
The All-Pairs Shortest Path Problem

Jonathan Turner

January 30, 2013

In the all-pairs shortest path problem, we are interested in finding short-
est paths between all pairs of vertices. One way to do this is by repeatedly
applying an algorithm for the single-source problem. So for example, when
working with graphs that have negative edge lengths, we could apply the
breadth-first scanning algorithm n times, giving us an O(mn2) algorithm.
It turns out that we can do substantially better than this using algorithms
explicitly designed for the all-pairs problem. We’ll study two such algo-
rithms. The second uses a technique that we can also use to improve the
performance of algorithms for the min-cost flow problem.

The first algorithm we’ll study is called Floyd’s algorithm and is based
on a simple recurrence. Let G = (V,E) and let V = {v1, v2, . . . , vn}. Define
disti(x, y) to be the length of a shortest path from x to y that passes only
through vertices in the set {v1, v2, . . . , vi}. Given this definition, it’s easy to
see that the following recurrence is true.

dist0(x, y) =

{
length(x, y) if (x, y) ∈ E
∞ otherwise

disti+1(x, y) = min{disti(x, y),disti(x, vi+1) + disti(vi+1, y)}

Since distn(x, y) is the shortest path distance from x to y, we can compute
shortest path distances by applying the recurrence repeatedly, for all pairs
of vertices. The algorithm can be stated as follows

• Initialize dist(x, y) to length(x, y) if there is an edge from x to y, zero
if x = y and ∞ otherwise.

• Apply the following step to each vertex v

Labeling Step. If dist(v, v) < 0, abort: there is a negative cy-
cle. Otherwise, for each pair x, y with dist(x, y) > dist(x, v) +
dist(v, y), replace dist(x, y) with dist(x, v) + dist(v, y).
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When the algorithm terminates, the dist(x, y) is the length of a shortest
path from x to y, assuming that the graph has no negative cycles. Each
labeling step takes O(n2) time, giving an overall running time of O(n3).
This makes it generally faster than the breadth-first scanning algorithm and
even for graphs with non-negative edge lengths, it can out-perform Dijkstra’s
algoirthm when the graphs are very dense.

To obtain the actual paths in addition to the shortest path distances, we
compute an auxiliary mapping midpoint(x, y). These values are initialized
to null and updated using the following version of the labeling step.

Labeling Step. If dist(v, v) < 0, abort: there is a negative cycle.
Otherwise, for each pair x, y with dist(x, y) > dist(x, v) + dist(v, y),
replace dist(x, y) with dist(x, v)+dist(v, y) and replace midpoint(x, y)
with v.

A shortest path from x to y can be computed by a simple recursive algorithm
using the midpoint mapping.

As noted earlier, for graphs with non-negative edge lengths we can solve
the all-pairs problem by running Dijkstra’s algorithm n times. It turns out
that we can also use Dijkstra’s algorithm for graphs with negative edge
lengths, if we first transform the edge lengths to make them non-negative,
while preserving the relative lengths of paths between all pairs of vertices.
In order to find these new edge lengths, we must solve one single-source
problem on a graph with negative edge lengths.

The transformation is computed as follows. Given a directed graph G =
(V,E) with edge lengths length(x, y), imagine that we augment G by adding
a source vertex s with a zero cost edge to each vertex in V . Now, let dist(x)
be the length of a shortest path in the modified graph from s. Now define
new edge lengths

length′(x, y) = length(x, y) + dist(x)− dist(y)

Note that the shortest path tree property implies that the right-hand side
of this equation is non-negative, hence the transformed lengths are also. An
example of the edge length transformation appears in Figure 1. Note that
this transform does not preserve the lengths of paths. For example, in the
original graph, the path a, b, d has length 0, while in the transformed graph
it has length 3. However, we’ll see shortly, that it changes the lengths of all
paths from a vertex x to a vertex y by the same amount, and this means
that the relative path lengths are preserved. So for example, the path a, c, d
in the origninal has length 3, while in the transformed graph, it has length
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Figure 1: Example of edge length transform

6. So in both paths from a to d, the length has increased by 3. Note that
different pairs of vertices may have their path lengths shifted by different
amounts.

We can compute the transformed edge lengths without actually aug-
menting G with an extra vertex. We simply use a modified version of the
breadth-first scanning algorithm in which all vertices are inserted into the
queue at the start with an initial distance of 0 and a null parent pointer.
We then proceed in the normal way.

Note that even though we are using breadth-first scanning to obtain the
transformed edge lengths, we only have to do this one time. Once we have
the transformed edge lengths, we can apply Dijkstra’s algorithm to compute
shortest paths from every vertex and the distances in the original graph can
be obtained by reversing the transform. This gives us a runtime of

O(mn + n(m + n log n)) = O(mn + n2 log n)

assuming that Dijkstra’s algorithm is implemented using Fibonacci heaps.
Note that for sparse graphs, this can be substantially faster than Floyd’s
algorithm.

Let’s finish up by showing that the edge transform really does work as
advertised. In particular, we want to show that for any path p, joining a
vertex x to a vertex y, that

length′(p) = length(p) + dist(x)− dist(y)

Note that if this is true, all path lengths from x to y are shifted by the same
amount.

For paths of length 1, the equation above is just the definition of the
edge length transform. So, let’s proceed by induction, by assuming that the
equation is true for all paths of length k. If p is a path of length k + 1 then
its first k edges form a path q of length k. If v is the last vertex on q,
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length′(p) = length′(q) + length′(v, y)

= (length(q) + dist(x)− dist(v))

+(length(v, y) + dist(v)− dist(y))

= length(q) + length(v, y) + dist(x)− dist(y)

= length(p) + dist(x)− dist(y)

Hence we have the following theorem.

Theorem 1 For any edge (u, v), length′(u, v) ≥ 0 and for every path p from
a vertex x to a vertex y, length′(p) = length(p) + dist(x)− dist(y).
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