortunately, it is not sufficient to handle the case of general graphs. We
finish with a high level summary of a general heap data structure that can
be used for this purpose.

A group heap allows the heap elements to be divided into groups, where
each group can be active or inactive. The addtokeys operation changes the
key values of the elements that are in active groups, while leaving the keys

8

of the other elements unchanged. The findmin operation returns the active
item with the smallest key. The group heap also supports a group-splitting
operation, similar to the split operation in the split-join sets data structure.
To support this operation, it requires all the heap elements to be totally-
ordered, independent of their key values.

One way in which thie group heap is used is to keep track of the labels for
the odd vertices and the unreached vertices. There is a group corresponding
to each top-level blossom that is either odd or unreached. The groups for the
odd blossoms are active, while the others are inactive. Each vertex belongs
to the group for its top-level blossom (each vertex not contained in a blossom
has its own group). This group heap allows us to efficiently update the label
zu for each odd vertex u using the addtokeys operation. When an unreached
blossom becomes odd, we simply make its group active. When expanding an
odd blossom, we also need to split its group into sub-groups corresponding
to the sub-blossoms. The split operation in the group heap allows us to do
this.

9

