
Dinic’s Algorithm

with Dynamic Trees

Jonathan Turner

March 30, 2013

Dinic’s algorithm for the maximum flow problem has a worst-case run-
ning time of O(mn2). The highest label preflow-push algorithm beats this,
with a running time of O(m1/2n2). In this section we’ll see how the intro-
duction of a special data structure improves the worst-case running time of
Dinic’s algorithm to O(mn log n) which improves on the preflow-push algo-
rithm by a factor of O(n/m1/2 log n) which can be a significant advantage
if m � (n/ log n)2.

The primary source of inefficiency in Dinic’s algorithm is that successive
augmenting searches may re-discover paths with positive residual capacity
that were already found in previous searches. What if, instead of starting
each search from scratch, we could remember portions of the graph that still
have positive residual capacity? Then, instead of searching for an augment-
ing path edge-by-edge, we could try to combine existing path segments to
produce the desired path. This idea is illustrated in Figure 1.

c 

d 

j 

i 

g 

h 

t s e 

f k 

a 

b 

Figure 1: Dinic’s algorithm with dynamic trees

The figure shows two directed subtrees of the residual graph, one with

1



root i and one with root h. These subtrees consist of edges (u, v) in the
residual graph with res(u, v) > 0 and level(v) = level(u) + 1. Suppose we
start a path search from s using the edge (a, s). Because a is part of the
subtree with root i, we can use this information to avoid explicitly searching
the edges on the path from a to i. We’ll see that with the appropriate
representation of the subtrees, we can jump to the root of a subtree in
O(log n) time, potentially reducing the time needed for path searches by a
factor of O(n/ log n).

The dynamic trees data structure represents a collection of trees on n
vertices, where each vertex has an associated cost. The data structure de-
fines the following operations.

• findroot(v) returns the root of the tree containing vertex v.

• findcost(v) returns a pair [w, x] where x the is minimum cost for any
vertex on the tree path from v to findroot(v) and w is the last vertex
on the path with cost x.

• addcost(v, x) adds x to the cost of every vertex on the path from v to
findroot(v).

• link(v, w) joins the tree with root v and the tree containing w by
adding the edge (v, w).

• cut(v) divides the tree containing v into two trees by deleting the edge
between v and p(v).

The data structure an be implemented so that any sequence of m ≥ n
operations takes O(m log n) time. Figure 2 shows an instance of the data
structure with two trees. The numbers next to the vertices are the costs.

2



k e b 

c f a i 

d 

g h 

5 

2 

1 

3 5 

6 4 

3 

6 

7 

t n m

u s 

z 

w 

7 

5 

2 

3 5 

4 

6 

4 

2 

q 4 8 

p 6 x 

v 

r 

Figure 2: Dynamic trees example

Note that findroot(x) = z and findcost(i) = [d, 3]. Figure 3 shows how
the data structure changes following the operations cut(k), link(k,m) and
addcost(p, 3).

k 

e b 

c f a 

i 

d 

g h 

5 2 

1 

3 

5 

6 4 

3 

6 

7 

t n m 

u s 

z 

w 

7 

5 

5 

3 8 

4 

9 

4 

2 

q 4 8 

p 9 x 

v 

r 

Figure 3: Dynamic trees example (continued)

When used with Dinic’s algorithm, the costs are used to represent resid-
ual capacities. Specifically, if (u, v) is an edge in the tree, then cost(u) is
set equal to res(u, v) in the flow graph. The addcost operation allows us
to change the costs at all vertices on a tree path. This is used by Dinic’s
algorithm to effectively add flow to all edges on the tree path.

3


