
Kruskal’s Minimum Spanning Tree

Algorithm

Jonathan Turner

January 31, 2013

Kruskal’s algorithm for the minimum spanning tree problem can be
viewed as a special case of the general greedy method. It applies the follow-
ing coloring rule to the edges in increasing order of their weight.

Coloring Rule. If the current edge has both of its endpoints in the
same blue tree, color it red; otherwise color it blue.

Expressed in algorithmic notation, this becomes

procedure minspantree(graph G = (V,E), modifies set blue)
vertex u, v; set edges;
blue := {}; edges := E;
Sort edges by weight;
for {u, v} ∈ edges ⇒

if u and v are in different blue trees ⇒
blue := blue ∪ {u, v};

fi;
rof ; // edges not added to blue are implicitly red

end;

The time required for the main loop is determined by the time required to
test whether or not u and v are in the same blue tree. One way to do this
is to perform a tree traversal starting from u, using the blue edges. If v is
visited during this traversal, then u and v are in the same tree, otherwise
they are not. However, this approach takes Ω(n) time, yielding an overall
running time that grows as Ω(mn).

We can dramatically reduce the time for the main loop using a simple
data structure that maintains a partition on the vertices. The partition data
structure (also known as “disjoint sets” or “union-find”) divides the vertices

1



into disjoint subsets, with each subset identified by one of its elements (called
the canonical element). We define the following operations.

• partition(S): creates a partition on the set S, with each element of S
forming a separate subset

• find(x): returns the canonical element of the subset containing x

• link(x): merges the two subsets with canonical elements x and y and
returns the canonical element of the new subset. This new subset
replaces the original subsets.

This data structure is efficient, easy implement and can be used in a vari-
ety of different applications. Let’s see how it can be used with Kruskal’s
algorithm.

procedure minspantree(graph G = (V,E), modifies set blue)
vertex u, v; set edges; partition(V );
blue := {}; edges := E;
Sort edges by weight;
for {u, v} ∈ edges ⇒

if find(u) 6= find(v)⇒
link(find(u), find(v));
blue := blue ∪ {u, v};

fi;
rof ;

end;

Note that there are at most n− 1 link operations and at most most 4m find
operations. We’ll see that these can be done in O(m log n) time and since
the edges can also be sorted in O(m log n) time, this gives us an overall run
time bound of O(m log n). Here is a C++ version of the algorithm.

void kruskal(Wgraph& wg, list<edge>& mstree) {

edge e, e1; vertex u,v,cu,cv; weight w; int i = 0;

Partition vsets(wg.n());

edge *elist = new edge[wg.m()+1];

for (e = wg.first(); e != 0; e = wg.next(e))

elist[i++] = e;

sortEdges(elist,wg);

for (e1 = 1; e1 <= wg.m(); e1++) {

e = elist[e1];

2



u = wg.left(e); v = wg.right(e); w = wg.weight(e);

cu = vsets.find(u); cv = vsets.find(v);

if (cu != cv) {

vsets.link(cu,cv);

mstree.push_back(e);

}

}

}

In this implementation, the sortEdges permutes the array elist, so that
elist[e]≤elist[e+1]. The partition data structure is defined on the set
of vertex numbers {1, . . . , n}.

3


