Shortest Paths in Directed Graphs

Jonathan Turner

January 22, 2013

This note is adapted from Data Structures and Network Algorithms by
Tarjan.

Let G = (V,E) be a directed graphs and let length be a real-valued
function on E. The length of a directed path in G is defined to be the sum
of the lengths of its edges. So for example, in Figure 1, the length of the
path ¢, a, b, g is 14. A shortest path joining a pair of vertices u and v is

Figure 1: Example of a shortest path in a graph

defined as a path of minimum length among all paths from u to v. So for
example, the highlightes path a, e, d, f in Figure 1 is a shortest path from
a to f, but the path a, b, g, f is not.

The shortest path problem has many applications. For example, it is
used to determine the best way to forward packets in the internet, and by
mapping applications to determine the shortest driving distance between
two locations. It also arises in less obvious forms, and often appears as a
subproblem within other problems.

Note that we allow edges to have negative lengths, which means that
shortest paths may have negative lengths as well. This allows the possibility
that a graph might contain a cycle of negative length, in which case shortest



paths are not well-defined (since we can get a path of arbitrarily small length
by traversing a negative cycle multiple times). This means that we have to
take extra care when dealing with graphs that have negative edge lengths.

You might well wonder why we would want to allow negative edge
lengths. While many applications of shortest paths do not require nega-
tive edge lengths, there are other applications where they are useful or even
essential. Indeed, shortest path computations are used in algorithms for
the min cost flow problem and in this context, negative edge lengths are an
unavoidable feature of the problem.

We note that if there is no negative cycle on any path from s to ¢t in a
graph, then there must be a simple path of minimum length, since we can
always remove a simple cycle of non-negative length from a path without
increasing its length. So for example, in Figure 2 the shortest path s, a,
b, ¢, t can be replaced with the simple shortest path s, a, ¢t by removing
the non-negative cycle a, b, c. These observations yield the following basic

-3

Figure 2: Removing non-negative cycles from shortest paths

theorem.

Theorem 1 Let G be digraph with a path from s to t. There is a shortest
path from s to t if and only if no path from s to t that contains a negative
cycle. If there is a shortest path from s to t, there is one that is simple.

There are several variants of the shortest path problem. The simplest is
the single pair problem, in which we are given a source vertex s and a sink
vertex t and our objective is find a shortest path from s to t. In the single
source problem, we are given a source vertex s, and our objective is to find
shortest paths from s to every other vertex in G. In the single sink problem,
we are given a sink vertex ¢, and our objective is to find shortest paths to ¢
from every other vertex in G. Finally, in the all pairs problem, our objective
is to find shortest paths between every pair of vertices. It turns out that
solving the single pair problem generally requires solving a single source (or
single sink) problem. Also, the single source and single sink problems are



essentially the same, and the all pairs problem can be solved by solving the
single source problem multiple times. Hence, it makes sense to focus most
of our attention on the single source version of the problem.

Solutions to the single source problem can be expressed conviently using
a shortest path tree. A directed spanning tree of a graph is a directed subtree
of the graph that includes a directed path from the root to every vertex. A
shortest path tree is a directed spanning tree rooted at the source vertex s,
in which all paths are shortest paths. So for example, the heavy weight edges
in Figure 3 form a shortest path tree rooted at a. The following theorem

Figure 3: Shortest path tree

characterizes the existence of shortest paths in terms of shortest path trees.

Theorem 2 G contains shortest paths from s to every other vertex if and
only if it contains a shortest path tree with root s.

The proof of this will be deferred until later.

Next, we describe a key property of shortest path trees. If T is a spanning
tree of G with root s, define distance(v) to be the length of the path from s
tovin T.

Consider an edge (v,w) in G that is not in 7" and note that that if
distance(w) > distance(v) + length(v,w), then the tree path from s to w is
not a shortest path (see Figure 4). Hence, if T' is a shortest path tree, then
we must have distance(w) < distance(v) + length(v,w) for all edges (v, w)
in G.

What about the converse? That is, can we say that if distance(w) <
distance(v) + length(v,w) for all edges (v, w) in G, that all paths in T are
shortest paths?

To prove this, we must show that for any path p in G from s to a vertex
x, distance(x) < length(p). Note that if p consists of a single edge (s,x),



Figure 4: Shortest path tree property

then
length(p) = distance(s) + length(s, z) > distance(x)

So, let’s try to prove the general result using induction on the number
of edges in p. Assume then that p has k 4+ 1 edges and that for all vertices
2’ and all paths p’ with k edges, distance(z’) < length(p’). Now, let ¢ be
the path consisting of the first k edges of p and let y be the last vertex in ¢
(see Figure 5). Then,

vl |

p

Figure 5: Inductive step establishing shortest path tree property

distance(x) distance(y) + length(y, x)
length(q) + length(y, x)

= length(p)

<
<

This gives us the following theorem.

Theorem 3 Let T is a spanning tree of G with root s, and let distance(v)
be the length of the path from s to v inT. T is a shortest path tree if and
only if, distance(w) < distance(v) + length(v,w) for all edges (v, w) in G.

The property described in the theorem is called the shortest path tree
property and is the basis for a fundamental method for solving the short-
est path problem. This method essentially converts an arbitrary spanning
tree into a shortest path tree by finding edges that violate the shortest path
tree property and modifying the tree so as to eliminate the violations. This



method underlies the various specific algorithms that are used to find short-
est paths.



