Fibonacci Heaps

Jonathan Turner

January 9, 2013

We have seen that the d-heap provides a simple and efficient method for
selecting an item of minimum key from among a set of items. It also allows
us to adjust the key of any item, and for applications where the keys usually
decrease, we can optimize the overall performance by adjusting the value of
d.

The Fibonacci heap (or fheap, for short) provides much the same func-
tionality as the d-heap but has two key advantages. First, Fibonacci heaps
allow us to decrease the key of an item in “effectively” constant time, which
allows us to improve the worst-case performance of Prim’s algorithm for
minimum spanning trees and Dijkstra’s algorithm for shortest paths, on
sparse graphs. The second advantage of Fibonacci heaps is that they are
meldable, meaning that we can efficiently combine two fheaps into a single
fheap.

Fibonacci heaps are also interesting in another way. With most data
structures, we characterize their performance by deriving bounds on the
time required for each individual operation. In the case of Fibonacci heaps,
we can get a better performance bound by considering the overall time for
a sequence of operations. That is, for fheaps, while certain individual oper-
ations may be expensive, the average cost per operation over any sequence
of operations is guaranteed to be acceptably small.

The Fibonacci heaps data structure defines a collection of heaps defined
over a set of items aq,...,a,, each having a key. Each item belongs to ex-
actly one heap at all times and each heap is identified by one of its members
(called its id). The data structure supports the following operations.

e findmin(h): return an item of minimum key in heap h (or more pre-
cisely, the heap with id h).

e insert(i,z, h): insert item ¢ into heap h with key x; ¢ must be a single-
ton heap.



e delete(i, h): delete item i from h and return the resulting heap’s id
(note that the heap’s id may change even if ¢ is not the id of the heap
before the operation).

e deletemin(h): delete a minimum key item from h; return it and the id
of the resulting heap.

e meld(hy, h2): return the id of the heap formed by combining h; and
hs.

e decreasekey(A, i, h): decrease the key of item ¢ in h by A; return the
new id.

We could easily define a general changekey operation; we have chosen to
limit ourselves to decreasekey in order to simplify the ensuing discussion.
An fheap can be implemented as a collection of heap-ordered trees, in
which all the tree roots are joined together in a doubly-linked list. In ad-
dition to its key, each item has an auxiliary field, called its rank, which is
equal to the number of children that it has, and additional bit called the
mark bit, which is used to control certain decisions in the decreasekey oper-
ation. The tree structure is defined using a combination of parent and child
pointers and sibling lists. Specifically, each non-root node has a pointer to
its parent and each non-leaf node has a pointer to one of its children. Nodes
with a common parent are joined together by a doubly-linked sibling list.
See Figure 1 for an example of such a heap implementation. In the example,

key,rank @
""""""""""" d) ((s)? "k
©)7,2 G) ’ i —
4,1 ’ T —
6,0 5,0 .G © G’ =
6,0 8,0 10,0 ég

Figure 1: Structure of a single fheap

the mark bits are indicated by check marks. In general, the id of a heap is
a node of minimum key, so in the example d is the id. Please take note that
the example shows a single heap from a larger collection of heaps.

Next, we describe how the operations are implemented. The meld oper-
ation is particularly simple. We simply merge the root lists of the two heaps
and return the item of minimum key as the id of the resulting heap. This



can be done in constant time. The insert operation can be implemented as
a special case of meld, so it also takes constant time.

The delete operation can be implemented using the decreasekey and
deletemin operations. Specifically, we first decrease the key of item i by
an amount that makes ¢ the minimum key item in the heap, then we do a
deletemin on the heap. This leaves ¢ in a singleton heap and we finish by
restoring the original key value for .

The deletemin and decreasekey operations both have more complex im-
plementations and their running times are somewhat variable. We will show
that any sequence of of m operations on a set of fheaps (starting from the
initial state) that includes k decreasekey operations takes O(k + mlogn)
time. However, we will also see that individual deletemin and decreasekey
operations cannot be bounded so tightly.

To implement deletemin we start by removing the item of minimum key
from the root list and merge its list of children into the root list. (So for
example, if we performed a deletemin on the heap in Figure 1, nodes f, e
and ¢ would all become tree roots.) At this point, we need to scan the root
list in order to find the item with the smallest key, since we must return this
item as the new id of the heap. Since we have to scan the list anyway, we
take the opportunity to restructure the heap so as to make later operations
more efficient.

Specifically, as we're scannng the root list, if we encounter two nodes of
the same rank, we make one of them a child of the other (depending on their
key values). This can be done efficiently using an auxiliary array. Whenever
we examine a tree root, we insert the tree root into the array at the position
determined by its rank. If that position is already occupied by another tree
root, we “demote” the one with the larger key, producing a new tree with a
root of rank k+ 1. This new root may collide with another root of rank k+1
leading to another restructuring step (or possibly more). Figure 2 shows an
example of how a set of tree roots are combined during the restructuring
phase of a deletemin.

To implement the operation decreasekey(A, i, h), we first “cut” the edge
from the tree node for ¢ to its parent, and merge the node into the root list
for h. We then decrease the key of i by A and check to see if this makes the
key of ¢ smaller than the key of h. In order to obtain the desired bound on
the ranks, we need to limit the number of cuts that occur at any node during
decreasekey operations. Specifically, we require that no non-root node lose
more than one child. If a changekey would cause a non-root node z to
lose a second child, we trigger an additional cut between x and its parent,
making x a tree root also. In general, a decreasekey can produce a sequence



[l =B10s

Figure 2: Linking of tree roots by deletemin

of cascading cuts, causing several new trees to be added to the heap. The
mark bits are used to implement this restructuring. Mark bits are cleared
whenever a node becomes a tree root and are set whenever a non-root node
loses a child. Before setting the mark bit for a node, we first check to if it’s
already set. If it is, we trigger another cut. An example of the restructuring
performed by a decreasekey operation is shown in Figure 3.

2 g @%g

OFA
@S [\
/\

Figure 3: Restructuring performed by decreasekey



