
Minimum Spanning Trees and d-Heaps

Jonathan Turner

January 9, 2013

This note is adapted from Data Structures and Network Algorithms by
Tarjan.

A spanning tree in a connected, undirected graph is a subtree of the
graph that includes all its vertices. In an edge-weighted graph, the objective
of the minimum spanning tree problem is to find a spanning tree for which
the sum of the edge weights is as small as possible.

a 

e b 

c 

f d 

a 

e b 

c 

f d 

2 7 
9 

1 3 5 
2 

6 

Figure 1: Example of a minimum spanning tree

This problem arises frequently in applications and often appears as a
sub-problem within other optimization problems.

The greedy method is a general approach to finding a minimum spanning
tree, and is the basis for a variety of different specific algorithms. Before
describing the greedy method, we need a definition. A cut in a graph is a
division of the vertices into two subsets X and X ′. We say an edge crosses
the cut if one of its endpoints in X and the other in X ′.

The greedy method assigns colors to the edges of a graph (blue or red)
by repeatedly applying one of the two following rules.

• Blue rule. Select a cut with no blue edges, but at least one uncolored
edge. Select a minimum cost uncolored edge crossing the cut and color
it blue.

1



• Red rule. Select a simple cycle with no red edges and at least one
uncolored edge. Select a maximum cost uncolored edge on the cycle
and color it red.

The method terminates when neither of the rules can be applied. At this
point, all the edges will be colored, and the blue edges will define a minimum
spanning tree.

Notice that the greedy method leaves a number of things unspecified.
For example, it doesn’t say when to apply the blue rule, nor what cut to
select when using the blue rule. We’ll see shortly that no matter what
choices we make for these things, the greedy method yields a minimum
spanning tree. This establishes the correctness of any specific algorithm
that implements the general greedy method, meaning that we don’t need
to prove correctness separately for any such algorithm. Defining algorithms
in terms of a general method like this is extremely useful. It allows us to
see more clearly what is essential and what is incidental, and it allows us
to understand the fundamental similarities and differences among different
algorithms.

We establish the correctness of the greedy method by showing that it
maintains the following invariant.

Color invariant. There is a minimum spanning tree containing all of
the blue edges and none of the red edges.

Suppose that the invariant is true before a step that uses the blue rule.
Let e = x, y be the selected edge, and let T = (V, F ) be an MST containing
all the blue edges (and no red ones) before the step. If e ∈ F , then after the
step, T still contains all the blue edges and no red edges. If e 6∈ F , then after
the step, there is some other edge e′ on the simple path from x to y in T
that is also in the cut selected by the blue rule (see Figure 2). Since the cut

x y e 

path in T 
e’ 

Figure 2: Blue rule maintains color invariant

2



contains no blue edges e is not blue. Consequently, T ′ = (V, F ∪ {e}− {e′})
is a spanning tree. Since cost(e) ≤ cost(e′), T ′ is a minimum spanning tree
that contains all the blue edges and none of the red ones.

Suppose that the invariant is true before a step that uses the red rule.
Let e = x, y be the selected edge and let T = (V, F ) be a minimum spanning
tree that contains none of the red edges and all the blue edges before the
step. If e 6∈ F then T contains no red edges (and all the blue edges) after
the step. If e ∈ F , then removing e from F splits T into subtrees T1 and T2.
There is some edge e′ that is not in T , on the cycle selected by the red rule
that joins a vertex in T1 to a vertex in T2 (see Figure 3). Since e′ is on the

x y 
e 

selected 
cycle 

T1 T2 

e’ 

Figure 3: Red rule maintains color invariant

cycle, it is not red. Hence, T ′ = (V, F ∪{e′}−{e}) is a spanning tree. Since
cost(e) ≥ cost(e′), T ′ is a minimum spanning tree. T ′ contains no red edges
and all the blue edges, so this step maintains the color invariant. To see that
all edges are colored, suppose that at some point e = u, v remains uncolored.
If u and v are connected by a blue path then that path plus e forms a cycle
that the red rule can be applied to. If u and v are not connected by a blue
path, then there is a cut crossed by e that the blue rule can be applied to.
This gives us the following theorem.

Theorem 1 The greedy method colors all edges of a connected graph and
maintains color invariant.

3


