
Self-Adjusting Search Trees

Jonathan Turner

April 16, 2013

We’ve seen how we can use explicit balance conditions to limit the height
of binary search trees to at most 2 lg n. This leads to efficient operations on
search trees, and speeds up algorithms that use them. In this section we will
study a class of search trees that uses no explicit balance condition allowing
it to produce search trees that are very unbalanced. Still, we can execute
any sequence of m operations on these trees in O(m log n) time, making
them competitive with search trees that are strictly balanced. Moreover, in
some contexts they actually out-peform search trees that do have an explicit
balance condition.

The key to the self-adjusting search tree is the splay operation, which
restructures the tree in a way that makes later operations more efficient.
The operation splay(x) is implemented by repeating the following step until
x is the root of the tree.

Splay step. If x has a grandparent, do the double rotation rotate2(x).
Otherwise, do a single rotation rotate(x).

Note that the single rotation is only used on the last step. This is illustrated
in Figure 1.

So, why is this a useful thing to do? First, notice that each double
rotation reduces depth(x) by two. Moreover, each of these steps also reduces
the depth of the descendants of x by one or two. Consider for example when
x is an outer grandchild. Note that subtree A moves two steps closer to the
root, while subtree B moves one step closer. When x is an inner grandchild,
both of its subtrees move one step closer. Consequently, for all descendants
of x the splay operation reduces their distance to the root by roughly half
the original depth of x, or more.

So clearly, the descendants of x benefit from the splay operation. What
about the other vertices? Consider a node u that is on the path from x to
the root before the operation. The first few splay steps may have no effect

1



A 
C 

B 

x 

y 

B 
A 

C 

y 

x 

no grandparent 

B 
D 

C 

x 

y 
A 

z 

A B C D 

z 

x 

y 

inner(x) outer(x) 

A 
C 

B 

x 
D 

z 

y 

C 
B 

D 

z 

y 
A 

x 

rotate2(x) rotate2(x) rotate(x) 

x has grandparent 

Figure 1: Splay steps

on u, but eventually a splay step occurs that moves x up past u, potentially
moving u down by as much as two steps. But once this splay step occurs, u
becomes a descendant of x and the remaining double rotations just move u
closer to the root. The net reduction is in this case is nearly half the original
depth of u.

If v is node that is not on the path from x to the root, let u be the nearest
common ancestor of u and x. Here again, the first few double-rotations have
no effect on v, and the step that moves x past u may increase the depth
of v by 2. The remaining double rotations reduce the depth of v. The
net reduction is roughly half the original depth of u. So, while some nodes
will experience a small increase in their distance from the root, others will
experience a large decrease.

A splay is performed as part of any operation that traverses a path from
the root to a vertex x. The rationale is that the time required for the splay
increases the cost of the original operation by no more than a constant factor,
so we might as well restucture the tree so as to speed up later operations.
This is illustrated below for the access operation.

item function access(key k, set s)
do key(s) < k and left(s) 6= null ⇒ s := left(s)
| k > key(s) and right(s) 6= null ⇒ s := right(s)

2



od;
s := splay(s);
if key(s) = k ⇒ return s
| key(s) 6= k ⇒ return null
fi;

end;

The splay operation returns the new root of the tree. Note that the splay
is performed, regardless of whether the desired key value is present in the
tree.

The insert operation works just like in the case of unbalanced trees. The
only difference is the splay preceding the return.

function insert(item i, sorted set s)
item x; x := s;
if s = null ⇒ return i fi;
do key(i) < key(x) and left(x) 6= null ⇒ x := left(x)
| key(i) > key(x) and right(x) 6= null ⇒ x := right(x)
od;
if key(i) = key(x) ⇒ splay(x) return null
| key(i) < key(x) ⇒ left(x) := i;
| key(i) > key(x) ⇒ right(x) := i;
fi;
p(i) := x left(i), right(i) := null;
return splay(i);

end;

The delete operation is also extended to include a splay. If the delete
is done at a node at a node x with one or two children, the splay is done
at the original parent of x. If x has two children, the splay is done at the
original parent of the node that takes x’s place in the tree.

The join does not require a splay. The split operation starts with a splay,
that brings the split node to the root of the tree. At that point, it’s trivial
to divide the tree into the required three components.

All operations that take more than constant time include a splay and
their running time is bounded by the number of splay steps. Hence, we can
determine the running time of a sequence of operations by counting the total
number of splay steps.

3


