
Implementing Dynamic Trees

Jonathan Turner

April 14, 2013

In this section, we’ll complete our discussion of the dynamic trees data
structure. In particular, we’ll look at how path sets can be implemented
efficiently using binary search trees, and then we’ll complete the analysis of
the performance of the complete data structure. Before we get started, let’s
review the big picture, illustrated in Figure 1.

Dinic’s
algorithm

dynamic
trees

succ[]

path
sets

self-adjusting
binary search

trees

Figure 1: Levels of abstraction for dynamic trees

The motivating application for the data structure is Dinic’s algorithm,
which uses dynamic trees to store information about portions of the resid-
ual graph that may be used to construct new augmenting paths. The data
structure divides trees into paths, that are linked together using the succes-
sor array succ[]. The expose operation modifies the path sets, so that the
nodes on a specific node-to-root path can be processed efficiently, without
affecting other nodes. In this section, we’ll examine the inner-most layer of
the diagram, where self-adjusting binary search trees are used to implement
the paths.

To represent a path as a binary search tree, we simply equate the head-
to-tail order of the nodes in the path with the left-to-right order of the nodes
in the binary search tree. This is illustrated in Figure 2 which shows a path
and two different search trees that can be used to represent it. If u comes

1

e b a d c f

a f e

b c

d

b f d

e c

a two alternative
binary search trees

Figure 2: Representing paths as search trees

before v in the path, then u must appear to the left of v in the binary search
tree. Any search tree that satisfies this condition for all pairs of nodes in the
path is a legitimate representation of the path. So for example, if we do a
rotation operation on a search tree, the new search tree that results is still a
valid representation of the path, since the rotation operation preserves the
left-to-right ordering of the nodes in the search tree. Notice that no keys
are required here. While we can think of the search tree nodes as having
keys equal to their positions in the path, there is no need to represent these
keys explicitly.

Of course, while we may not need the usual binary search tree keys, the
path sets data strcture does define costs for every node, and we need a way
to efficiently determine the minimum cost of any node in a path. To make
this easier, we can associate a mincost value with each subtree of a binary
search tree. This is illustrated on the left side of Figure 3. For each node x,

e b a d c f
4 2 3 5 4 2

cost

b f d

e c

a 3,2
cost, mincost

4,2 2,2

2,2 5,5 4,4 b f d

e c

a 1,2
Δcost, Δmin

2,0 0,0

0,0 0,3 0,2

mincost(d)=Δmin(a)+Δmin(c)+Δmin(d)=5
cost(d)=mincost(d)+Δcost(d)=5

Figure 3: Representsing node costs in search trees

mincost(x) is the minum cost among all the nodes in the subtree with root x,

2

so mincost(e) = 2, because the subtree with root e includes the node b that
has cost 2. Using the mincost values, it’s trivial to determine the minimum
cost for a path. Moreover, it’s straightforward to find the last node on the
path that has the minimum cost. If the right subtree of the root has the
same mincost value as the root, we’ll find the last min cost node in the right
subtree. If not, but the root has minimum cost, then the root is the last
min cost node in the path. Otherwise, the last min cost node is in the left
subtree. These observations lead directly to an efficient search procedure.

So this is great, but it’s not a complete solution to the problem of imple-
menting path sets efficiently. To complete the implementation, we also need
a way to efficiently change the costs of all nodes in a path. If we store the
cost and mincost values explicitly, as fields in the search tree nodes, we’ll
need to update those fields every time we do an addpathcost operation. To
make the addpathcost efficient, we’ll represent the cost information using a
differential representation. First, we define

∆min(x) =

{
mincost(x) if x is a tree root
mincost(x) − ∆min(p(x)) if x is not a tree root

This definition is illustrated on the right side of Figure 3. Notice that
mincost(x) is the sum of the ∆min values on the path from x to the root
(in the example mincost(c) = ∆min(a) + ∆min(c) + ∆min(d) = 2 + 0 + 3 =
5). Consequently, as we follow a path down from the root, we can easily
determine the mincost value of the current node; so, we can still use it to
quickly find the last min cost node in the path.

To determine the actual cost of a tree node, we maintain a second field
with each node.

∆cost(x) = cost(x) − mincost(x)

So, we can determine the actual cost of x by adding ∆cost(x) to mincost(x).
The advantage of this representation is that we can now do an addpathcost
operation on a path by simply adding the desired increment to the ∆min
field of the root. This effectively changes the mincost values for all nodes
and hence their costs, as well.

The differential cost representation does complicate some of the routine
operations on search trees. In particular, whenever we perform the rotation
operation, rotate(x), the mincost values of x and its original parent change.
This requires an adjustment to the ∆min and ∆cost values of these nodes
and to the ∆min values of their children.

It’s important to remember that the node costs here are not binary search
tree keys. So, in particular, the costs need not satisfy the usual left-to-right

3

ordering property for search tree keys. In this application, we are using the
search tree ordering only to determine the order of nodes in the path. This
can be done without any explicit keys.

4

