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The algorithms we have studied for the max flow problem all work by
adding flow along augmenting paths. At every step, we take a valid flow
function and increase the flow, while respecting the capacity constraints and
flow conservation conditions. At all times, the flow function we’re working
with is a valid, if sub-optimal solution to the problem. As we add flow along
new augmenting paths, we approach the max flow value “from below.”

In this section we’re going to study a class of algorithms that uses a
very different approach. Instead of maintaining a valid flow function at all
times, it uses a more general kind of flow function, called a preflow that is
allowed to violate the flow conservation constraints; specifically, a preflow
may specify more flow entering a vertex than there is leaving the vertex.
We’ll start with a preflow that has a value that is at least as large as the
maximum flow value. As the algorithm runs, it seeks to convert the preflow
into an ordinary flow by reducing the number of vertices at which there is
excess incoming flow. In the process, it will reduce the value of the preflow,
approaching the valid max flow amount from above rather than from below.
For a preflow f and a vertex u, we define ∆f(u) to be the excess flow at
u; that is, it is the difference between the total incoming flow at u and the
total outgoing flow. We say that a vertex u is balanced if ∆f(u) = 0. When
all vertices are balanced, then f is a valid flow function.

Like Dinic’s algorithm, the preflow-push method constrains the search
to a subset of edges. To do this, it defines a set of distance labels that play
a similar role as the level values played in Dinic’s algorithm. We say that
a set of distance labels d(u) is valid if d(t) = 0 and for all edges (u, v) with
res(u, v) > 0 and d(u) ≤ d(v) + 1. Note that this implies that, d(u) can be
no longer than the shortest path distance from u to t in the residual graph.
We say that a set of distance labels are exact if d(u) is the shortest path
distance to t for all u. We say that an edge (u, v) is admissible if res(u, v) > 0
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and d(u) = d(v) + 1 and we say that a path is admissible if all its edges are.
Note that a minimum length augmenting path is admissible with respect to
the exact distance labels. While the preflow-push method does not add flow
along augmenting paths, it does constrain flow changes to the edges that
are admissible at any given point in time.

We can now describe the general preflow-push method. First, we create
a preflow f by letting f(s, u) = cap(s, u) for all edges leaving the source.
Note that |f | is at least as large as the value of a maximum flow. Next, we
compute a set of valid vertex labels by letting d(s) = n, and for all other
vertices u, letting d(u) be the length of the shortest path from u to the sink.
We then repeat the following step so long as there are unbalanced vertices.

Select an unbalanced vertex u. If there are admissible edges leaving
u, select one such edge (u, v) and add flow to it until either the edge
becomes saturated or u becomes balanced. If there are no admissible
edges at u, increase d(u) until at least one edges becomes admissible.

The step that increases the distance labels makes d(u) = d(v) + 1 where v
has the smallest distance label among those neighbors of u with res(u, v) >
0. Note that the initial distance labels are valid (since all edges leaving
s are saturated), and that each step maintains the validity of the labels.
Also, note that the method never violates any edge capacity constraints, so
when it terminates, f is a valid flow function. Moreover, at all times there
is a saturated cut separating the source from the sink, so that when the
algorithm terminates, f is not just any valid flow, it is a max flow.

Observe that the general method does not specify how to select un-
balanced vertices or admissible edges. Different selection methods produce
different algorithms with different performance characteristics.
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Let’s look at example of the preflow-push method in action. Figure 1
shows the initial state, where the sources have been saturated. Note the
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Figure 1: Initial state of general preflow-push method

excess flow at vertices a and b. We can select either vertex a or b for the
first step. Let’s assume that vertex b is selected twice in a row. This leads
to the state shown in Figure 2. Notice that c is now unbalanced also.

s a 

c b 

t 3,3 

2,2 3,0 

6,6 

9,9 

8,0 

4,0 

2,1 

5,- 0,- 

1,6 

1,5 

Figure 2: After selecting b twice
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If we select vertex c at this point, we can add flow on the admissible
edge (c, t), saturating it and reducing the excess at c to 2. If we select c a
second time, none of the incident edges is admissible, leading us to relabel
c, making the edge (c, a) admissible. Selecting c for a third time leads to
the state shown in Figure 3.
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Figure 3: After selecting c, relabeling and selecting c again

At this point, if we select a, we get the state shown in Figure 4. Notice
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Figure 4: After selecting a

that now the only unbalanced vertex is b, but b had no admissible edges
leaving it. This means we must relabel b. Since the only edge at b with
positive residual capacity leaving b is (b, s), the new label at b is 6. This
makes the edge (b, s) admissible, allowing us to push one unit of flow back
to the source. This makes b balanced, yielding a valid maximum flow.
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