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In the minimum cost flow problem, we are given a flow graph G =
(V,E) in which each edge has a real-valued cost, in addition to its capacity.
The cost of an edge represents the cost per unit flow on that edge, so if
cost(u, v) = 3 and f(u, v) = 5 then the edge (u, v) contributes 15 to the
overall cost of the flow. Figure 1 is an example of an instance of the min
cost flow problem. Note that edge costs may be negative. In general, edge
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Figure 1: Example of min cost flow problem

costs are defined to be skew symmetric, that is cost(u, v) = −cost(u, v). The
cost of a flow is defined

cost(f) =
∑

f(u,v)>0

cost(u, v)f(u, v) =
∑
u,v

cost(u, v)f(u, v)/2

So in Figure 2, the cost of the flow is 47.
The residual graph is defined as in the max flow problem. The edge costs

in the residual graph are the same as the edge costs in the flow graph.
The cost of a path p is defined to be the sum of its edge costs. These

definitions ensure that the cost of a path in the residual graph is equal to the
cost of adding one unit of flow to all of the path’s edges in the flow graph.
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Figure 2: Flow cost example

We say that f is a minimum cost flow if among all flows with value |f |,
f has minimum cost. In the minimum cost, maximum flow problem the
objective is to find a maximum flow of minimum cost.

There are two general strategies for finding minimum cost flows. The
cost reduction strategy converts an existing flow into a flow of lower cost by
finding negative cost cycles in the residual graph and adding flow to those
cycles. The minimum cost augmentation strategy repeated finds augmenting
paths of minimum cost. Both of these methods require finding least-cost
paths in a graph with negative edge costs, so before proceeding further, we
turn to the problem of how to find such paths.

Recall the general scanning and labeling method for finding shortest
paths. Each vertex can be one of three states, unlabeled, labeled or scanned.
Initially, the source vertex s is labeled and all others are unlabeled. We then
repeat the following step as long as possible.

Scanning step. Select a labeled vertex u and convert it to the scanned
state. For all edges (u, v) with dist(v) > dist(u) + length(u, v), make
p(v) = u and dist(v) = dist(u) + length(u, v) and convert v to the
labeled state.

Note that vertices can alternate between the scanned and labeled states. To
obtain an efficient algorithm for graphs with negative edge lengths, we store
the labeled vertices in a queue and select the first vertex in the queue in each
scanning step. This is referred to as the breadth-first scanning algorithm.

procedure breadthFirst(graph G = (V,E), vertex s,
mapping p : vertex→ vertex);

vertex v; list queue;
for v ∈ V ⇒ dist(v) :=∞; p(v) := null; rof;
dist(s) := 0; queue := [s]; // contains all labelled vertices
do queue 6= []⇒
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v := queue(1); queue := queue[2..];
for[v, w] ∈ out(v)⇒

ifdist(v) + length(v, w) < dist(w)⇒
p(w) := v; dist(w) := dist(v) + length(v, w);
ifw 6∈ queue⇒ queue := queue & [w]; fi;

fi;
rof ;

od;
end;

In order to bound its running time, we divide the execution of the
breadth-first scanning algorithm into passes. Pass 0 ends after vertex s
is scanned the first time. Pass j ends after every vertex that was on the
queue at the end of pass j − 1 has been scanned. Note that with this defi-
nition, every vertex is scanned at most once per phase and so each edge is
examined at most once per phase. This gives us a running time of O(m)
per phase.

To complete the running time analysis, we need to bound the number of
phases. We can do this by showing that if there is a path p from s to v with
k edges, then at the end of pass k − 1, dist(v) ≤ length(p). This is clearly
true if k = 1, since at the end of pass 0, all edges from s have been examined.
Assume then, that at the end of pass k−1, dist(u) ≤ length(p) for all vertices
u and all paths p with k edges. Let q be any path to a vertex v with k + 1
edges. Let u be the predecessor of v on this path and let p be the portion of
the path from s to u. We know that u was placed on the queue before the
end of pass k − 1 with a distance label dist(u) ≤ length(p). Consequently,
the next time that u is scanned (which must happen before the end of pass
k), the edge (u, v) is examined and if dist(v) > dist(u) + length(u, v), it will
be assigned the value dist(v) = dist(u) + length(u, v) = length(q). Thus, we
have

Theorem 1 If no negative cycle is reachable from s, the breadth-first algo-
rithm runs in O(mn) time stopping after at most pass n − 1; otherwise it
never halts.
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