
Matchings in Bipartite Graphs

Jonathan Turner

January 26, 2013

A matching in a graph G = (V,E) is a subset of the edges with no two
edges incident to the same vertex. Figure 1 illustrates matchings in two
graphs, one with edge weights, one without. In the weighted version of the
problem, the weight of a matching is defined to be the sum of the weights of
its edges. In the unweighted version of the problem, the objective is to find

6 

4 

2 

1 3 

8 

5 2 

4 

Figure 1: The matching problem in graphs

a matching with the largest number of edges, while in the weighted version,
the objective is to find a matching with the largest total weight.

If we think of the graph as representing some kind of compatibility rela-
tionship, then a matching is simply a collection of compatible pairs, and if
the weights are used to specify different “degrees of compatibility” a maxi-
mum weight matching is a set of maximally compatible pairs.

Matching problems arise frequently in the context of bipartite graphs,
and we’ll see that for these graphs there are specialized algorithms that are
particularly efficient. Let G = (V,E) be a bipartite graph where V can
be divided into two subsets V1, V2 such that all edges join vertices in V1 to
vertices in V2. We can convert G into a flow graph by directing all the edges
from V1 to V2, adding a source vertex s with an edge to every vertex in V1,
and a sink vertex t with an edge from every vertex in V2. This is illustrated
in Figure 2. If all edges are assigned a capacity of 1, then any integer flow
on the flow graph corresponds to a matching in the original graph. We
can use the shortest augmenting path algorithm to find such a flow and for

1



t 

all edge capacities = 1 

s 

Figure 2: Converting matching problem to a max flow problem

these graphs, the time required to find a maximum flow is O(mn), since the
number of augmenting path steps is cannot exceed n in this case. We’ll see
later that there is a different max flow algorithm can reduce the running
time to O(m

√
n).

We can convert a weigted matching problem into a min-cost flow problem
in much the same way. The only difference is that we assign edge costs,
based on the original edge weights. Specifically, the edges incident to the
source and sink are assigned 0 cost, while each edge (u, v) from V1 to V2 is
assigned cost(u, v) = −weight(u, v). This is illustrated in Figure 3. Note

t 

all edge capacities = 1 

s 

cost=0 cost=0 

cost=–weight 

Figure 3: Converting weighted matching to a min-cost flow problem

that because the flow graph is acyclic, there are no negative weight cycles
in the flow graph, even though there may be many negative length edges.

To obtain the maximum weight matching, we need to find the flow with
the most negative cost. This can be done using the minimum cost aug-
menting path algorithm. We halt the algorithm, as we soon as we find an
augmenting path with non-negative cost. Since the number of augmenting
path steps icannot exceed n, the running time is O(mn + n2 log n).

2


