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Binary search trees are used in a wide variety of applications. In par-
ticular, they can be used to implement Edmonds algorithm for max weight
matching in general graphs and the dynamic trees data structure used to
speed up Dinic’s algorithm. Here, we will use binary search trees to repre-
sent a collection of sets, where the set elements are drawn from some base
set, with each item appearing in exactly one set. Each item has a unique
key and the data structure implements the following operations.

• setkey(i, k) initializes the key of item i to k; i must be a singleton.

• access(k, s) return the item in set s having key k, or null if there is no
such set.

• insert(i, s) inserts item i into s; i must be a singleton.

• delete(i, s) removex item i from s; i becomes a singleton.

• join(s1, i, s2) returns the set formed by combining s1, i and s2; all
items in s1 must have keys less than key(i) and all items in s2 must
have keys greater than key(i); this operation replaces s1 and s2 with
the new set.

• split(i, s) divides the set s containing i into three sets: s1 containing
items with keys less than key(i), {i} and s2 containing items with keys
greater than key(i); it returns the pair [s1, s2].

Each set in the data structure is represented by a binary search tree,
with each element in the underlying base set corresponding to a node in
some tree (possibly a single node tree). Each item x has a pointer to a left
child left(x), a right child right(x) and a parent p(x). Any of these may
be null. A common implementation trick uses an explicit null node with
appropriatedly defined fields, to reduce the number of boundary cases that
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must be handled explicitly. The key property of a binary search tree is that
for all nodes x

left(x) 6= null⇒ key(left(x)) < key(x)

right(x) 6= null⇒ key(right(x)) > key(x)

This allows us to quickly locate an item in the tree using its key as illustrated
by the access operation shown below.

item function access(key k, set s)
do s 6= null and k < key(s) ⇒ s := left(s)
| s 6= null and k > key(s) ⇒ s := right(s)
od;
return s

end;

A null return value indicates that the specified key is not present in the
tree.

The insert operation works similarly, first searching for the location
where the key of the item to be inserted belongs, then adding a node for the
item at that location. Figure 1 shows an example of a binary search tree
and the effect of an insert operation.
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Figure 1: Binary search tree example

An implementation of the insert operation appears below.

sorted set function insert(item i, sorted set s)
item x; x := s;
if s = null ⇒ return i fi;
do key(i) < key(x) and left(x) 6= null ⇒ x := left(x)
| key(i) > key(x) and right(x) 6= null ⇒ x := right(x)
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od;
if key(i) = key(x) ⇒ return null
| key(i) < key(x) ⇒ left(x) := i;
| key(i) > key(x) ⇒ right(x) := i;
fi;
p(i) := x left(i), right(i) := null;
return s;

end;

In this implementation, the swapplaces method exchanges the positions of i
and j in the tree.

There are several distinct cases for the delete operation. If the node for
the item i to be deleted, has no children, we can simply remove the node from
the tree. If it has a single child, we can move that child up into the position
currently occupied by i. If i has two children things get more complicated.
First, we identify the item j with the largest key that is ≤ key(i). The node
for this item will be in the left subtree of i. More specifically, it will be the
rightmost node in the left subtree, as illustrated in Figure 2. Once we have
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Figure 2: Example of deletion

found the node for item j, we move it up to the position originally occupied
by i and move its original child (if any) into the position that it originally
occupied. An implementation of this procedure appears below.

procedure delete(item i, set s)
item j;
if left(i) 6= null and right(i) 6= null ⇒

j := left(i);
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do right(j) 6= null ⇒ j := right(j) od;
swapplaces(i, j);

fi;
if left(i) = null ⇒ left(i)↔ right(i) fi;
p(left(i)) := p(i);
if i = left(p(i)) ⇒ left(p(i)) := left(i)
| i = right(p(i))⇒ right(p(i)) := left(i)
fi;
left(i), right(i), p(i) := null;

end;

The join and split operations are useful in a variety of applications,
including the dynamic trees data structure used by some network flow algo-
rithms, and Edmonds algorithm for maximum weight matchings in general
graphs. The join operation has a simple implementation, as illustrated in
Figure 3.
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Figure 3: Join operation

An implementation appears below.

sorted set function join(sorted set s1, item i, sorted set s2);
left(i) := s1; right(i) := s2;
p(s1), p(s2) := i;
return i;

end;

The split operation moves up the tree from the item i on which the split
is taking place. As it goes, it builds the two sets s1 and s2 that eventually
get returned. The initial values of s1 and s2 are the left and right subtrees
of i. As the operation moves up the tree, it combines the “next node” x
with either s1 or s2, depending on whether i was in its left or right subtree.
This process is illustrated in Figure 4 for the case where i was in the left
subtree of x.
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Figure 4: Split operation

After the operation, x is the root of the new s2. An implementation of
the split operation appears below.

[sorted set, sorted set] function split(item i, sorted set s);
sorted set x, s1, s2;
x := p(i); s1, s2 := left(i), right(i);
bit leftchild := (i = left(x));
do x 6= null ⇒

if leftchild ⇒ s2 := join(s2, x, right(x))
| not leftchild ⇒ s1 := join(left(x), x, s1)
fi;
leftchild := (x = left(p(x)); x := p(x)

od;
left(i), right(i), p(i) := null;
p(s1), p(s2) := null;
return [s1, s2];

end;

In addition to the operations described above, there are others that can
be useful in some contexts. For example, we might define first and last
operators that identify the items with the smallest or largest keys in a set.
These can be easily implemented by following left pointers in one case, or
right pointers in the other. The operation next(x) returns the item with
the next larger key. If x has a right subtree, the next item is found at the
leftmost node in x’s right subtree. If x has no right subtree, the next item
is found by following parent pointers, and stopping at the first node that
contains x in its left subtree.
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