i

ALLERTON CONFERENCE 1983

GRAPH SEPARATION AND SEARCH NUMBER

7.2 E11is Y™}, I.H sudborough 1™, 3.5 Turnsr (2

. r I, g : J. urnar

(1) Electrical Engine2ring and Computer Sciencs
Department, Northwastern University, Evanston, I11 60201
(2) Computer Science Dapartment

Washington University, St. Louis, Missouri 63130

ABSTRACT
W= relate two different concepts in graph thsory and
algorithmic complexity, namely "searching" a graph [1] [2] and
"separators” of undirected graphs (3] [4] [5]. For any graph
G, let s{G) denote ths "search numbz2r" of G and vs(G) dznote
the vertex ssparation of G. We show that vs(G) < s(G) < vs(G)
+ 2 and that if G° is created from G by placing two addesd
vartices in eveary edge in G, than vs(G”) = s(G).
W2 discuss algorithms which show that for all fixed k > 1 and
graphs G th2 following problems are dscidable in polynomial
time: "Is vs(G) < k2", "Is s{(G) < k?", "Is the progressive
black/white pebble dzmand of G < k2?". When both G and k are
input quantities, these problems are NP complete [6] [7].
We also give an algorithm that for any tres T computes vs(T)
in O(n log n) steps, whare n is thz numbar of vertices in ths
tre2, describs ths smallest trees with a given vartex
separation ang characterize tress of a given vertex
saparation.

1. INTRODUCTION

This papar is an abbreviated version of a papar in preparation
which contains datailed proofs of tha thzorems stated here.
Searching a graph is a concept introduced by Parsons [1].
Informally, ths search numbsr of a graph G, denoted by s(G),
is the minimum numbary of ssarchars nacessary to guarantee tha
capture of a fugitive who can move with arbitrary spzsd about
thz edges of ths graph and who has parfect knowladge of thz
movements of ths searchers, Maggido et al [2] show that
datermining ths search numbar of a graph is NP-hard and that
the search numbzr of a trze can bz determined in O(n) steps.
It is known that, for any graph G with maximum vartex degres
3, s(G) is identical to ths "cutwidth" of G [8]. Hance tha
search number problem has practical valus since finding tha
cutwidth of a graph 1is important in some VLSI layout
applications [3}.

A search ssquance is a saquence of the following staps: (a)
placa a searchsr on a vertex, (b) slids a searchesr through an
edge and (c} remove a searchar from a vertex. We say that an
edge e={x,yi is cleared if eithar (1) thare is a searchar on x
and a second searchsr is moved from x to y or (2) there is a
searchar on x, all edges incident to x except e have baen
cleared, and the szarcher on x is shifted through = to vy, In
the beginning all edges are "contaminatad", i.e. not clearead.
Searching a graph means to reach a state in which all edges

*
Research supportsd in part by NSF grant #4CS81-09280

are simultansously cleared, A clsared =adge e can becoms
recontaminated by th2 movement or daletion of a ssarchar which
results in a path without searchars from a contaminated edge
to 2. LaPaugh [7] has shown that there is always an optimal,
so called progressive, search sequance which never allows any
edgs to be recontaminated. Hence the search numbar problem is
NP complete.

Separation of undirectsd graphs is an important c¢oncsrn in
complexity th=2ory. A separator of an undirected graph is a
set of vertices, in the case of a vertex saparator, or a set
of edges, in tha cases of an 2dgs separator, whose removal
saparates tha graph into two components. Separators ara used
to describe good VLSI layouts in [3] and have b2en usad to
describe good divide and conquar algorithms in (4]. Ssparator
thaorems for planar graphs have bszen dzscribed by Lipton and
Tarjan [5]. Langauzr [6] called the above dsfinition of
separator static and goes on to definaz a dynamic "vartex
separator game". Wes consider the same concept as Langauer but
describe it in terms of linzar layouts,

Let G=(V,E} bz a graph. A linsar layout, or simply a layout,
of G is a onz-one mapping L3V --> {1,2,...,|v|}.
Define Vo (i) = {u in vV | {u,v} in E and L(u) < i < L(v)]}.
Vertices™in V (i) are called the active vertices at time i.
The vertex Separation of G with respect to L, danoted by
vsL(G), is dzfin=d by

vs, (G) = max (IVL(i)])
. l<i<n
and the vertex separation of G is definad by

vs(G) = min (vsL(G))

L

Examples of layouts which minimize vertex separation are givan
in Figures 2.1 and 2.2.

2. RELATIONSHIPS BETWEEN VERTEX SEPARATION AND SEARCH NUMBER

Thzorem 2.1
Lst G- = (V,E) b2 a graph. Then vs{G) < s(G) < vs(G) + 2.

Proof Sketch To show that vs(G) < s{G) we show that given a
search sequence we can use it to derive a layout. Lzt S bs a
progressive search sequance for G. We dafine ths layout L for
G by assigning the vertex x to ths integer i if it is thz i-th
vertex to b2 first visited by a searcher in ths seguenca 8.
It can be shown that, since S is a progressive strategqgy and
does not allow recontamination, th2re must b2 at lesast a
searcher on every active vertex at 2ach point in ths layout.
Hence vs(G) < s(G).

To show that s(G) < vs{G) + 2 we show that givan a layout wa
can us2 it to derive a search stratagy. Lzt L be a layout for
G. We clear all ths edges of G by the sequsnce of steps given
in th2 procadure search described bzlow. It is easily szen
that the procedure is effective and that it naver uses more
than (thes number of currently active varticess + 2) ssarchars .

Hence s(G) < vs(G) + 2.

procedure search(G,L);
for i :=1 to [V],do

begin x := L “(i); Place a searcher on x;

for each left neighbor y of x do
begin add a new ssarcher to y;
slida a searcher from y to x;
remove a searcher from x
end;

Remove searchers from inactive vertices in Li

and;

The bound in Theorem 2.1 is the best possible because tha
graph K shown in Figure 2.1 has vertex separation three and
search gﬁaber five.

Let the 2-expansion of a graph G be th2 graph formed by

. replacing each adge {x,y} of G with the two new vertices, say
u,v, and the edges {x,u}, u,v}, andg {v,y}. For example,

Figures 2.2 and 2.3 show a graph G and its 2-expansion.

Th=orem 2.2. For any graph G, s(G) is idantical to ths vertex
separation of th2 2-expansion of G.

Proof Sketch In Theorem 2.1 we have seen that, for any graph
G, vs{(G) < s(G). Let G° be thes 2-expansion of G. Clearly,
subdividing edges does not change search numbar, so s(G) =
$(G”). Thus, it follows that vs(G") < s(G).

To show that s(G) < vs(G”") we argue similarly as in thsz proof
of Theorem 2.1. Let L be a layout of G” such that vs_ (G”)=k.
It can be shown that there is a layout of G° with” wvertax
separation k such that, for any edgaz e = {x,y} in G, tha
vertices added to e are given consecutive positions and are
laid out eithar to the right of x or to the right of y. We
construct a searching algorithm based on a layout L which does
satisfy these properties. Bacause of the spacial proparty
thzre is now no nszed to use more searchars than ths numbar of
active vertices at each point. Figure 2.2 shows ths complete
graph on four vertices which has search number 4 and vertex
separation 3. Figure 2,3 shows the 2-expansion and a layout
satisfying tha proparties just describad and with a vartex
separation of 4, which 1is optimal. The search numbzr is
unchangad.

3. THE VERTEX SEPARATION OF TREES

Trees allow thz possibility of computing certain propsrties of
the root by recursively computing the property for its
subtrees and than combining the results. For example, Meggido
at al [2] give an algorithm for computing the search numbar of
a tree, Chung et al [2] give an algorithm for computing th=2
cutwidth of a tree, and Yannakis [10) describes an improved
cutwidth algorithm for trees which is also effactive for
computing thair black/white p=2bble demand.

Our algorithm also is based on a recursive characterization of
tha vertex sseparation of a trsze in terms of ths vertex
separation of tha subtrees inducad by its root. Ths algorithm
is easily dsvelopad to give an optimal layout for vertex
szparation for the given tree.

3.1 A Recursive Characterization of Trees with Vertex
Separation k

Thae subtrees induced by a vertex x are all of thz trees in the
forest obtainad by deleting x from the given trea. A tree
with one vertex has vartex szparation 0 and we shall adopt the
convention that ths empty tree has vartex separation -1.

Th2orem 3.1 Let T ba a tree. For any integer k > 1, lat P(Kk)
denote thes following property of T:
For all vertices x at most two subtrees induced by x have
vartex separation Kk and all remaining subtrees induced by x
have vertax separation at most k-1.
T has vartex separation at most k if and only if P(k) is true.

Proof Skatch We first show that 1if T satisfies P(k), then
there 1is a layout L of T such that vs_ (T) < k. Lzt V, bz th2
set of verticas in T which induce exac%ly two subtrees each
with vertax separation k. It can ba shown that thsre esxists a
path containing all ths members of V,. Let X., X,, .. , X_,
for some p > 1, bz a chain of verticCes such %hat, for al ip(
1 <1i<p), X; induces subtrees which, if they do not contain
other chain Wvertices, have vertex separation at most k-1.
Given such a chain w2 c¢an construct a layout with vartex
separation k by laying out all ths subtrees with vertax
separation < k-1 in sequance immediately to the right of thz
chain wvertex that induces them. See Figure 3.1. 1In this
figure a, b, ¢ and d are members of tha chain.

Now wa show that if there is a layout L such that vs, {T) is at
most k, then P(k) is true. Let vertices a and b be tha first
and last vertices in such a layout. Let x b2 any vertex in T.
Thare must b2 paths from both a and b to x. Remove from tha
layout the vertex x, all edges incident to x, and ths one or
two subtrees induc2d by x and containing the vertices a and b.
It can be sean that for all remaining subtreses T, wvs(T") <
k-1 because the paths from a and b to x are removad. No more
than two subtrzes ware removed and thasse had vertex separation
< K.

Corollary 3.1 vs(T) > k iff there 2xists a wvartex which
induces 3 subtr2es T such that vs(T”") > k.

For example, th2 tree shown in Figure 3.2 has vertex
separation 3 and not 2, sincs the indicated vartex x inducss
three subtrees with vertex separation 2.

3.2 k=Criticality

In ths following we shall considar directed trses for
convaniencea, Tha vartex separation of a directad trze is tha
vertax szparation of th2z underlying undirectad trse. Lat T<x>
danote the subtr2e of the directed trez T with root vartex x.

Da2finition 3.1. A vartex x is k-critical in a dirsctsd tree T
if (1) vs(T<x>) = k and (2) thare are two children y and z of
X such that vs(T<y>) = k and vs(T<z>) = k.

Lat T<X,V,, Vo, «o... V;> danote tha subtree of T with the
root vartédx x“from which ths subtrees T<v,>, ... , T<v.> have
been deleted. 1t follows from Theorem S.i that, if T is a
directed tree with root x and vertex separation k, and thare
is a k-critical vertzx v in T, then vs(T<x,v>) < Kk-l. We
shall assign a set of integers as a label to all vertices in a
tree. These labaling sets have the following interpretation.
If a wvertex x is assigned ths label (al, ayy ...,ad) in the
directed tree T, then:
1. vs(T<x>) = a,,
2. for all i (i < i <d), there exists an ai~critical
vartex v, such that vs(T<x,vl,v ,...,vi_l,vi>) = A4
3. wvs{T<x,v tVoreeerVg_ >) = a;an T<x,vl,v2,...,vd_l%
doe§ not " haVe an ad—critica vartex.

For example the label {2,0} on vartex x means that T<x> has
vertex separation 2, that thsre is a 2~critical vertex v and
that T<x,v> has vertex separation 0. Ths label {2,-1} on tha
vertax x mzsans that th2 vertex separation of T(x)} is 2 and th=
vartax v=x is a 2-critical vertex so that T<x,v> is empty.

We now describ2 a procedure for combining ths labels of the d
subtrees inducsd by some vertex x to compute the label of x,
procedure compute—labal(sl,s ,...,Sd)

K €<==- max(S, U S, U .,. U):

if k =0 thentretufn {1}; e

ifd=1

than begin
if min Sl > Q0 thaen return S.;
if min ST = -1 then return }0} uf{i>o0 | i is in Sl}
T <——- m%n { 3 i 3 > 0 and j is not in S4 };
return {i} U i j>i] jis in Sy }
end;

m <==="} { s; | kis in 8; } |;

if m > 3 then return {k+17;

if m=2

than bagin (* let k be in the sets S, and S *)
if s, > {k} or s, > {k} then re¥urn {k¥1};
return {k,-1} ¥

end;
(* In this case ths element k
if k = min S_ than return {k}
H <==- compu%e-labal(sl, peeerS~{Kk}seet83);
if H > {k} than raturn {kgl} 21s¥ return {k} U H

is in one set, say Sx *)

An outer procedure, called initially on the root, will return
{0} as the 1lab2l1 all 1leaves. On other than leaves it
recursively calls its=1lf on each of the <c¢hildran and passes
thz2 resulting labsls to tha procedure compute-laba2l which
computes the labz1l of x. The vartex separation of a trz2e |is
than the largsst numbar in the labszl of its root.

Tha correctness of the procedure can b2 establishad by
considaring each of the wvarious cases that it handlss and
applying Th2orem 3.1. An analogous procadure for computing
the cutwidth of trezs was describzd in {9].

Assume that suitable data structures are used and note that
thare are O0(log n) entries in 2ach labsl, b2cause (saction
3.4} the maximum vertax separation of a tree with n wvartices
is 0O(log n). Reacursion dapth is limited by the numbar of
items in a labzl so the time complexity of ths procadurs
combins-lab2l is O(di * log n), where d. is the degree of ths
ith vertex. Th2 procédure is invokad for all vertices in the
tree. Since the sum of the vertex dagrees over all verticss
is O0(n) we have that the time complexity of ths entire process
is O{n log n).

3.3 Computing an Optimal Layout

Once labzls have been computed for all vertices, an optimal
layout can ba computed. This is accomplishzd by the following
procedure in which label (x) mezans the labzl of x, pos 1is th=
position assignad to a vertex and L(x) is the layout function.

procedure layout (x):
k <==- max labsl(x); ¢ <=-- Xx;
while ¢ is not a k-critical vertex do
begin delete k from label(c):
C <—— the child of ¢ with k in labzl(child)
end;
Let (V,, Vo, +.... V.) bz the path of all
varticds ifi T<c> with k in the labz1;
for i i= 1 to s do
begin L(vi) <== pOS;
pos <-— pds + 1; daslete v, from T;
for 211 children y of vy ég layout{vy);
if v; has a parent not In (v; ... V)
than layout (xX)
end
Tha correctness of this procedure can be dzmonstrated by
noting that it is finding ths chain of vertices that induce
subtrees of vartex separation k-1 or less, as discussad in ths
proof of Theorem 3.1, and laying out thzse subtrees to ths
right of their inducing chain vartex.

The time complexity of the procedure is O(n log n) since no
vartex is visited more than k times and k is O(log n) as shown
in saction 3.4.

3.4 Smallest Tre=s with a Givan Vartex separation

Lat T({k) dznotaz thzs ccllection of +trzes with thz smallast
nunber of of varticas and vartex separation k. It is easy to
sez that T(l) and T(2) contain just one trae,. Thare ars=
saveral trees in tha set T(3). Onz of is shown in Figure 3,2,
To construct a tr2e in the set T(k+l), for all k, ones takas
thres trees from T(k), say T7,, T,, and T,, which nead not bz
distinct, and a new vartex x, %nd %oins thg three subtrezes by
adding an =2dge from an arbitrary vertex of T,, T,, and T3 to
the wvertax Xx. It follows from Thaorzn %.l that ths
constructed tree has vartex separation k+l. Furtharmore, from
Theorem 3.1, any tree with vertex separation k+1 must have a
vertex x such that x induces at least three subtrzes with
vartex separation at lsast k. Consequently, ths constructad
tree must be among the smallest tress with vertex separation
k+1.

One can also deduce that the numbser of vartjces in a smallest
. tres with vertex separation k is |5/6*3"| for all k > 0 so
that vs(T) is O(log |V]).

3.5 Characterization of Trees with Vertex separation k

The opzration of replacing an edge {x,y] with a new vertex =z
and the two edgss ?x,z} and {z,y} is called edge subdivision.
A graph G” is a homeomorphic image of a graph G whan G° can bs
obtainzd from G by a finite numbar of edge subdivisions.

Lat T b2 a tree. L2t S(T) denota ths sat of all trezes that
can be obtained from T by a single edgs subdivision operation,
Similarly, if F is a family of tress, then S(F) denotes tha
family of trees { S(T) | T is in F }. For all i > 1, let F(i)
ba tha family of trees dafinad by:

F({l) T(l); F(i+l) = the collection of all treses that can ba
formed by taking three trees in F(i) U S(F(i)) and a new
vertex x and joining x by an edge to an arbitrary vertex in
each tree, for all i > 1.

Thszorem 3.2, For all k > 1, a tree has vertex separation at
least k if and only if it contains a subtree which is a
homeomorphic imagse of a tree in F(k).

A proof by induction on the sizea of the tres is
straightforward. A corollary follows immediately.

Corollary 3.1. For all k > 1, a tree has vartax sesparation k
if and only if it contains a subtree that is a homeomorphic
image of a tree in F(k) and does not contain a subtres which
is a homeomorphic image of a tree in F(k+l).

4. RECOGNIZING GRAPHS WIH FIXED VERTEX SEPARATION
In [11] [12] and [8] dynamic programming algorithms have bean
da2scribed which recognize graphs with fixed bandwidth or
cutwidth in polynomial time. However,the application of thass
2arlier algorithms to the problem of vertax separation dozs
not produce a polynomial time algorithm because no vartax

dagree constraint follows from ths fact that a graph has a
small vertex separation. For example, thz star graph S_,
which 1is the tres with n leaves and a single internal vartex
with dagree n, has vertex separation 1 for all n.
Consaquently, if one dsfines an equivalence razlation on thz
class of partial layouts as was done in the algorithms Jjust
cited, then the numbar of equivalence classss is not bounded
by any polynomial in the numbar of vertices. A dynamic
programming algorithm has been davised for computing vertex
separation which uses an equivalence relation for vertex
separation k that divides the class of all plausib%e partial
layouts into O(n") equivalence classes, whera m = (k“+5k+2)/2.
Since the method requires that each class be considered O(n)
times, the following Th=zorems can be derived.

Thzorem 4.1

FOE each k > 1 thare is an O(nm) step algorithm, whsre m =
(k“+5k+4) /2, to decide if a graph with n vertices has vertex
saparation k.

Since we can expand any graph and ths vertex separation of ths
result is equal to the search number of the original graph, we
have the following, which solves an open problem in Meggido et
al [2]. The expansion was illustratd in Figure 2.3.

Corollaiz 4.1 o

Fgr each k > 1 there is an O(n") step algorithm, whare m =
k“+5k+4, to decida if a graph G with n vertices has sesarch
numbar k.

The transformation described by Lengausr [6] from thz
black-white pebble game to the vertex separation problem
justifies the following corollary.

Corollary 4.2
Foy each k > 1 there is an 0(n") step -algorithm, whzre m =
(

k“+5k+4) /2, to decide if a graph G with n vertices has pebble
damand kK in the progressive black-white pebble game.

(1}

(2]

[3]

[4]
[5]

[6]

(71

[8]

[91]

(10]

(11}

[12]

REFERENCES

Parsons, T. D, "Pursuit-Evasion in a Graph", in Theaory
and Application of Graphs, Y. Alavi and D. R. Lick, (2ds)
Springar-~Verlag, Berlin, 1976, pp. 426-441

Mesggido, N, Hakimi,S. L, Garey M. R, Johnson, D. S and
Papadimitriou, C. H, "The Complexity of Searching a
Graph (Preliminary Version)", Proc. IEEE Foundations of
Computer Science Symp. (198l1), pp. 376-385

Lziserson, C. E, "Area-Efficient Graph Layouts, for
VLSIY, 21st Annual IEEE Symposium on FOCS, (1980)

Lipton, R. J and Tarjan, R. E, "Applications of a Planar
Separator Theorem®, SIAM J. Comput. 9,3 (1980), pp.
615-627

Lipton, R. J and Tarjan, R. E, "A Separator Theorem for
Planar Graphs", SIAM J. Appl. Math. 36,2 (1979), ppP.
177-189

Lengausr, T, "Black-White Pebbles and Graph Ssparation",
SIAM J. Algebraic and Discrete Methods, 1982.

LaPaugh, A. S., "Recontamination doss not Help to Search
a Graph", Tachnical Report, Electrical Enginsering and
Computar Science Department, Princston University (1983)

Makadon, F. and Sudborough, I. H, "Minimizing Width in
Linear Layouts”, Proc. 10th International Colloguium on
Automata, Languages, and Programming, vol. 154, Lecture
Notes in Computer Science, Springer Verlag (1983), pp.
478-490.

Chung, M. J, Makedon, F, Sudborough, I. H and Turnasr, J,
"Polynomial Algorithms for ths Min-Cut Linsar
Arrangement Problem on Degree Restricted Trees", Proc.
23rd Annual IEEE Foundations of Computer Science Symp. (
1982), pp. 262-271.

Yannakakis, M., "A Polynomial Algorithm for the Min Cut
Linear Arrangement of Trees", to appesar in Proc. 24th
Annual IEEE Foundations of Computer Science Symposium
(1983)

Saxe, J. B, "Dynamic-Programming Algorithms for
Recognizing Small Bandwidth Graphs in Polynomial Time",
SIAM J. on Alga2braic and Discrete Methods, Dacember,
1980

Gurari, E. M and Sudborough, I. H., "Improved Dynamic
Programming Algorithms for Bandwidth Minimization and
tha Min-Cut Linsar Arrangemsnt Problem", J. Algorithms,
to appear.

FIGURES

FPigure 2.1 The Graph K3 3 with vs(G)=3 and s (G)=5
r

e e S

Figure 2.2 A Graph with vs(G)=3 and s(G)=4

Figur2 2.3 The Expanded Graph from 2.2 with vs(G”)=s(G)=4

that vs(T}=k

Figure 3.2 One of the Smallest Trees with vs(T})=3

