Dinc’s Algorithm for
Maximum Flows

Jonathan Turner

April 2, 2013

When we first studied the maximum flow problem in graphs, we de-
scribed the augmenting path method for finding maximum flows. When
augmenting paths are selected in increasing order of their length, this yields
an O(m?n) time algorithm. In this section, we’ll consider a refinement of
the shortest augmenting path algorithm that runs in O(mn?) time, making
it faster by a factor of m/n, a substantial advantage for dense graphs.

Recall that when analyzing the performance of the shortest augment-
ing path algorithm, we defined R; to be the residual graph after the i-th
augmenting path step and level;(u) to be the number of edges in a shortest
path in R; from the source to u. We also showed that level;(t) is a non-
decreasing function of time and that it cannot remain unchanged for more
than m augmenting steps.

We can view the execution of the augmenting path algorithm as being
divided into a series of phases of at most m steps each, where a phase ends
whenever level;(t) increases. If R; is the residual graph at the start of some
phase, then during that phase, all augmenting paths are selected from among
those edges (u,v) in R; with level;(v) = level;(u) + 1. We can refer to these
as the eligible edges for the phase. Dinic’s algorithm makes this division into
phases explicit and during a phase it restricts its attention to these eligible
edges.

Unlike the shortest augmenting path algorithm, which uses a breadth-
first search, Dinic’s algorithm uses a depth-first search in the subgraph de-
fined by the eligible edges. Because this subgraph is acyclic, each edge
explored by the algorithm either leads to the sink or to a dead-end. The al-
gorithm is designed to avoid dead-ends once they are first discovered, allow-
ing it to get substantially better running time than the shortest augmenting
path algorithm.

There are two approaches to implementing Dinic’s algorithm. The first



involves explicitly constructing the subgraph defined by the eligible edges at
the start of each phase. Then, during each augmenting path search within
a phase, we do a depth-first search of the subgraph. Any edges that lead to
dead-ends are removed from the subgraph so that later searches won’t waste
time exploring them again.

The second approach skips the construction of the subgraph, using an-
other method to avoid repeated examination of dead-ends. A the start
of each phase, the algorithm computes level(u) for each vertex u using a
breadth-first search. During each augmenting path search, only edges (u,v)
in the residual graph with level(v) = level(u) + 1 are considered. All others
are simply skipped.

The algorithm also uses a pointer nextedge(u) which is initialized to
the first edge in u’s adjacency list. The nextedge pointers are advanced
along the adjacency list anytime an edge is examined without resulting in
an augmenting path. This is sufficient to avoid repeated examination of
deadends. Figure 1 illustrates the use of nextedge.

adjacency list

<—nextedge(u)

Figure 1: Nextedge pointer in augmenting path searches

With this context, we can write the findpath method in algorithmic
notation as follows.

predicate findpath(vertex u)
do nextedge(u) # null =
(u,v) := nextedge(u);
if res(u,v) > 0 and level(v) = level(u) + 1 and
(v =1 or findpath(v)) =
pEdge(v) := (u, v);
return true;
fi;
advance nextedge(u);
rof’;
return false;
end;



If we invoke this method from the source vertex, it will return true if and
only if there is an augmenting path using the eligible edges. It will also
update the pEdge values to identify the augmenting path found, and it will
advance the nextedge pointers past any edges that lead to dead-ends. This
is how it avoids repeated exploration of those edges during later searches.



