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BANDWIDTH AND PROBABILISTIC COMPLEXITY

Jonathan Turner

ABSTRACT

We study the probabilistic performance of heuristic algorithms for the NP-complete bandwidth
minimization problem. Let G =(V,E) be a graph with V' ={1, ..., n}. Define the bandwidth

of G by

¢(G)=min max |r(@u)—r(v)|
T l=u<v=n

where 7 ranges over all permutations on V. Let 4 be a bandwidth minimization algorithm and
let 4(G) denote the bandwidth of the layout produced by 4 on the graph G. We say that 4 is

a level algorithm if for all graphs G =(V,E) the layout = produced by 4 on G satisfies
Yu,v eV d(r N 1)u) <d(+7'(1),v) == r{u) < 17(v)

The level algorithms were first introduced by Cuthill and McKee [27] and have proved quite
successful in practice although it is easy to comstruct examples that cause them to perform
poorly. Consequently worst-case analysis provides no insight into the practical success of these
algorithms. In this thesis we use probabilistic analysis in order to gain an understanding of

these algorithms and to help us design better algorithms.

Let BY=(U,F) be the graph defined by U={1,...,n}, F={{uy}luyvecUAlu—v | <y},
and let G be a random spanning subgraph of B in which the vertices have been randomly re-
labelled. We show that if 4 is a level algorithm and Inn =o(y) then A4(G) =3{l+e)p(G)
almost always holds, where ¢ is any positive constant. We also introduce a class of algorithms
called the modified level algorithms and show that if 4’ is a modified level algorithm and

ii



Inn=o0(¢) then A'(G) <2(l1+e)¢(G) almost always holds. A particular level algorithm
MLA is analyzed and we show that when Inn =0 (¢} and ¢ <n/4, MLAI(G) < (1+€)¢(G).

We also study several other properties of random subgraphs of BY.
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1. Introduction

In the decade since its introduction by Cook [1] and Karp [2], the theory of NP-completeness
has become a major topic in computational complexity. The list of known NP-complete and
NP-hard problems has grown to include several hundred problems from many different contexts
[3]. The theory tells us than unless deterministic polynomial time is equivalent to
nondeterministic polynomial time (P=NP), all of these problems are intractable in the sense
that the amount of resources required to solve them grows faster than any polynomial function
of the problem size. Since it is considered unlikely that P=NP all of these problems are

thought to be intractable.

Despite this conclusion, the occurrence of NP-hard problems in many important applications
has provided a strong motivation for finding methods of dealing with them effectively in
practice. Surprisingly, for some problems algorithms are known which work quite well in
practice. An important area of research is to understand why such algorithms work well and

find ways to use this insight to design effective algorithms for other hard problems.

One fairly successful class of algorithms is called the approximation algorithms. If the problem
of interest can be expressed as an optimization problem (and for many NP-hard problems this
is a natural formulation) one can sometimes find algorithms which are guaranteed to produce
solutions that are close to the optimal value, where ‘close’ means within a constant factor. To
define the notion more precisely, we need some definitions. Let II be some optimization
problem, and let Dy be the domain of II, that is the set of all instances of II. For each 7 €Dg
there is a set of candidate solutions Sp(J/) and for each 7eSp(/) there is an associated cost
CnlZ,7). The cost of an optimal solution for an instance I¢Dy is denoted OPT(I) and is

defined as min Cp(/,7) if II is a minimization problem and as max Cp(Z,7) if I is a
reSn(7) reSp(h

maximization problem. Let 4 be a particular algorithm for It and define 4 (/) to be the value

of the solution produced by 4 on instance /. Next



4"—0{;7,1(}) if Il is a minimization problem

R4(I)=]
| 0":1‘]()] if I is 2 maximization problem

R4(I) is a measure of how close 4 comes to the optimal value for the particular instance 1.

Note that in general R,(/) is greater than or equal to one. We would like to keep it as close to
one as possible. Define
R,=minfr=1|R,(I)=<r W eDp}

R, is called the absolute performance ratio for A. Note that in general R, may be undefined.
That is, there may be no finite value of » that satisfies the conditions of the definition. If R, is
defined, then we say that 4 is a worst case approximation algorithm, since it guarantees that
even in the worst case the cost of the solution produced by 4 will not differ from the optimal
cost by more than the factor R,. Algorithms of this sort have been found for bin packing

problems [4][5][6] and the euclidean traveling salesman problem [7] among others.

These methods have three shortcomings. First, the performance bound may be too loose for a
particular application. For example, Christofides’ traveling salesman algorithm, can in the worst
case, produce tours that are 1.5 times the length of an optimal tour. A more serious difficulty
is that for some problems it is just as hard to find solutions having cost that is close to the
optimal as it is to find an optimal solution. Sahni and Gonzalez [8] show that unless P=NP
there exists no polynomial time approximation algorithm for the non-euclidean traveling
salesman problem. Similar results have been proved for many other problems. The last
difficulty is that many algorithms that appear to be quite successful in practice are known not to
be worst case approximation algorithms. Worst case analysis yields no insight into the practical

success of such algorithms.

The above considerations have led some researchers to analyze algorithms from a probabilistic
point of view rather than a worst case point of view. This has led to several interesting resuits.
Karp [9] gives an algorithm for the euclidean traveling salesman problem and shows that if I is

selected at random, then with high probability R,(/)=<1+e for any ¢>0. In order to prove



such results it is necessary to define a sequence of probability distributions
F.,F, ..., F,. ..., where F, is a probability distribution over all problem instances of size ».
Karp defined such a sequence for the euclidean traveling salesman problem and was able to

show that

limP(R,(I)=14¢)=1 ™
=0
when 7 is drawn at random from F, and ¢ is any fixed constant greater than zero. Hence the
algorithm has the very nice property that jts performance becomes increasingly predictable as
the problem size gets large. Any algorithm that satisfies (*) is called a probabilistic optimization
algorithm. Similarly, we say that A4 is a probabilistic approximation algorithm if there is some

constant ¢>>1 such that

lim P(R4(])=c¢)=1
R—co

Similar results have been reported in [10J[111{12][13)[14][15].

Many of the techniques for proving theorems concerning the probabilistic performance of
algorithms have come from the theory of random graphs pioneered by Erdds and Renyi
[16][17]. This theory permits one to predict many properties of randomly selected graphs with
remarkable precision. Let F,Fy ... ,F,, ..., be a sequence of probability distributions
where F, is defined over graphs with n vertices. We say that a property holds for almost all
graphs drawn from F,, if the probability of the property holding approaches one as n—oo. In
[16], Erdos and Renyi prove that for any >0, almost all graphs with n vertices and
{(Yat+e)nlnn  edges are connected, while almost all graphs with (Y%—e)nlnn edges are
disconnected. In a similar spirit, Posa {14] shows that for large enough ¢, almost all graphs

with cnlnn  edges contain a hamiltonian circuit. Similar results are contained in

(18]1[19]1[20][211(22][23][241[25].

Bandwidth in a graph is a measure of the locality of the relation represented by the graph. Itis

best known in the context of matrix bandwidth minimization; in this application, linear



reductions in the bandwidth of a matrix can result in quadratic improvements in computational
efficiency. Several bandwidth minimization algorithms were proposed in the sixties and early
seventies [26][27]1[281{29](30], before Papadimitriou showed that the problem is NP-complete
{31]. Garey, Graham, Johnson and Knuth later strengthened this result, showing that the
problem remains NP-complete when restricted to free binary trees [32]. At the same time they
gave a linear time algorithm to determine if a graph has bandwidth two. Saxe [33] then gave a
dynamic programming algorithm which for any fixed k, could determine if a graph had
bandwidth k in time O(n**'). Monien and Sudborough [34] showed how to reduce the time
bound to O(n*). In this thesis we will be mainly interested in probabilistic analysis of efficient
algorithms for reducing the bandwidth of graphs. The use of probabilistic techniques is justified
by the observation that none of the pelynomial time algorithms appearing in the literature is a
worsl case approximation algorithm. However there are algorithms which appear to be quite
successful in practice. The analysis presented here gives some insight into that success. Note
that while the known algorithms for this problem are not approximation algorithms there is no
known proof that approximation algorithms for bandwidth minimization do not exist. As with
many other graph problems, the techniques used to prove such results seem to break down in

this case.

The remainder of this section presents the definitions and terminology we will need. Section 2
discusses some possible choices for probability distributions and attempts to justify the
particular selection made here. Section 3 is devoted to proving that the algorithms in a
particular class are probabilistic approximation algorithms for bandwidth minimization. It also
gives a modification that improves their performance somewhat. Section 4 shows how the
algorithms of Section 3 can be refined to yield near optimal results in many cases. It also gives
some experimental results that give further insight into the comparative performance of the
different algorithms. Section 5 contains several theorems concerning properties of random

graphs with small bandwidth. There is also an appendix which contains results from elementary



probability theory that are used in the body of the thesis together with informal proofs where

appropriate.

A graph G consists of a vertex set V={1,2,...,n} and an edge set E C {{u.v}|u,v ¢¥}. The
notation ¥—v means {i,j}¢E and similarly u-~v means {i,j}¢E. For sets of vertices X, ¥,
X—Y means that there is some edge joining a vertex in X to a vertex in Y. Similarly X-£Y
means there is no such edge. The neighborhood of a vertex veV is the set N(v)=fulv—u}.
The degree of a vertex veV is d(v)=IN(v)|. The distance between two vertices ¥ and v is
denoted 4(u,v) and is defined as the length of the shortest path connecting ¥ and v. The

diameter of a graph G is denoted by D(G) and is defined as max d(u,v). The distance
u,ve

between two sets of vertices S, T is g’tin rd(" V).
uES, ve

A layout 1 of a graph G is a permutation on V. The identity layout is the identity permutation
and the inverse of a layout 7 is denoted r~'. The length of an edge fu,v} with respect to a
layout r is 8,(fu,v})=lr(u)—r(v)|. Similarly, the iength of an edge {x,v} is 8(fu,v H=lu—v|.
The bandwidth of G with respect to a layout r is denoted ¢.(G) and is defined as

Ena;; 6.({u,v}). The bandwidth of G is defined as ¢(G)=min ¢.(G). These definitions are

illustrated in Figure 1. The graph shown has bandwidth 3 as can be seen from the layout
shown at the right. In this drawing, the position of a vertex from left, determines the number

assigned to it by the layout (thus r(3)=2,7(5)=6, etc.).



Figure 1. Graph Illustrating Bandwidth Definitions



2. Chboice of Probability Distributions

The study of the probabilistic performance of algorithms requires some specification of the
relative probabilities of the different instances of the problem for each problem size. When the

problem instances are graphs there are several natural probability distributions that are in

n
common use. The simplest choice is the uniform distribution ", which assigns each of the 2[2]
graphs on n vertices the same probability of being chosen. It is not difficult to see that the

following random experiment can be used to generate a graph G=(V,E) in r,.
1. Let¥={1,2,...,n}), E=a.
2. For each {u,v} 1=u<v=n, add the edge {u,v} to E with probability %.

This suggests a natural generalization. If each edge is included with probability p, we get the
probability distribution T, (p}, which is probably the most popular choice in the literature on

random graphs.

Unfortunately, T, (p) is not suitable for studying the performance of bandwidth minimization
algorithms for the simple reason that almost all graphs in I',(p) have bandwidth close to n, and
consequently even the most trivial algorithms qualify as probabilistic optimization algorithms.

This claim is substantiated by the following results.

Lemma 2.1. Let G=(V,E) be a graph on n vertices. ¢(G)=<n—2k == IV, C V such that

[V [=IVil=k and v ,£V,.

proof. If ¢(G)=n—2k then there is a layout  such that u—v ==|r(u)—7(v)|=n—2k. Let
Vi={r71(1), .. ..77k)} and V={+""n—k-+1), ..., v Y (n)]. If Vi—V, then there are
vertices u €V, and v ¢V, such that u—v. But by the definition of V', and ¥,, +(u)=<k and

T(v)=n—k+1, hence |r(u)—7(v)|>n—2k. This contradicts the definition of +. [m]

2%

Lemma 2.2. Let 0<p <1 and G=(¥,E)¢T, (p). P(¢(G)Sn—2k)s[%(l—-p)"’2



proof. By Lemma 2.1, P(¢(G)=<n—2k)<P(V .V, such that |V||=|V,l=k AV -£V,). Since
there are k2 ‘potential edges’ joining ¥, and V3, all of which must be absent if ¥~V ,, this last

probability is

2% P2
- n
_{_&][nkk}(l_p)ps [-er] (l—p)"2= [—%(l—p)kn] o
Define ?\,,(c)=—%§-. Note that A,{c)>0 when 0<e¢<] and n>1, ck"(c)=~l- and

lim A, (c)=co for ¢ fixed 0<c<<1. We will usually write A(c) for A,(c).
=0

Theorem 2.1. Let 0<p <1 be fixed. For almost all G ¢T',(p), (G )Y=>n—4x(1—p).

proof. Applying Lemma 2.2 with k=2\(1-p) gives

4(l—p)

—0 O

A1)
(1-p)r-» ]

{Zk(l—p)

Theorem 2.2. Let ¢>0, >0 be fixed, p=c~1nT"-. For almost all G ¢, (p), ¢(G)=n(1—¢).

en
P(¢(G)=n—dr(1-p)) = [m

progf. Applying Lemma 2.2 with k=en/2 gives

P(¢(G)5n(l—e))5[ en (I—-p)"'/‘J 5[—-2ie—"¥’/4] =[£n_“/‘] —0 ]
en/2 € €

Theorems 2.1 and 2.2 show that even when the edge probability p is very small, almost all

n . . .
—1. Consequently, even the most trivial bandwidth
$(G) anenty

minimization algorithms (for example, the algorithm that always outputs the identity layout)

Gel'y(p) are such that

qualify as probabilistic optimization algorithms. As a result, some other distribution is required
if we are to make meaningful distinctions among algorithms on the basis of their probabilistic

performance.

There are no hard and fast rules we can apply in selecting a probability distribution, however
there are a few guiding principles that we will find useful. In general we want to avoid
distributions that are ‘too easy’; any distribution that classifies trivial algorithms as probabilistic

optimization algorithms would fall into this category. This suggests looking for distributions



that are hard in some sense. Ideally any results we prove for a hard distribution would have
implications for other distributions as well. The following definitions are an attempt to arrive at

a useful notion of hard distribution for the bandwidth minimization problem.

Let A, be a probability distribution over n vertex graphs. We say that A, is unbiased with
respect to bandwidth if for all integers ¢, 0=<y'<<nm, all graphs with bandwidth ¢ are equally
likely. We say that A, is wuniform with respect to bandwidth if for GeA,
P(¢(G)=y¢)=1/n (0=<y<n). Note that while I',('4) is unbiased with respect to bandwidth (in
fact it is unbiased with respect to every graph invariant), it is extremely non-uniform. It is this
lack of uniformity that makes it unsuitable for comparing the performance of bandwidth

minimization algorithms.

Let &,(y) be the unbiased distribution over n vertex graphs with bandwidth , and let 4 be a
bandwidth minimization algorithm. We say that 4 is a umiversal probabilistic optimization

algorithm if

lim P(R,(I) <l4e)=1

n—Qo
when 7 is drawn at random from any one of &,(y) and ¢ is any fixed constant greater than
zero. The adjective ‘universal’ is justified by the observation that any algorithm that satisfies
the above condition is a probabilistic optimization algorithm for all distributions that are
unbiased with respect to bandwidth. Universal probabilistic approximation algorithms can be

defined similarly.

The concept of universal algorithms is an attractive one, but it is difficult to see how to apply it
directly. @,(y) doesn’t appear to be amenable to analysis precisely because we have no simple
characterization of bandwidth ¢ graphs. Consequently we find it necessary to approximate
®,(¥) with something more tractable. Let  be an integer (0=<<yy<<n) and let G=(V,E) be

generated by the following random experiment.

1. Let ¥={1,2,...,n}. For each {u,v} 1=<u<v=n such that lu—v|=<y include the edge
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{u,v}in E with probability %.

2. Randomly renumber the vertices so that each of the n! possible labelings is equally

likely.

We can generalize the above distribution by generating edges with probability p. The resulting
distribution is denoted @ ,(y¥,p). Note that for G¢Q,(¥,p), #(G)=<y¢. It is shown below that
if €0, 0<<p<1 are fixed then for almost all G €Q,(¢.p), #(G)=(1—e)y¥. Hence Q,(¢,p)
approximates the uniform characteristic of ®,(¥). However, strictly speaking it is not uniform,
since it slightly favors graphs with small bandwidth. Nor is it unbiased since it tends to favor
graphs having many minimum bandwidth layouts. One other distribution will be useful in the
analysis. ¥,(y,p) is defined by the first step of the random experiment that defines Q,p).
Obviously, if Q is any graph invariant (that is, a property that depends only on the structure of

a graph) then @ occurs with exactly the same probability in @ ,(¢,p) and ¥,(¢.p).

Theorem 2.3. Let O<p<<1 be fixed, Inn<y¢y<n. For almost all GeV,(¢¥.p),
$(G)>y—ax,(1-p).

proof. Let G'CG be the subgraph induced by vertices {1,2, .. .,¥}. Note that G’ is a random

graph with distribution T'y(p). Applying Theorem 2.1

$(G") > ¥—ar,(1-p)
The theorem follows from the fact that ¢(G)=¢(G"). O
An immediate consequence of this result is that if y—oco then ¢<<(1+¢)¢(G) for any fixed
€>0. Theorem 2.3 is sufficient for the other results appearing in the body of this thesis. It is

interesting however to consider tightening the relationship between ¢ and ¢(G).

Conjecture. Let O<p<1 be fixed. There is some constant c>0 such that

clnn=¢=n—clnn == for almost all G¢¥,(y,p), ¢(G)=y.
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3. Probabilistic Approximation Algorithms for Bandwidth Minimization

A variety of heristic algorithms for bandwidth minimization appeared in the late sixties and
early seventies [26][271(28](29][30]). The most successful algorithms were all members of a
class of algorithms which I will refer to as level algorithms. The idea behind the level algorithms
is to order the vertices according to their distance from some fixed vertex u. Formally, we say

that an aigorithm is a level algorithm if the layout r produced for a graph G =(¥ ,E) satisfies
VuyveV d(r7H()u)<d(=7(1)v)=>r(u)<r(v)

The various types of algorithms differ mainly in how 77'(1) is chosen, and how vertices
equidistant from r7!(1) are ordered relative to each other. In this section we will consider only
algorithms that try all possible choices for 77!(1). This increases the complexity of the
algorithm by at most a factor of n and simplifies the analysis. In section 5 more sophisticated
techniques will be considered. We also ignore the relative orderings of vertices equidistant
from 77'(1) in this section, focusing instead on properties that hold for the entire class of level

algorithms.

The first question to address is whether any of the level algorithms are worst case
approximation algorithms. It is in fact easy to show that none of them is. Consider the tree in
Figure 2. It is not difficult to see that no matter what choice is made for (1), a level
algorithm will always produce a layout with bandwidth =4, whereas the actual bandwidth of this
tree is 2. The example is easily extended. For any value k, we can construct a tree with
bandwidth 2, such that the layout produced by any level algorithm has bandwidth =k. This
implies that even for the very restricted case of binary trees, the level algorithm can produce
layouts with bandwidths that differ from the optimal by an arbitrarily large factor. This set of

examples is due to I. H. Sudborough.

In this section we show that in spite of their poor worst case performance, the level algorithms

work quite well for random graphs. This provides some theoretical basis for their success in
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Figure 2. Tree Demonstrating Poor Worst-case Performance of Level Algorithms

practice.

Lemma 3.1. Let ¢>0, 0<p <1 be fixed, a=(1+e)A\{1—p2)=<¢<n. For almost all Ge¥,(.p),

there exists 2 path of length two between every pair of vertices #,v such that | —v|=<y.

proof. The probability that two specific vertices u,v with lu—v|<y are not connected by a 2-
path is <(1—p})¥~". There are <ny such pairs. Hence, the probability that any such pair is

not connected by a 2-path is
= m,b(l—pz)"’_' = na(i_pI)a—l ____nan—(l'l-e)(l—lla) —0 O
Before proceeding we need the following definitions. Let G=(V.E ) and define

V,~(u)={u|d(u,v)=i} for all ue¥V. Also let ¥V;=V;(1). Next, define Li{u)=minveV;(u) and

ri(u)y=maxveV,(u). Let ;=l(1) and r;=r;(1). Note that |V,-|5r,-—1,-.

Lemma 3.2. Let ¢>0, 0<p<1 be fixed, (1+e)A(1—p?) =<y <n. For almost all G¢¥,(¥.p),

ri—=3y=<r_y3<l;—y forall i =3.

proof. The shortest path from 1 to r; must pass through some u €V;—3. Clearly r;—u =3y, hence
r—3¢=u=<r,_;. To see that r,_y<<—y, assume otherwise. Then there is some vertex v on
the shortest path from 1 to r;—; such that ,—¢=<v </, and d(1,v)=<i—3. By Lemma 3.1 there is

a 2-path from v to [, giving d{1,};)=<i—1, which is a contradiction. [J
We are now ready to show that with high probability |V;{<<2y, for all i =0.

Theorem 3.1. Let ¢>0, 0<p <1 be fixed, (1+e¢)A(1—p?)=<y'<n. For almost all G ev,(¥.p),
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ri—l; <2y, for all i =0.

proof. The result is trivial for i <2. For i=3, Lemma 3.2 tells us that ri=ri_y+3} and
ki >r;—_3+y Hence,
ri—h <(rist3¢)—(r-s+¢)=2¢ 0
Define
LEVEL (G )=min max [V; () U V;4,(u)|
uel i=0
and note that LEVEL(G) is an upper bound on the bandwidth of the layout produced by any

level algorithm on G. We are now ready to relate LEVEL (G) to ¢ (7).

Theorem 3.2. Let ¢>0,0<p<1 be fixed, Inn=0(y), y<n. For almost all GeQ, (¢.p),

LEVEL(G) <4(1+¢)¢(G).
proof. By Theorem 3.2, LEVEL (G )<4y. By Theorem 2.3 y<{1+¢)¢(G). O

From Theorem 3.2 we can conclude that the level algorithms are all probabilistic approximation
algorithms for Q,(y,p) when ¢ is not too small, and they usually produce layouts with
bandwidth at most four times ¢(G ). It is also easy to show that a simple level algorithm can be
implemented to run in time O(nlE|)=0(n2¢(G)). The performance bound in Theorem 3.2

can be improved by tightening the bounds on |V;].

Lemma 3.3. Let >0, 0<p <1 be fixed, a=(1+¢)A(1—p?) =<y <n. For almost all G ¢¥,(¢.p),

there exists a path of length two between every pair of vertices u,v such that ju—v |<2¢~a.

proof. Let u,veV with lu—v|=<2y—a. Let i=2¢~lu—v|. The probability that d(u,v)>2 is
=(1—p?’. Since for each i there are =n such pairs, the probability that any pair is not joined
by a 2-path is

29

1 & .
= 3 n(1=pY <n(1p) S (1—pH =p~2n~ -0 o
i=0

i=|a

Lemma 3.4. Let ¢>0, 0<p <1 be fixed, a=(1+e)A(1—pY)=<y¢<n. For almost all G eV, (¥.p),

ri—=3¢=r,_3<li—(2¢y—a), for all i=3.
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proof. The shortest path from 1 to r; must pass through some ucVi_y Clearly r,—u=3y,
hence ri=3¢=u=r,_;. To see that r,_;<</;—(2¢—a), assume otherwise. Then there is some
vertex v on the shortest path from 1 to r;_; such that [,—(2¢—a)=v <J; and d(1,v)=<i—3. By

Lemma 3.3 there is a 2-path from v to /, giving 4(1,5;)=<i—1, which is a contradiction. [

Theorem 3.3. Let ¢>0,0<p<1 be fixed, a=(l1+e)A(l1—pd)=<¢<n. For almost all

Ge¥,(Y.p), ri—li<y+a, forall i=3,
proof. By Lemma 3.4 r;<r;_3+3y and I, >r.3+(2¢y—a) Hence,
= <(ri—3t3¢)—(ri.sH{2¢—a))=y+a D

Note that Theorem 3.3 says nothing about the size of ¥, and ¥,. As we shall see, these cases
differ from the rest and will be handled in the next theorem. First however, we need a lemma
concerning the binomial distribution, B(n,p). By definition if x¢B{n,p) then

PGx=k)= (1 p* (1=p)"~*
The mean and variance of x are np and np(1—p) respectively. The following lemma is from

Angluin and Valiant [13].

Lemma 3.5. If x¢B(n,p) then for any ¢, O0<e<l, P(x=(l—e)np)<e /2 and

P(x=(1+e)np) <e /3,

Theorem 3.4. Let ¢>0, >0, 0<p<1 be fixed, a=clnn =y<n. For almost all Ge¥,(¢.p),
(I—py<IVil<(i+e)py and |V,] < (1+e)(2—p)y. Also, if ¢<n/2  then

(1—e)(2—p)y—a <|V,l.
proof. [Vl is a binomial random variable in B(¢,p). By Lemma 3.5,

PV < (1—e)py) <e~P¥2_,0

PV > (14+e)py) <e~P¥ig

This establishes the bounds on |V)]. Since |V,|<2y—|v |,
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Wal <2¢—(1~e)py < (1+6)(2~p)y
Applying Lemma 3.3 gives

Vol = @¢—a)-lVil> @-(1+e)p)y—a > (1—e) 2—p)¥—a o

Theorem 3.5. Let ¢>0, 0<p<<1 be fixed, ¥<<n, Inn=o0(y¢). For almost all Ge,(¢p),

LEVEL(G) <(14+¢)(3—p)e¢(G).

proof. By Theorems 3.3 and 3.4, LEVEL(G) < (1+¢')(3—p)¢ for any fixed ¢>0. By Theorem

2.3, ¥ <(1+€)¢(G). Selecting ¢’ so that {1+¢)?=(1+¢) yields the theorem. O

Notice that |¥,] is a lower bound on the bandwidth. From Theorem 3.4 we expect that
lv,|= (2—p)¢. Consequently, even the best level algorithms are likely to produce layouts that
differ from the optimal by a factor of roughly (2—p). We can improve the performance of the

level algorithms by using a different strategy for ordering the vertices in ViUV, Define

Vyu) if Vyu)=g
VAT Vi) v —rsw)) if Vi) 2o

Valu)=(V (u) UV (u)) = V'o(u)

Vi(u)=V;(u) i=0,i=3
Also, let V=V, (1), I/(u)=min V’i(u), r’{(u)=max V’;(u), I;=I";(1), r'=r'(1). We can

now define the modified level algorithms. Formally, 4 is a modified level algorithm, if the layout

7 produced for the graph G=(V,E) satisfies

Yu,veV uEV';(TWI{I))AVEV’;+|(7_I(1))$T(3‘)<7(")
Let LEVEL’(G)=m€iL1 :inzaglV’,-{u)+V’,+,(u)|. Clearly, LEVEL’(G) is an upper bound on the
u

bandwidth of any layout produced by a modified level algorithm on G. We will show below

that for almost all G ¢ ¥, w:fé)a <2(1+¢) for any fixed ¢>0.

Lemma 3.6. Let ¢>0,0<p<1 be fixed, (l14+e)A(1—pH=<y¢<n. For almost all

G=(V.E)e¥,(y.p), ueVAllu—y, . .. ,u+Pin¥V]= (1+)A(p)=>u—V,.
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proof. Note that by Lemma 3.1, for each vertex u there at most five sets V; such that
{u—y. .. ..u+¢}NV¥,|=1. Hence, the probability that for any G ¢¥,(y.p), the assertion is

not true is
=5n(1—p) Mt R0PI=5,~c O

Lemma 3.7. Let ¢>0, 0<p <1 be fixed, a=(1+¢)A(1—p?)<<y<<n. For almost all Ge¥,(¢,p)

there exists a path of length three between every pair of vertices u,v such that |u—v|<3¢—a.

proof. Let u,veV be such that i=3y—Ju—v|=a. Let x;=u+y—j for 0=j=i, as illustrated in
Figure 3. Clearly any 3-path connecting ¥ and v must pass through one of xg, ..., x;.

Applying A.8, the probability that no three path joins ¥ and v is

=P(no 3-pathAu—-FfxgA - - - Au+x;)

+P(no 3-pathAu-/£xgA - -+ Au~x;_ ) Au—x;)

+P(no 3-pathAu-fxgA -+ Aux_sAu—x;—))

4.

+P(no 3-pathAu—axg)

=(1—p)¥*UP(no 3-pathlu—xgn - - - Au-Ax,)
+(1~-p) ¥ VP(no 3-pathlu—rxgn - - - Au—x_ Au—x;)
+(1=p)'P(no 3-pathlu—£xoA - - - AuAx; yAu—x;_,)
+ .-

+(1=p)P(no 3-pathlu—xg)

< (1=p)“*V[ P(no 3-pathlu-£xon - - - Aux;)
+P(no 3-pathlu—xgA -+ * Au-fx,_y Au—x;)
+(1—p)"'P(no 3-pathlu-£x,A - - - Ay A —x; g Au=x;)
+ -

+(1—p)"P(no 3-pathlu—xonu-Lx A - - - Au-x;)]
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Figure 3. Definition of x;s

—(1— .'+1- .2 (1—p?)? (1—p?)? 1—p2)i+!
A=) 1+ (A=pH+-"T = oy +LLL—(1—p)f

=(1=p)"™* |1+ (1=p?) S (14pY
L Jj=0

= (l—p)"'" 1 +(l—p2) L&z&‘i}
| P

=l _2l+2+ 2+_1 1— i+1
Lla—py2+ @Hp-na-p)+]

Since for each value of i there are at most n vertex pairs u,v such that lu—v|=i, the
probability that any pair #,v with lu—v|=3¢—a is not connected by a 3-path is
3

=< 211 [a-pt+2+ @2p—1 )]
P

i=|a

<+

<z [[<l—p’)“f:<1—p2)'
4 i=0

(pHp—1)(1-p)* L (1—p)’
=0

<P |l —0+0 PHPTL a4y
p|p? P

<%n"-—'0 a
4

Theorem 3.6. Let ¢>0,0<p<! be fixed, a=(1+¢)A(1—p2), B=(1+e)A(1—p) and

max{(a,28) <y =<(n—p)/2. For almost all G ¢¥,(¥.p) [V'|=¢+a for i=0.

proof. The result follows from Theorem 3.3 for /=3 and is immediate for i=0. Before proving
the theorem for 1=<i=<2 we first need to show that |V n{y+2,... L2¢+8l=8. Let
A={y+2, ..., 2¢+1}. By Lemmas 3.3 and 3.7 ACV,UV; Letx=|l4N Vil. Clearly if x=8

then we’re done. Assume then that x<<g and let B={2¢+2, ..., 2¢y+(B—x)+1} and let
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y=IB|. Note that since ¥=28 that Y ¢B [{u—y, ..., u+¢}NV,/=8. Thus by Lemma 3.6

B CV; Since x+y=8 we have that [VyNn{y+2, . . ., 29+8}=8.

Now, by Lemma 3.4, /3=2¢—a+]. This implies that /;=¢—a+! and since riy=2y+1, it

follows that | V3| <y+a as claimed.

Finally, note that if uc4 and w=y+8 then by Lemma 3.5 u—V; and hence ugV’,. Thus

(V' ]|<y¢+8<y+a as claimed. O

Theorem 3.7. Let ¢>0, 0<p<! be fixed, y<n, Inn=o0(y). For almost all GeQ, . (¥.p)

LEVEL'(G) < 2(14€)}¢(G ).

proof. If ¢ > (n—\(1—p))/2 then since LEVEL(G) <n
LEVEL'(G) < 2y+A(1—~p) < (2+¢')y

for any fixed ¢’>0. If ¥ = (n—A(p))/2 then we can apply Theorems 3.3 and 3.4 giving
LEVEL'(G) < 2y +A(1—p?) < (2+€)¢

By Theorem 2.3, ¢ <(1+€)$(G). Selecting ¢ so that (2+e){(1+e)=2(1+¢) yields the

theorem. O

Hence the modified level algorithms are probabilistic approximation algorithms that almost
always produce layouts having bandwidth at most 2(1+¢)¢(G). Furthermore, as will be shown
in the next section, certain of the modified level algorithms are capable of near optimal

performance, whereas the level algorithms are not.
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4. Obtaining Nearly Optimal Layouts with Modified Level Algorithms
The main conclusions of section 3 were,
o That the level algorithms are probabilistic approximation algorithms for G ¢ Q ,(¢.p).

o That because |V,|=(2—p)y none of the level algorithms can produce solutions that are close

to optimal for G e Q ,(¥,p).
o That the modified level algorithms are capable of better performance for G ¢ @, (¢.p).

As was observed in section 3 the modified level algorithms reduce to the level algorithms if ¢ is
much larger than n/2. Consequently in this range we cannot expect near optimal performance
from the modified level algorithms either. In this section we study a specific modified level
algorithm and show that it produces near optimal layouts when ¢ <n/4. Experimental evidence
presented below suggests that the modified level algorithms are capable of good performance

for ¢ just slightly less than n/2. Completely different techniques are needed for ¢=>n/2.
Let G=(V .E) and define for all u,veV

geu (V)=Vo(v )NV i(u) YveV(u)

g (v)=Vy(v)N V' _o(u) YveVi(u)
Also let ge(v)=gcy(v), gp(v)=gp(v). The algorithm we will analyze is based on the
observation that for G ¢¥.{(y,p) if u,veV; and v—u is not too small, then with high

probability lge (u)| < lge (v)Algp (1)l > lgp (v)1.
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Modified Level Algorithm 1 (MLAI)
For each u eV
Let 7 be any layout that satisfies the following conditions for all x,y V.
(@) xeVi(u) Ay V() ==1{x)<r(y)
(b) 1=i<2Ax,y eV’ (u) Alge, ()| < lge, ()| = r(x)<7(y)
(c) i=3Ax,y eV’ Algp, (x)| > lgp, ()| = 7(x)<7(»)

Output the layout having minimum bandwidth.

Define MLA1(G) as the bandwidth of the layout produced by MLA1 on graph G. The

following results show that under appropriate conditions MLA1(G) < (1+€)¢(G), for almost

all GeQ,(¢,p).

Lemma 4.1. Let >0, 0<p<1 be fixed, a=(i+e¢)A(1—p?), 2a=<y¢y<n. For almost all
GeV,(¥.p), r'im—2a<<ly<r+1 and ri+Y—a=r;<r;_+y+a, for all i=1. For
i>1Lry=ri g, and for i #2, r'io—a <1’

proof. Figure 4 illustrates the assertions being made. For 1=<i=2 the result is implicit in the
proof of Theorem 3.6. For i=3, Lemma 3.4 gives I';>r’,_;+2¢y—a. Since roo=r 2y,
17>ri1=2a. By Lemmas 3.3 and 3.7 {ri+¢+],....r5+2¢—a}C V%, and
{ri—st2y+1, .. i 3y—al C V7 and frost2¢~at+], ... P20 C Vi U V. This
implies r;_1+1 €V, hence !, <r%_,+1. For i>2 it is clear that risrioH=ri o Hta,
r'i=ri—t¥—a follows from Lemma 3.7 and r’;_ =<r’;_;+2¢. O

A consequence of Lemma 4.1 is that at least y—3a of the vertices in ¥’; are found in a region
containing only vertices in ¥’;. These regions are shown as the solid areas in Figure 5. The
regions associated with ¥/ and V', are separated by a transition region containing at most 2

vertices.

Lemma 4.2. Let ¢>0, 0<p<1 be fixed, a=(1+e)A(1—p?}, da <¢ <n/4. For almost all

Ge¥,(¥,p) 1=<i2AuveVAu—v =da = |gc(u)| > lge (v).
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Figure 4. Illustration for Lemma 4.1
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Figure 5. Separation of Vertices into Regions According to Distance from 1

proof. Lemma 3.3 implies that if «,v ¢¥’; and u—v >« then gc(v) C ge(u). It remains only to
show that there is some vertex x such that x ¢gc (u)—ge(v). Let x =u+2y—~[a]. If u—v = 4a,

Lemma 4.1 yields,

Pl SriaH2y <Vi+2yH2a < v+2¢+2a < u+2¢y—2a < x
Thus x ¢V, and since by Lemma 3.3 there is a 2-path from u to x, xegc(u). Since
x=>v+2y, xgge(v). O

Lemma 4.3. Let ¢>0, 0<p<1 be fixed, a=(1+¢)A(1—p?), da<<y=n/4. For almost all

GeV,(g.p)izldruyveV nu—vz=da = |gp(u)|< |gp(v)|.

proof. Lemma 3.3 implies that if u,veV’; and u—v = a then gpl{u)Cgp(v). It remains to show
that there exists somec vertex x in gp{v)—gp(u). Let x =v—2¢y+[al. If u—v = 4a, Lemma

4.] yields

Vi >rig2azri~2y—2a=u—2y—"2a=v-2y+2a >x
Thus x¢¥’_, and since by Lemma 3.3 there is a 2-path from v to x, xegp(v). Since
x <u—2y, xégp(u).

Theorem 4.1. Let ¢>0, 0<p<1 be fixed, lnn=0(¢), ¢y =<n/4. For almost all GeQ,(¢¥.p)

MLAN(G) < (1+e)e(G).
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proof. Recall the random experiment by which G is generated. First, a graph G'e¥,(4,p)is
generated, then the vertices of G’ are randomly renumbered to yield G. Let 7, be the
permutation that reverses the renumbering. That is, 7, is the permutation which when applied
to the vertices of G converts it back to G’ Also, let 7, be the layout computed by MLA
which satisfies 771,(1)=r"',(1). Now consider any two vertices u,v in G. By Lemmas 4.1 to
4.3, if 7y(u)—7\(v) > da then 74(v) < 75(u), where a=(1+e)A(1—p?). Consequently, for any
u there can be at most 4o vertices v such that T(u)>7(v)Ary(u)<ry(v). Similarly there
can be at most da vertices w such that 7 (u)<7,(w)A7{(u)>7,(w). This means that for all
u, lri(u)—ry(u)l<4a and hence if u is adjacent to v then lry(u)—r,(v)|=y+8a
= (1+e)yY = (1+€¢)2¢(G) for any fixed ¢>>0. Choosing ¢ so that (1+¢’)*=(1+¢) yields the

theorem. O

There are other possible strategies for arranging the vertices within each level. Cuthill and
McKee [27] who first suggested the level algorithms, arranged the vertices in the order in
which they were visited by a depth first search algorithm. This results in an arbitrary ordering
of the first level and arranges each vertex in subsequent levels based on the position of its
‘leftmost’ neighbor in the previous level. Cheng [29][35] proposed several modifications of the
Cuthill-McKee strategy. He suggested that the vertices in the first level be ordered in
increasing order of the number of neighbors they have in the next level. He suggested a
similar strategy for breaking ties between vertices in subsequent levels. The Cuthill-McKee
algorithm with Cheng’s refinements is easily adapted to the modified level strategy. I will refer

to this algorithm as MLA2.

MLA2 is more difficult to analyze than MLA1 because decisions made in ordering each level
affect the ordering of subsequent levels. Consequently one might expect that errors made in
ordering the early levels could accumulate and cause large errors further on. Experimental
evidence discussed below suggests that in fact the errors do not accumulate, that the process is

self-limiting. However straightforward analytical techniques for bounding the error yield
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Figure 6. Monte Carlo Simulations with —:;—=5

unsatisfactory results. Consequently, the only available results on these methods are

experimental.

A series of Monte Carlo simulations was performed comparing MLAl, MLA2 and a third
algorithm (denoted MLA3) which uses the technique of MLA1 to arrange the vertices in the
first level and reverts to the Cuthill-McKee technique on subsequent levels. The results are
summarized in Figures 6-7. For each data point shown, 25 random graphs were generated and
each of the algorithms was run. The vertical lines show the range of the bandwidth of the
layouts produced by each algorithm. The points are the average bandwidths. There are several

points worth noticing. In general MZLA3 has the best performance followed by MLA2 and
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Figure 7. Monte Carlo Simulations with y=25

MLA1. One exception to this appears in Figure 7 where MLA3 begins to perform poorly when
¥ exceeds n/3. A similar degradation is observed in MLA42 when  exceeds n/2. Both effects
are predicted by the analysis. AMLA3 performs poorly for ¥>n/3 since at this point most
vertices u in V' are such that gc(u)=V";. The degradation of MLA2 is due to the fact that

when y>n/2, V'3=@ and so the algorithm reverts to a level algorithm.

The running time of the three algorithms is roughly comparable. The original Cuthill-McKee
strategy trying all choices for the initial vertex results in a time worst-case time complexity of
onlEh=0 (n2¢(G)). Including Cheng’s refinements increases the running time to O(n?) in
the worst case because of the need to compute for each vertex the intersection of its

neighborhood with the next level. For graphs in ©,(¢,p) however one expects the running
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time to be closer to O (n?¢(G)). MLA3 also has time complexity O(n*) and expected running
time O(n2¢(G)). MLA1 is somewhat worse, having worst-case complexity of O(n*) and

expected running time of O (n2p%(G)).

Up until this point it has been assumed that the bandwidth minimization algorithms tried all
possible choices for the initial vertex » that defines the levels. However it is clear that for
Ge¥,(y.p) the degree of vertex 1 is likely to be smaller than that of most other vertices.
Consequently it suffices to try only low degree vertices to define the levels. Cuthill and McKee
were the first to notice that the initial vertex should be one of small degree, using heuristic
arguments. The following lemma puts a probabilistic upper bound on the number of low

degree vertices that need be tried to obtain near optimal performance.
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Define ld (G)={v eV |d(v)=<d (1)}.

Lemma 4.4. Let ¢>0, 0<<p <1 be fixed, 12(1+¢)(1/p)lnn<y<<n. For almost all G ¢¥,(¢.p),
lid ()| <4[(3/p)(1+e)\,blnn]”.

proof. Let 0<<a=<y{p/2. By Lemma 3.5

P(d (1) =ypta)<e o/
For v eV such that (2a/p)<v <n—(2a/p)

Pld(v)=ypt+a) < e ~op
Letting o= [3(1+e)¢plnn]‘* yields

P(d(v)<d (1)) < 2e™*7/3p =2 ~(1%9)

Since there are <<n such vertices v,

PEv:(2a/p)<v<n—QQa/p)Ad(v)<d(1)) <2n™¢—0

Consequently there are at most 4e/p vertices in 1d(G). O

Lemma 4.4 implies that vertex 1 is almost always one of the first 4a/p vertices of smallest
degree. To make use of the result, a bandwidth reduction algorithm requires an estimate of ¢,

but the bandwidth of any layout can be used for this purpose. The potential time savings by

this method is a factor of (np/4a) OC_T/H)—I;—'
§4 n
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5. Properties of Random Graphs
Connectivity of Random Graphs in ¥, (y,p)

The following theorem is a special case of a result proved by Erdds and Renyi in [16].

Inn
n

Theorem 5.1. Let —1<<e<(l be fixed, p=(1+¢) , Gel'y(p). If >0, G is almost always

connected. If e<<0, G is almost always disconnected.

The following is a similar result for random graphs with small bandwidth. In particular we

prove

Theorem 5.2. Let —1<<e<<1 be fixed, 0<p <1, y=%{1+e)A(1—p), y—oo. If ¢>0 then almost

all G ¢¥,(2¢,p) are connected. If ¢<<0 then almost all G ¢¥,(¢,p) are disconnected.

To prove Theorem 5.2 we need to introduce another probability distribution and prove two
lemmas. Let n and  be positive integers, y<n, 0<p<1, and let G=(V¥,E) be a random

variable defined by the following experiment.

o Let ¥={i,2,...,n} For each fu<v}i=u,v=n, lu—vi=y or lu—vlz=n—y¢ include the

edge {u,v} in E with probability p.

The probability distribution defined by this experiment is denoted ¥5(y,p).

Lemma 5.1. Let —1<<e<<l be fixed, 0<p <1, y=%(1+e)A(I—p), 151}/5—;, Ge¥i(yp). If
€>0 then G almost always contains no isolated vertex. If é<C0 then G almost always contains
at least one isolated vertex.

Lemma 5.2, let O<exp<<] where € is fixed, and let GeF,(p). Then
P(D(G)>2)=lJa-ey".

Proof of Theorem 5.2. First part - ¢>0. G is connected if the first 2y vertices induce a

connected subgraph and all other vertices have at least one edge to a lower numbered vertex.

By Lemma 5.2, if p>a for some a>>0 then the probability that the first 2y vertices induce a
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subgraph of diameter >2 is < [z?fb](]waz)z‘l’_z—»o. Hence, if p is bounded below, the first 2y

vertices almost always induce a connected subgraph. If on the other hand p—0 we must use

Theorem 5.1 to establish that the first 2y vertices induce a connected subgraph. This requires

that we show that there exists some v>0 such that p2(1+y)£1—%£l. From the hypothesis of

the theorem

22y _ plnn £
ny) - Oy ey 0T

for large enough n since p—In(1/(1—p)) as p—0 and n>2y. Now, the probability that any of
the remaining vertices have no edges to lower numbered vertices is <<n(I—p)*¥=n"*—0. This

completes the proof of the first part of Theorem 5.1.

Now let ¢<0 and let G’e¥;(¥,p). Clearly, P(G is connected) <P (G’ is connected) and since
by Lemma 5.1, G’ is almost always disconnected, it follows that G is almost always

disconnected. O
Proof of Lemma 5.1. First part - ¢>0. Let

1 if v is isolated
v 10 if v is not isolated

X=X1+X2'+‘ et +X?1
Then by A.13 and A.15,
4 2
p=EX)=ZFEWX,)=n(1—p)¥
p=]

PX=)=<pu=n(l-p)¥=n"*—0
This completes the proof of the first part.

Second part - e<<0. Let X, X, ..., X, be defined as before. By A.14,
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E(X)=3 JEMXX,)

=] y=]

n n
=73} X P(u and v are both isolated)

u=} y==]

=n(1=p)¥+29n (1=p) ¥+ n (n—2¢—1) (1-p) ¥

Using A.17,
2 : 2.2
P(X=0)_<_~"_2=_£.(_X_.)5,JJ’_
i’
=L 1
g n(l-p) =n
Inn
<nt+(l+e L
Y =1 70=p))
The function 4 ets large as -], However, 1=
(=) n(1/(i—p)) e P ¥

< (I+A{1—p) == p<1—n"(¥9  Hence,

P(Xm0)<n‘+(1+e)—__~m7rm2n‘ﬂ0 0
n flnn'"

Proof of Lemma 5.2. Let u and v be any two vertices in G. The number of possible 2-paths
between them is n—2 and the probability that any one of them is absent is 1—p2. Hence the
probability that # and v are not connected by a 2-path is (1—p?)"2 Consequently, the

probability that any pair of vertices is not connected by a 2-path s
s[g](z—pz)"‘i!s [f,_‘]u—ez)""l. =
Diameter of Random Graphs in ¥, (¥,p)

A simple lower bound for the bandwidth of any connected graph is given by

$(G)zw(G)=

n—l1
D(G)] (5.1)

since the first and last vertices in any optimal layout are connected by a path of length at most
D (G) and hence at least one edge in this path has length =w(G). Chvatal [36] was apparently

the first to notice this. A more general lower bound is given by
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#(G) = w*(G)=max w(G")
where G’ ranges over all connected subgraphs of G. The graph shown in Figure 9 shows that
w*(G)#¢(G) in general. It is natural to ask if there is any constant ¢ such that for all
connected graphs ¢{G)=<cw*(G). We can in fact show that this is not the case. To do so we

need some additional definitions.

Let = be any layout of G=(V,E). The cutwidth of G with respect to 7 is denoted by 6.(G) and

is defined by

0.(G)= max |§fu vieE |7 (u)=i<7(v)}]

=i-<n

#.(G) counts the maximum number of edges crossing any vertical line drawn through a picture
of the layout of G. For example in the layout shown in Figure 10, 6,(G)=4. The cutwidth of

G is defined as 6(G)=min 8,.(G). The cutwidth minimization problem is NP-complete for

general graphs [371[38]. Lengauer [39)[40] has studied the problem for trees and has given a
worst case approximation algorithm for this case. Recently Chunk, Makedon, Sudborough and
Turner [41]} have found a polynomial time algorithm for trees with limited vertex degree. Our

interest in the problem here is in the relationship of cutwidth to bandwidth.
Lemma 5.3. If T=(V,E) is a tree then ¢ (7)>%6(T).

proof. Let 7 be any minimum bandwidth layout for T, let k=¢(7) and let i be any integer such
that I=i<n. Let H be the subgraph induced by
{r7 max (1i—=k+1), .. ., v Ymin(n,i+k))}. Since S(Ty=k, HuvicE | r(u)=<i=r(¥)}is a
subset of the edges of H, and since H is a forest with 2k vertices it has at most 2k—1 edges.

Since this holds for any / in the range, 0(T)<0(T)=2k—1<2¢(7). O

Let G=(V,E). G'Iis defined to be a subdivision of G if we can obtain G’ from G by replacing
edges with vertices of degree two as shown in Figure 11. Notice that the process of subdividing
a single edge does not affect the cutwidth of a graph. Hence if G’ is a subdivision of G,

(G )=0(G).
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Figure 11, Subdivision of a Graph

Let B, be a complete binary tree with & levels (2%—1 vertices). Lengauer [40] showed that

8(By )= L;:l—] +1. We are now ready to show that there is no constant ¢ such that

¢(G)=<cw*(G) holds for all graphs. We give a tree T, with »*(G)=2, but which is a

subdivision of B;, and consequently by the preceding arguments has ¢(T,)=>1%8(T;)>h/4.
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Figure 12. Definition of T),

T, is described by a recursive construction. 7'y=B, and T4, is constructed by joining two
copies of T} with two long chains as shown in Figure 12. The number of vertices in the long
chains is twice the number of vertices in Ty. This ensures that «*(7)=2. Hence we may
conclude that even for the restricted case of degree three trees there is no constant ¢ such that
#(G)<cw*{G). I am indebted to Ronald Graham for pointing out this ¢legant argument. In

spite  of this result however, we can show that for almost all Ge¥,.(¢¥p),

Id
D(G)<(1+E)-;—('~é')“'i'3.

Let G=(V,E)e¥,(y,p) and let Q=(vy, . . .,v,) be the unique path in G that satisfies

v=l1

vi=max {uevlv—y} 1=i=r
w<n—y 1=i<r

Vv,=n—y

r
Next, let x; =v; —v;_, (1=<i=r) and let x=2)x;. In what follows we will derive a probabilistic

|
upper bound on x which will be used to obtain an upper bound on r. Its is clear that for

l=<i=r
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P(x;=0)~p

Plx;=1)=(1-p)p

Pry=k)=(1-p)*p I<k=y

For & larger than ¢, P(x;=k) depends on whether or not v, <. For simplicity we will assume
that P(x;=k)=(1—p)*p for all k=0. The error committed by this approximation vanishes as

y—co. We are now ready to prove

1

Lemma 5.4. For any e>0, P(x>(1+e)r (1—p)/p) =
er{l—p)

proof. Using the approximation discussed above,

EG)=Sja—pyp=pll 12

i=1 p p

E@) =3 %1—p)p
=1

oo 3
=p 2 (1~-p)(1+3+ -+ +2j—1)
j=1

) | 309 500 ]
p P p

=2|0=p) +201-p)*+301p) 4 - |

- [o-m+a-py+apy+ - |

—pldzp 1P
Pt P

Let 4 be the mean and o2 the variance of x.

p=rE () =r

o?=r(E(4H)—Ex)) =r £
P

By Chebyshev’s inequality
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2 2
rOu)y =2 =r=p)p” 1
Plx>(1+eju) < 62”2 Ezrz(l_p)zpr ezr(l—p) =

n < 1
TY—(1+e)(1-p)p | r(l—p)’

Lemma 5.5. For any >0 Pjr

progf. From the definition, v,—1=ry—x, hence

n—lzv—l=r (w—-ﬁ)
-

n
< v—x/r

The result now follow from Lemma 5.5, [

Theorem 5.3. Let ¢>0, 0<p<<1 be fixed, (1+e)A(1—p2)=<y<n. For almost all G e¥,(y,p)
D(G) <(1+e)—;5-+3.

proof- By Lemma 5.5

n 1

Pir= =
y—(1+a)(1—p)/p a’r (1-p)
. 1 n no.
holds for any a>0. Letting o?*=Ilnn, ——————0 and ——— since
d & o (1p) —(+a)p)p ¥

¢ =X(1—pY ccinn. Thus for any fixed e>0, r<(l+e)—3- for large enough n. By Lemma 3.4
there is a 2-path from each u ¢¥ to some v; 1=/ =<r. This implies D(G)<r+3.
Diameter of Random Graphs in I',(p)

By Lemma 5.2, if p=¢>0 then for almost all G¢eI',(p), D(G)=2. When p is allowed to

approach zero as n gets large the diameter can become larger. By Theorem 5.1, when p is

much less than IHTH the graph is likely to be disconnected. In this section we consider the

probable diameter of random graphs in I',{(p) when p=cl—r:-1£~ and ¢ is a constant, We do this

by examining the probable size of ¥|,V,,.... Let m;=|¥;|. Clearly,
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n°==1
n¢B(n—1,p)
naeB(n—(n;+1),1—(1—p)"")

1 €B(n—s;,1—(1—p)™)

k . K
where s =X n;. Define Ag=1, fgs=(n—5;)(1—(1=p)™), where 5= >n;. We can use Ay as
j=0 . =0

an estimator for n,. Figure 13 gives values of m; for particular values of n and p. The
sequence grows very rapidly until a large fraction of the vertices in the graph has been
‘captured’. Then the remaining vertices are taken in the last step. The figure also gives values

of the function (np)*. For k<3, (np)* gives an excellent estimate for 7.

Let &* be such that spe =n. In the following we show that for k <<k*—2, m; > (np/8)* with
high probability. We can use this to get a probabilistic upper bound on k* and hence on D (G).
The main result is

Theorem 5.4, Let ¢>8 be fixed, p=c-l-1:~:~1-, y=np/8. For almost all Gel,(p),
1 <k <k*—2 =2 n, >~%.

The proof of Theorem 5.4 is contained in the following lemmas.

Lemma 5.6. Let ¢>8 be fixed, p=cl?1—n-, y=np/8. For almost all G el (p)

I=<k=k—-2Am  <lpAsg_=n/2 —=n>yn.,.
proof. Since ny eB(n—si_;,1—(1—p) "),

A = (ng) = (1=s-) (1=(1=p)™* ™) = Zpmes (1= hpreg—) > "2y =2ym,

By Lemma 3.5

_ —7 /8 _
Plog <ymp) <P <hm)<e T/® g T

Let 4; denote the event np << -ym,_;. By A.6 the probability that there exists a k satisfying the
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k 1y (np)*
0 1 i
1 27.6 27.6
2 763 763
3 20,850 21,096
4 428,450 582,890
51 549,910 -
Figure 13. Comparison of n;, with (np)* for n=105, p=2—h:li
hypothesis of the lemma, such that 4, holds is
EP(A) +P(AzA)+ - AP(Apa| A Apey)
<eWipeT Mg . T ]

Lemma 5.7. Let ¢>8 be fixed, p=c—l~l-l-p-. For almost all GeT,(p) 1 =k <k*—2A5.,=<n/2
n

= <<1/p.
proof. Assume that n_;=1/p. Then since n, eB(n —sk__],l—(l_p)”ic—l),

i =E () = (n—sp) (1—(1=p) ") z%(l—l/e) > n/4

By Lemma 3.5

P(n <n/8) <P(nm, <Wi) <e ¥ <o

Hence, assume m, >n/8. Then the probability that any of the remaining vertices is not

adjacent to something in ¥} is
= (n—sk)(lwp)"" < ne”Pl=plmc/A g
This implies that k* =< k~+1 which is a contradiction. I

Lemma 58 Let ¢>8 be fixed, p=c~!%g-. For almost all Gel,(p),

1=k =k*2 =>s5..<n/2

proof. Assume that s, > n/2 and let k’ be the smallest integer such that s,-> n/2. By Lemma
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n 102 | 10° | 104 | 10° 105 { 10! | 10%°
D(G) | =6 | =8| =8 | <10 | =12 | =16 | <24

Figure 14. Growth of Diameter

5.7, mg—) <1/p and by Lemma 5.6, for all k =<k’, n; > yn;_,, where y=np/8. Since for large
n,y>2, we have 5, > 253 for k = k’. Consequently ny-=s3—85p—; > $3/2 > n/4. Now, the
probability that any of the vertices in ¥ —(VoU VU - - - UV},) is not adjacent to some vertex
in V. is

< (n—s)(1=p)™ < ne Pl =pl=c/t g
This implies that &* =< %'+ 1 which is a contradiction. [J

This establishes Theorem 5.4. We can now use this to bound D(G).

Theorem 5.5, Let ¢>8 be fixed, p=c~h—:1£, vy=np/8. For almost all GeF,(p),

+2

D(G) S.,_”M
iny

proof. Note that D(G)=<2k*. Let k’ be the smallest integer such that v*' >=1/p. Clearly

k== {]nl(i/ ) . If k"> k*-2, we're done. If k’=<k*—2 we can apply Theorem 5.4 giving
Y

ny21/p. By the argument used in the proof of Lemma 5.7, this implies k* <k’ 2. [

In{(n/clnn)

Inlnac’® +2

Expanding the bound on D(G) gives D(G) =<2 . Figure 14 shows how this

expression grows as n gets large for ¢c=10.
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6. Conclusions

In this thesis I have studied the probabilistic analysis of algorithms for NP-hard optimization
problems, focussing on the bandwidth minimization problem for graphs. I have observed that
the non-uniformity of the usual probability distributions for graphs makes them inappropriate
for studying the performance of bandwidth minimization algorithms and have introduced the
idea of universal probabilistic algorithms to guide the selection of more appropriate

distributions.

I have showed that all algorithms in the class of modified level algorithms are probabilistic
approximation algorithms for G ¢, (¥,p) when p is fixed and Inn =0 (¥). More precisely, I
have shown that these algorithms almost always produce layouts that have bandwidth between

(1=e}(2—p)¢(G) and (1+e)(3—p)$(G).

I have introduced the class of modified level algorithms and shown that they are probabilistic
approximation algorithms for G e Q,(¢,p) when p is fixed and Inn =o(y). Specifically I have
shown that they almost always produce layouts having bandwidth = (1+€¢)2¢(G). In addition I
have shown that a specific modified level algorithm is a probabilistic optimization algorithm for

GeQ,(y,p) when y<n/4 and Inn =0 (y).

I have studied properties of random graphs with limited bandwidth, showing when such graphs
are likely to be connected and giving a probabilistic upper bound on their diameter. I've also

given a probabilistic upper bound on the diameter of graphs with unrestricted bandwidth.

There are several areas that merit further study. The whole issue of what probability
distributions are appropriate for comparing the probable performance of algorithms is extremely
important. The concept of universal probabilistic algorithms appears to be a useful one, at least
in guiding the search for appropriate distributions. The idea would have greater utility if
unbiased distributions such as ®,{y) could be related t¢ analytically tractable distributions. If

one could show for example that events that occur with high probability in Q ,(y,%) also occur
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with high probability in ®,(¢) it might be possible to establish the existence of a universal

probabilistic optimization algorithm for bandwidth minimization.

Probability distributions such as T',(p) and ¥,({,p) that generate random subgraphs of certain
base graphs have very nice analytical properties. There are similar distributions that could also
prove useful. For example, one can define distributions that generate random subgraphs of
complete k-partite graphs that could be useful for studying properties of random k-chromatic

graphs.

Another area worth pursuing is to generalize the main results of this thesis by removing the
limitations on ¥ and p. The lower bound restrictions on ¢ and the restriction of p to constant
values appear to be artifacts of the proof techniques. In certain cases I have knowingly
sacrificed generality for the sake of clarity. It would be interesting to see how loose the

restrictions can be made.

Analytical results on the Cuthill-McKee method of ordering the vertices within Ievels would be
very worthwhile. Another interesting problem is the development of probabilistic optimization

algerithms for ©,(y,p) when y>n/2. This appears to require a very different approach.

Finally, there are many other properties of random graphs in ¥, (¥,p) that bear investigating.
These include the presence of hamiltonian circuits, the degree sequence, clique number and

chromatic number.



40

Appendix - Summary of Results from Probability Theory*

It is convenient to think of probability theory as the study of random experiments. For
example, a random experiment might consist of tossing a coin 100 times and observing the
sequence of heads and tails. A particular outcome of a random experiment is called a sample
point and the set of all sample points is called the sample space. In the example, each sequence
of heads and tails is a sample point and the set of 2'% possible sequences is the sample space.
An event is a set of sample points. For example, we could define the set of all sequences
having heads on the twenty-seventh toss as being an event. A sample space can be either

discrete or continuous. We will be concerned only with discrete sample spaces.

Given a discrete sample space with sample points E |,E,,.... define P(E;) to be the probability

that the event E; occurs in a particular random experiment. Clearly,

PENH+P(EN+ - - - =1 (A.1)
If the event A={E,-|, . ,Efk} then
k
P(4) = T P(E;) (A2)
i=1
If 4 and B are both events then
P(AvB)=P({A4)+P(B)—P{AAB) {(A.3)
If 4 ("} B=@ then
P{AVBY=P(A4)+P(R) (A.4)
In general,
P{AvB)=P(A)+P(B) (A.5)

This fact is used frequently throughout the thesis.

The probability that a sample point is in 4 given that it is in B is denoted P(4|B) and is

* The material in this section can be found in any standard textbook on probability theory, for example [42].
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defined by

P(d IB)J%% (A.6)

A and B are said to be independent if P(4[B)=P(4). If 4 and B are independent we have as
an immediate consequence that

P(A4AB)Y=P(A)P(B) (A7)
If H,,...,H; are events that are mutually exclusive and exhaustive (that is, every sample

point is in exactly one of the H;), then

) k
P(A)= S P(ANH;) =S P(AlH,)P(H,) (A.8)
i=] =l
A random variable is a function that maps the points in the sample space to the integers or some

subset of the integers. Referring to the earlier example, the number of heads obtained in the

sequence of 100 tosses is a random variable,

A probability distribution is a function that assigns probabilities to the values of a random
variable. It x is a random variable defined on the sample space S, then we can define the

probability distribution f* that describes x as follows.

f@)y»= 2% Pp) (A9)
peSllx(p)=z
Less formally, f(z) is simply the sum of the probabilities of all the sample points which x

maps to z. It is common to abbreviate the summation on the right of (A.9) by P(x=z). If x is

the number of heads obtained in a sequence of 100 coin tosses then _f'(z)ﬂ[lgo]?__]GO since

100

e ] sequences containing z heads and each sequence occurs with probability

there are exactly [
27109 This is a special case of the binomial distribution B(n,p) which governs the number of
‘successes’ in a sequence of # independent binary trials, where the probability of a success on a
particular trial is equal to p. The notation x ¢/ means that the values of the random variable x

are distributed according to f.

The expected value of a random variable x ¢f is denoted E(x) and is defined by
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+eo
E(x)= 3 zf (z) (A.10)

=~
The expected value is also referred to as the expectation, average or the mean, and is often
denoted by the symbol u. The variance of a random variable x is a measure of the probability
that x differs significantly from the mean. It is denoted by the symbol ¢? and is defined by
¢?=E (x*)—p? (A.11)
The term E(x?) is simply the expected value of the random variable x2 and is defined by
applying (A.10).

“+co
E(x)= 2 %)
gP=—co

where g(z%)=P(x?=z?), but clearly g{z%)=f(z)+f(—z). This observation yields the usual

definition
ExhH= +2°° 22f (z) (A.12)
=—ca
An alternative definition for the variance is o¢?==E({x—u)%. If x;,...,x, are random
variables then
E{x\+---+x,)=E(x)+ - +E(x,) (A.13)

To see this, consider the case of two random variables x and y. By (A.10) and (A.8),

+oo +eo
ExEQW)= 2 z:Px=z)+ 3 z,P(y=z,)

ZI"_CD 225—00

= E ZIP(x =le'\y=22)+ E ZzP(x=ZlAy=2'2)

~QOET |, 5E+00 —C0z 2 o

= > (z1Hz)P(x=z,Ap=27)

—0=z 7,5t

=FE(x+y)

We can now apply (A.13) to obtain

E(Get - 1)) = 3 SE ;) (A.14)

] jm=]

If x is a non-negative random variable with mean p then
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Px=1)=pu {A.15)
The proof is quite simple.
+eo +eo +eo
Px=1)=20f(z) = Xz (z)=2zf (z)=»n
z==] r=] =0

Chebyshev’s inequality states that if x is a random variable with mean p and variance ¢? then

for any t >0

2
P(lv—pl=t)=—

The proof is

2
Ple-ulzn= 3 f@)s—5 3 ¥ @)=

le—pl=r o

We can use Chebyshev’s inequality to derive the following useful result.

o?
P(x=0)=—- (A.16)
f13
In addition to the above results from probability theory we will need the following results for

doing asymptotic analysis. First is Stirling’s approximation for n!

n "
{%] Virn £n!5[—§-] V2nme /12 (A.18)
The following results can be obtained by expanding the binomial coeflicient and applying

Stirling’s approximation.

: b . a=b b a—b b b
a a a a] a a eq
e e — = |1|= — < |- A.l19
2\/5[1) 2Va [a-—b] {b] [b [a—b] 11;] lb l (A-19)
The following are consequences of the Taylor Series expansion of e*.
e* = 1+x (A.20)
lime* =1+x (A.2D)
x—0

We will also make use of the geometric series and the arithmetic-geometric series



n

1+r+r2+ - - +r"_]=~l———f~—

I—r
l+r+r2+ PR =-1—1:-;- (_I<f<1)
rH2r 334 =HL-)_2_ (—l<r<i)
-
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(A.22)

{A.23)

(A.24)
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