FTHSer rore O T

; On The Probable Performance of
Graph Coloring Algorithms

Jonathan S. Turner

Computer Science Department, Campus Box 1045
Washington University, St. Louis, MO 63130
jst@wucs. UUCP

ABSTRACT

We define a natural probability distribution over the set of k-colorable graphs on n
vertices and study the probable performance of several algorithms on graphs selected
from this distribution. The main results are listed below.

1. We describe an algorithm to determine if 2 given n vertex graph is k-colorable,
which runs in time O{n + mlogk), where m is the number of edges. We
show that this algorithm can successfully identify almost all random k-colorable
graphs for constant or slowly growing values of %.

2. We show that an algorithm proposed by Brélaz, and justified on experimen-
tal grounds can successfully k-color almest all random k-colorable graphs for
constant or slowly growing values of k. We also describe an efficient implemen-
tation, which runs in time O(m logn).

3. We show that the performance of the well-known greedy algorithm for graph
coloring is relatively poor for random k-colorable graphs.

In addition to the analytical results, we present experimental data which provide more
detailed information on the performance of these algorithms.

1. Introduction

Let G = (V, E) be a simple undirected graph. A k-coloring of G is 2 mapping ¢ : V — {1,2,...,k}; cis
a proper coloring if ¢(u) # c(v) for all {u,v} € E. The chromatic number of G, denoted x(G), is defined
as the smallest positive integer & for which a proper k-coloring exists. The graph coloring problem is to
determine for a given graph G and an integer k, if x(G) < k.

The graph coloring problem has a long, interesting history and arises in a variety of applications.
Karp (7] showed that the problem is NP-complete. Stockmeyer [9,3] strengthened this by showing that
it remains NP-complete for any fixed & > 3. This has led many researchers to seek approximation
algorithms capable of producing colorings that don’t use too many extra colors. Garey and Johnson
[4] proved that unless P = NP, no polynomial time approximation algorithm can guarantee the use of
less than 2x(G) colors. Furthermore, Johnson [6] showed that for many popular heuristics, there are 3-
colorable graphs on n vertices for which the heuristics require ©(n) colors. Johnson also described a new
algorithm using at most G(n/logn) colors on any 3-colorabte graph. This stood as the best worst-case
result for graph coloring until recently when Wigderson [11] discovered an algorithm that colors any

. 3-colorable graph using at most 3[/n] colors and any k-colorable graph using at most 2k [nl'l/("")]
colors.

The disappointing nature of the worst-case results for graph coloring suggests that probabilistic analysis
may provide a more effective way of evaluating candidate algorithms. Grimmet and McDiarmid [5]
took the first step in this direction by showing that for almost all graphs on n vertices, x(G) >
(1 —¢)n/(2log, (s_p) 1), where p is a fixed edge probability in the usual random graph model, ! and ¢
is any positive constant. The also showed that a well-known greedy heuristic uses < {1+€)n/ logy /{1-p)
colors.

'In the usual random graph model, edges are generated independently with probability p between each pair of vertices.
We say that a property holds for aimaost all random graphs if this probability of the property holding approaches one as
n — oo,

Grimmet and McDiarmid’s results are interesting for what they tell us about random graphs; it’s less
clear what they tell us about the merits of the greedy heuristic. The naive conclusion one can draw 1s
that the greedy algorithm is a good one for graph coloring. A less obvious, but perhaps more accurate
interpretation is that these results cast doubt on the usefulness of a probabilistic analysis based on
the usual random graph model for comparing graph coloring algorithms. They suggest that the usual
model is too ‘easy’ a distribution, since it makes even the most simple-minded algorithm look good. In
order to obtain meaningful comparative information, we should try to select a more difficult probability
distribution, one that poses some challenges for candidate algorithms to overcome. The probability
distribution described in the next paragraph and used throughout this paper was motivated in part by
these considerations. Another factor motivating this choice is touched on briefly at the end of section
2.

Let n,k be positive integers, 0 < p < 1 and let G = (V, E) be the graph defined by the following
experiment.

o Let V={L,...,n}.
o For each u € V let ¢(u) be a random integer in [1, k).
o For each pair u,v € V such that ¢(u) # ¢(v), include the edge {u, v} in E with probability p.

The probability distribution defined by this experiment is denoted X,(k,p) and the notation G €
Xn{k,p) means that G is a random graph generated in this way.

In section 2, we present a coloring algorithm, which for constant p and k growing slowly with n, finds
a k-coloring for almost all graphs G € X,(k,p), and we describe an efficient implementation using a
novel data structure. In section 3, we discuss an algorithm due to Brélaz [2] and show that under the
same conditions it has similar performance. We also describe an implementation of Brélaz’s algorithm
with running time O(mlogn) for graphs on n vertices and m edges. (Brélaz claimed only an O(n?)
running time.) In section 4, we study the performance of the greedy algorithm for graphs in X, (k, p);
this study reveals performance that is surprisingly poor in light of [8].

2. Recognizing k-Colorable Graphs

Define a partial coloring of a graph G = (V, E) to be a mapping ¢ : V' — [0, n]. The algorithms we will
study start by constructing the partial coloring defined by ¢{z) = 0 for all + € V and then attempt to
convert this to a complete proper coloring. Given a partial coloring ¢, we can define for each vertex
z, a set avail (z) = {{|1 < i< nA({z,y} € E = c(y) # ©)}. If z is currently uncolored (¢(z) = 0),
avail.(z) is the set of colors that are available for coloring z. We will write avail(z) without the
subscript whenever the coloring function is clear from the context.

Our first algorithm attempts to find a k-coloring of a graph G = (V, E), where k is assumed to be an
input parameter. We will show that it succeeds with high probability for random k-colorable graphs.
The algorithm starts by finding a k-clique, coloring each of its vertices with a distinct color in |1, k],
and then repeatedly applies the following rule.

Coloring Rule 1. Select an uncolored vertex z for which |avail{z) N [1,%]] = 1 and let

c{z) = min avail(z).
We refer to this as the no choice algorithm since it succeeds only if it can color all the vertices without
making any arbitrary choices. The a]gorithm can fail to produce a k-coloring if it is unable to find a
k-clique or if at some point |avai!(z)N[L, k]| # 1 for all uncolored vertices z. We will show that when &
is not too large, the no choice algorithm succeeds with high probability. First however, we give a more
detailed description of the algorithm. :

A program implementing the no choice algorithm is shown in Figure 1. (The algorithmic notation is
adapted from Tarjan [10].) Vertices are represented by integers in {1, 7] and the graph is represented by
an array of vertex sets called neighbors. For each vertex x, neighbors(r) is a list containing all vertices
adjacent to z in increasing order. Vertices that are ready to be colered are placed in a queue. Each
iteration of the algorithm’s main loop removes a vertex from the queue, colors it, then examines its
neighbors, adding them to the queue if possible. Tritially each vertex is assigned a color of —1. When a
vertex is added to the queue, its color is changed :» 0. The subroutine shown in Figure 2 is used to find

3
o~

function bit nochoice(integer k, n, graph neighbors, modifies array ¢);
integer i, n¢; vertex =z, y; list Q; set X;
array(l..n| of set avail;
for z € [1..n] — ¢(z) — —1; evail(z) — {1,...,k}; rof;
X + clique(k, n, neighbors);
if X = — return false fi;

i+ 1;
forz€ X — ¢(z) — 151 — 1+ 1; rof;
QI
forze X —
for y € neighbors(z) —
avail(y) — avail(y) — c(z);
if e(y) = ~1 and |avail(y)| =1 —
Q+— Q&lyl;
e{y) — 0;
fi;
rof;
rof}
ne — k;
do Q#[] —
z+—Q(1); @ — Q[2..];
if |avedd(z)| # 1 — return false fi;
let i € avail(z); c(z) — i; nc + ne + 1;
for y € neighbors(z) —
avail(y) « avail(y) — c(z);
if e(y) = —1 and |avail(y)| =1 —
Q—~Q&lyk
e{y) — 0;
fi;
rof;
od;

return nc =n;
end;

Figure 1: Program Implementing the No Choice Algorithm

a clique. The cligue program runs in linear time, if the set S is implemented as a sorted list of vertices.
The key to efficient implementation of the main program is the data structure used to represent the sets
avail(z). The simplest approach is to use a bit vector for each set. This leads to an O(kn + m) running
time for a graph with n vertices and m edges. We can improve on this by using a special variety of
binary search tree described below. (Note that a standard search tree won't help here since initializing
n scarch trees to represent the set {1,...,k} takes {}(knlogk) time.)

We define a shrinking set to be an abstract data type representing a set of positive integers on which
the following operations can be performed.

makeset(lo,hi) Return a new set consisting of the integers in the interval [lo, hi].

select(s) Return an arbitrary element from s.
selectmin(s) Return the smallest element in s.
delete(z, 3) Delete the integer z from s.

The operations on shrinking sets are defined in terms of another abstract data structure, which we call
an intcrval set. An interval set represents a set of disjoint intervals on the positive integers on which
the following operations are defined.

makeintervalset(i) Return a new set consisting of the interval ¢.

-
4
-

set function clique(integer k,n; graph neighbors);
set S, K;
S {l,...,n}
K — @
doS#8—
let x € S
K~ Ku{z}
8§ +— &N netghbors(x);
if |K| =k — return K fi
od;
return ;
end;

Figure 2: Subroutine for Finding a Clique

{ +— member{z, 3);

i £ [] -
deleteinterval(i, 3);
if i.lo < £ — insertinterval([i.lo, z — 1], s) fi;
if 1.hi > z — insertinterval([z + 1,%.h4], 9) §i;

fi;
Figure 3: Program Fragment Implementing the Delete Operation
member(z, 8) Return the interval in s that contains the integer z. If there is no such interval,
return [].
select(s) Return an arbitrary integer contained in some interval in s.
selectmin(s) Return the smallest integer contained in some interval in a.

insertinterval(i,s) Insert the interval ¢ in s (7 is assumed to be disjoint from intervals already in s).

deleteinterval(z,s) Delete the interval ¢ from s.

An interval set can be implemented efficiently using any standard balanced search tree structure. Each
node of the search tree represents an interval. This yields an O(log) running time per operation, where
n is the number of intervals in the set. The operation makeset(lo, ht) on a shrinking set is implemented
simply as makeintervalset([lo, h7]) on the underlying interval set. The select and selectmin operations
on a shrinking set are implemented as the corresponding interval set operations. Finally, the operation
delete(z,3) on a shrinking set is implemented by the program fragment in Figure 3. Thus, all the
operations on a shrinking set can be implemented to run in O(log k) time, where & is the size of the set
when it is initialized. These observations yicld the following theorem.

Theorem 2.1: The no choice algorithm can test a graph for k-colorability in O(n + mlogk) time,
where n is the number of vertices and m the number of edges.

We now address the question of effectiveness for the no choice algorithm. First, some definitions.
Define Aq(e) = —|22. Note that Ax{c) > O when 0 < c <land n> 1, ¢*{) = L and limp_q Anfc) =
oo for fixed ¢ € (0,1). We will usually write A{c) instea:l of An(c).

In the remainder of this section G = (V,E) € X.(k,p). where 0 < ¢ < 1,0 < p < 1 are fixed, n > 0,
0 <k < (1-e)A(p). We also let Vq,...,V, be the partition of V used in the generation of G and
e{v) =1 for cach v € V;. Also, n; = |V;| for 1 < ¢ < k and m = minj<igk ni.

We can now state the main theorem.

Theorem 2.2: For almost all G, the no choice algorithm produces a complete k-coloring.

Since the no choice algorithm makes no arbitrary decisions with the exception of coloring the initial
clique, the coloring it produces is unique.

100

80 -

60 -

40 -

20 -

Figure 4: Success Rate of No Choice Algorithm for Graphs in X,(k,.5)

Corollary 2.1: Almost all G are uniquely k-colorable.

Theorem 2.2 is proved in three steps. First, we define a class of graphs called normal graphs. Then, we
show that the no choice algorithm succeeds for all normal graphs. Finally, we show that almost all G
are normal.
We call G normal if it satisfies the following five properties and n > max{kZA(1—p)/(1 —¢), (2k*X(1 —
p)/ (1= €)'}
minimum size property — m > n/2k.
clique property — the clique finding algorithm of Figure 2 succeeds on G.
star property — for every set {zy,...,%x} with z; € V;, each set V; contains at least
(1 — €)}n®/k vertices with k — 1 neighbors in {zy,...,2¢}.
subset property — there is an edge joining every pair Uy, U; (i # 7), where U; is any
subset of V; with at least kA(1 — p) vertices.
degree property — every vertex x has at least {1—¢)mp neighbors in each set V; except
Ve(a)-
It is convenient to think of the no choice algorithm as proceeding by a series of discrete steps. We now
describe a version of it in which these steps are made explicit.
L. Find a k-cligue zy,...,z¢ and let ¢{z;) =ifor 1 ¢ < k.
2. For 1 <1<k, find a set U; of at least n®/{1 — €)k uncolored vertices adjacent to each vertex
in {zy,...,2x} — {z:}. Let e(y) =i forall y € U;.
3. For 1 < ¢ <k, find a set W; of at least n; — kA(1 — p} vertices, such that every vertex y € W;
is adjacent to some vertex in each U; for which 7 # . Let e(y) = ¢ for all y € W,.
4. For cach uncolored vertex y, such that |avail(y) N [1,k]| = I let ¢(y) = min avail(z).

It’s easy to sce that if the above algorithm succeeds in finding a k-coloring then the original no choice
algorithm does also. While less obvious, it is straightforward to verify that if G is normal, then the
algorithm succeeds. The lemmas that follow show that almost all G are normal, which in turn yields
the theorem.

The following proposition (Angluin and Valiant {1}) is used in the proofs of several of the lemmas. Let
B{n, p) denote the binomial distribution. By definition, if z € B(n, p) then P(z = k) = (})p*(1-p)"~*.

Proposition 2.1: If z € B(n,p) then for any o, 0 < @ < 1,P(z < (1 — a)np) < e~='"P/2 apnd
P(z > (1 + a)np) < e~ np/3,

Lemma 2.1: Almost all & satisfy the minimum size property.

proof. Each n; is a random variable drawn from B(n, 1/k). By Proposition 2.1, the probabilty that a
particular n; is less than n/2k is < e "/®% and the probability that any of the n; is less than n/2k is
< ke~n/8k 0, since k < (1 —€)A{p). O

Lemma 2.2: Almost all G satisfy the clique property.

proof. Lemma 2.1, allows us to assume that m > n/2k. Now consider the operation of the clique finding
algorithm. If0 < r < k—1 and K, is the value of K at the start of iteraticn r of the loop, the probability

that there is no vertex y adjacent to all the vertices in /(, is < {1 —p")™(*—7) < (1 — p")"/*. There are
at most (’:) n” ways to select K., so the probability tli::t eligue halts without finding a k-clique is

k - o k42 €2
r ryn/k -p n/kr] 2. .—p nfk 2. ,—n"fk
< E-O (r)n (1-p") <;_1 [kne < k*ne < k'ne -0 O

Lemma 2.3: Almost all G satisfy the star property.

proof. Lemma 2.1, allows us to assume that m > n/2k. Let U = {zi,...,2:} be any vertex set
with z; € V; and let s; be the number of vertices adjacent to every vertex in U — {z;}. Clearly,
3; € B(n;,p*""). Since n*/k < n;p*" !, P(s; € (1 — e)n*/k) < P(s; < (1 — €)n;p*™ "), which by
Proposition 2.1 is,

< c—eznipk-:l/? < e—c’npk[2k < e—e’n'/2k
Since there are at most n* different choices for U/, the probability that G does not satisfy the star

property is
< knke—c’n‘/ﬂc = knk—(c’/2)(n'/k lnn) _, 0 0

Lemma 2.4: Almost all G satisfy the subset property.

proof. Lemma 2.1, allows us to assume that m 2> n/2k. For 1 Si <k, let U; CV; with [U] =7 >
kA{1 —p). The probability that there is no edge joining a particular pair U;, U is (1— p)", . Since there
are at most (’:)k ways to choose the U, the probability that G does not satisfy the subset property is

<)) a-r < ()" w-n 8 (Zup”

< k2 L(l _p))(l—P) kr < k2 ; k"\(l-p) =0 O
- kA(1—p) - EA(1-p)

Lemma 2.5: Almost all G satisfy the degree property.

proof. Lemma 2.1, allows us to assume that m > n/2k. Let d;(z) be the number of neighbors vertex z
has in V. Clearly, d;(z) € B{n,,p) for z € V,. By Proposition 2.1,

P(d;(z) € (1 —)mp) < P(di(z) < {1 — €)np) < e~ ™P/2 < =< np/2k

So the probability that G does not satisfy the degree property is < kne=<'nP/2% 0, O
This completes the proof of Theorem 2.2.

A scrics of experiments were run to provide more detailed information on the performance of the no
choice algorithm. One hundred random graphs in X,,(k,.5) were generated for each of several values
of n and k. The no choice algorithm was then run on each graph. 2 The results are summarized in
Figure 4. For cach value of n and k the figure shows the number of graphs for which a k-coloring was
constructed. The figure shows that the algorithm works well when k is small, but as k gets larger, its
performance deteriorates abruptly. This is consistent with the analysis given above. As n increases,
the breakdown point also increases. Let 5,(p) be the smallest & for which the probability of success on
graphs in X, (k, p) is less than 1/2. We can estimate 3,(p) by observing where the curves in Figure 4

2The experiments actually involved a slightly different version of the no choice algorithm. This version uses a greedy
heuristic to find the initial clique. When selecting the next verte x for inclusion in the clique, this heuristic always selects
a vertex of maximumn degree from the set of eligible vertices.

procedure brelaz(integer k,n, graph neighbors, modifies array c);
vertex z,y; heap h;
array|l..n] of set avail,
array[l..n| of integer deg;
forzefl..n] —
e(x) — 0;
avail(z) — {1,...,n}
deg(z) — |neighbors(z)|;

rof;
h — makeheap({1,...,n}};
do h# —
z — deletemin(h);
¢(z) + min evesl(3);
for y € neighbors(z) —
ife(y)=0—
avail(y) — avail(y) — e(z);
deg(y) — deg(y) — 1;
siftup(y, h);
fi;
rof;
od;

end;

Figure 5: Program Implementing B:Jlaz’s Algorithm

cross the dashed line. The data suggest that 8;23(.5) = 6, f256(.5) = 7, f512(.5) = 8, and f1024{.5) = 9.
This is consistent with Theorem 2.2, which suggests that 8,(p) grows in proportion to A,(p).

Let & be any integer greater than 2 and let Si be the sct of all graphs with chromatic number no larger
than k. The results of this section suggest that mest graphs in Sy are easily identified, leading us to
the following conjecture.

Conjecture 2.1: For any fixed k > 0, the no choice algorithm successfully colors almost 2ll graphs in
Sk.

Note that this is not implied by Theorem 2.2, since the probability distribution X, (k, p) does not assign
equal probability to every k-colorable graph.

3. Brélaz’s Algorithm

The no choice algorithm is similar to one proposed by Drélaz [2] and justified on expeitmental grounds.
Brélaz's algorithm can be descril:ed as 2 repeated application of the following rule.

Coloring Rule 2. Select an uncolored vertex z that minimizes |avail(z)| and let
¢(z) = minavail(z). If there are several vertices available for selection, select one
with maximum degree in the uncolored subgraph.

Consider the behavior of Brélaz’s algorithm on a normal graph G € X, (k, p). The first vertex colored
is onc of maximum degree, the second is a neighbor of the first which has maximum degree in the
uncolored subgraph, the third is a neighbor of the first two which has maximum degree in the uncolored
subgraph, and so forth until k vertices have been colored. In other words, during the coloring of the
first k vertices, this algorithm mimics the greedy heuristic for clique finding mentioned in the footnote
at the end of the previous section. Once the first k vertices have been colored, the algorithm repeatedly
sclects vertices for which [avail(z)| = n — k + 1. That is, it mimics the no choice algorithm. These
observations yield the following theorem.

Theorem 3.1: Let 0 < ¢ < 1,0 < p < 1 be fixed, k¥ < (1 — €)A(p). For almost all G € X, (k,p),
Brélaz's algorithm produces a k-coloring.

6 7 8 9 10 11 12

Figure 6: Average Performance Ratio of Brélaz’s Algorithm for Graphs in X, (k, .5)

In [2) Brélaz claims 2n O{n?) time bound for his algorithm, which is easily proved. In fact, Brélaz's
algorithm can be implemented to run in time O(mlogn) for a graph with n vertices and m edges. The
program in Figure 5 illustrates this. The heap contains the uncolored vertices. For the purposes of the
keap operations, vertex z is smaller than vertex y if |avasl(z)| < |avasi(y)| or |avasl(z)] = |ava:il(y)| and
deg(x) > deg(y). As in the program for the no choice algorithm, the key to an efficient implementation
is the data structure used to implement the sets avail(z). If a bit vector is used, the running time is
O(n?). However, using the shrinking set data structure described earlier, each initialization operation
can be done constant time, the selection of a minimum can be done in O(log n) time as can the deletion
operation. These observations yield,

Theorem 3.2: Brélaz’s algorithm runs in time O{mlogn) on graphs with n vertices and m edges,

Figure 6 shows the results of a series of experiments, which provide more detailed information on the
performance of Brélaz's algorithm. One hundred random graphs in X, (k,.5) were generated for each
of several values of n and %k, and Brélaz's algorithm was run on each graph. The plot shows the ratio
of the average number of colors used to k. As with the no choice algorithm, the performance is quite
good for small k, but deteriorates abruptly as k gets large. The point at which the breakdown occurs
appears to increase logarithmically with n as one wou!d expect from Theorem 3.2.

4. The Greedy Algorithm

The greedy algorithm for graph coloring is a simple and popular heuristic. It can be described as
follows.

For cach z € [1, n], let ¢(z) = min avail(z).
Marchetti-Spaccamela and Talamo have shown that for almost all random graphs (in the usual model),
the greedy algorithm uses no more than about twice the optimal number of colors. In this section, we
study the performance of the greedy algorithm for graphs in X,.(k,p) and conclude that it performs
poorly unless k is quite small.
Let G = (V, E) € X,(k,p). Let ¢ be the coloring used to generate G and let ¢’ be the coloring computed
by the greedy algorithm. We are interested in the probability that ¢’ is a k-coloring. Since almost all
G are uniquely k-colorable, this probability is approximately k! times the probahility that ¢’ = ¢, for
large enough n.

20+

10 -

20 40 60 80 10

Figure 7: Average Number of Colors Used by Greedy Algorithm for Graphs in X, (k,.5)

Let Si(r) = {1 < z2<r|e(z) =c'(2) =4} for 1 £ i < k and let P(ny,ng,...,n) be the probability
that [Si(r)| = n; for all i € [1, %], where r = E:;, n;. I” satisfies the following recurrence.

P(0,...,0)=1
Plny,...,ne) =10 ifany n; <0
1 k he~1
P(ny,...,nz) = E,‘Z_:l Plry,...,np_y,np — 1,nh+1,...,nk)}:[1 a(n;) otherwise

where a(z) =1 — (1 —p)®. (We adopt the convention that an empty product is equal to 1.) Now, let
Q(r) be the probability that ¢(z) = ¢’(z) for 1 < z < r and ¢{r) # ¢'(r).

k h-1
1
Q(T+l)= Z P(n.,...,nk) I—EZHG(RJ')
Niyenay i =0 s

n+--tnp=r

Now, th' robability that ¢/ #cis 3., @(r). Thi- yiclds the following theorem.
Theorem 4.1: Let 0 < p < 1, £ > 1 be fixed and -t G € X,(k,p). As n — oo, the probability that
the greedy algorithm produces a k-coloring of G apywoaches £ (1 — 37, Q(r)).

The terms in Y I_, Q(r} decline rapidly, so for small k, we can use Thicorem 4.1 to estimate the
probability that the greedy algorithm produces a k-coloring. We illustrate the procedure for the case,
k = 2. The general cquations reduce to

P(ny,ng) = %[P(ﬂl = 1,n2) + P(ny,ne — 1} (1 = {1 - p)™)]
Qr+1=3 3 Play,r—n)(1-p)™
n;=0

Using these equations and Theorem 4.1 we estimate that for large n, the probability of the greedy
algorithm successfully 2-coloring a graph in X,(2,.5) is : pproximately .42. In the same way, we cstimate
that the probability of the greedy algorithm successf:!ly 3-coloring a graph in X,(3,.5) is approximately
091, and the probability of it successfully 4-colorirg a graph in X,(4,.5) is approximately .044. We

conclude that unless k is quite small, we cannot expect the greedy algorithm to find optimal colorings
for random k-colorable graphs.

Of course, the above results don’t rule out the possibility of the greedy algorithm producing good but
sub-optimal colorings. Experimental methods were used to address this issue. One hundred random
graphs in X, (k,.5) were generated for each of several values of n and k. Figure 7 shows the average
number of colors used by the greedy algorithm in these experiments. For any given k, the number of
colors used increases with n. The rate of growth is moderate when k is small, but fairly large for k = 6.
For k& = 6 and n = 100, the greedy algorithm uses almost three times the optimal number of colors. The
data indicate that except for very small k, the greedy algorithm can be expected to produce colorings
that differ from optimal by an arbitrarily large factor.

For the usual random graph model, the chromatic number grows in proportion to {n/logn). It's natural
to guess a similar growth rate for graphs in X, (k,p) with the constant of proportionality determined
by p and k. However, our data do not support such a conjecture.

5. References

1 Angluin, D, L. G. Valiant. “Fast Probabilistic Algorithms for Hamiltonian Circuits and Match-
ings”. In Journal of Computer and System Sciences 18 , 155-193, 1979.

2 Brelaz, Daniel. “New Methods to Color the Vertices of a Graph”. In Communications of the
ACM 22, 251-256, 4/79.

3 Garey, Michael R., David 8. Johnson, L. J. Stockmeyer. “Some Simplified NP-complete Graph
Problems™. In Theoretical Computer Science 1, 237-267, 1976.

4 Garey, Michael R., David S. Johnson. “The Complexity of Near-Optimal Graph Coloring”. In
Journal of the ACM 23, 43-49, 1/76.

5 Grimmet, G. R., C. J. H. McDiarmid. “On Colouring Random Graphs”. In Mathematical
Proceedings of the Cambridge Philosophical Society 77, 313-324, 1975.

6 Johnson, David S. “Worst Case Behavior of Graph Coloring Algorithms”. In Proceedings
Southeastern Conference on Combinatorics, Graph Theory and Computing, 513-527, 1974.

7 Karp, Richard M. “Reducibility Among Combinatorial Problems”. In Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher (eds), 1972, Plenum Press.

8 Marchetti-Spaccamela, A., M. Talamo. “Probabilistic Analysis of Graph Colouring Algo-
rithms”, Technical report, University of Rome, 1983.

9 Stockmeyer, L. J. “Planar 3-Colorability is NP-complete”. In SIGACT News, 19-25, 1973.

10 Tarjan, Robert Endre. Data Structures and Network Algorithms. Society for Industrial and
Applicd Mathematics, 1083.

11 Wigderson, Avi. “Improving the Performance Guarantee for Approximate Graph Coloring”.
In Journal of the ACM, 729-735, 10/83.

