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ABSTRACT

We consider the problem of embedding one graph
in another, where the cost of an embedding is the
maximum distance in the target graph separat-
ing vertices that are adjacent in the source
graph. An important special case, known as the
bandwidth minimization problem, is when the tar-
get graph is a path. This author has shown that
for random graphs having bandwidth at most k&, a
well-known heuristic produces solutions having
cost not more than 3k with high probability. This
paper considers generalizations of this heuristic
and analyzes their performance in other classes
of target graphs. In particular, we describe a
heuristic that for random graphs having a cost k
embedding in a rectanguler grid, produces
embeddings having cost not more than 3k with
high probability. This problern has applications
to laying out circuits in the plane so as te minim-
ize the length of the longest wire. Similar results
can be obtained for multi-dimensional grids, as
well as triangular and hexagonal grids.

1. Introduction

We define a graph G=(V.£F) as a set of vertices
V={i,....n] and a set of edges E consisting of
unordered pairs of vertices Let
H={H, =(Wy .F;,) :m 21} be an infinite family of
graphs. An embedding of a graph G=(V,E) in H is
a function v:¥V » W,, for some m=1t. The embed-
ding cost of G with respect to T (and H) is given by

¢+(G) = max f{d(7(u).7(v).Hy) : fu,vick]

where d{(x,y,/) is the length of the shortest path
joining vertices x and y 1n the graph J. (We will
usually write just d(z.y), when the graph in ques-
tion is clear from the context.) For example, Figure
1 shows embeddings of a graph & in the line graph
Lg and the rectangular grid B35 having costs 6 and
3 respectively. The embedding cost of & (with
respect to H) is given by

#(G) = min {¢,(€G) : T is an embedding of & in H|

Several other authors have studied this embedding
problem. Rosenberg [8,9]), DeMillo, Eisenstat and
Lipton [3] and Hong and Rosenberg [5] consider
embeddings of graphs in trees. Hong, Melhorn and
Rosenberg {6] consider trade-offs between Lhe cost
measure used here (which they call the dilation
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(c) Embedding of G 1o R
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Figure 1. Embeddings of a greph in line and grid

cost) and the ratio of Lthe sizes of the target graph
to the source graph (which they call the ezpanston
cost). Aleliunas and Rosenberg [1] siudy embed-
dings of rectangular grids of arbitrary aspecl ratio
in square grids, which has applications to cirecuit
layoul.

In this paper, we consider the probable perfor-
mance of heuristics for graph embedding. This is
based on earlier work by this author on the
bandwidth minimization problem [10,11]. We
describe a class of heuristics thal can be applied to
many families of larget graphs, and establish a
framework for analyzing their performance for
specific families. In particular, we show that there
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is an algorithm which for random graphs having a
cost & embedding in a rectangular grid will produce
embeddings having cost not more than 3k. Similar
results can be obtained for other regular struc-
tures, such as triangular and hexagonel grids and
multi-dimensional grids of various sorts.

2. Review of Resulis for Bandwidth Minimization

Before proceeding, we briefly review earlier resulls
for the bandwidth minimization problem, that pro-
vide the foundation for what is to follow. Let
L ={Lp=(Wp Fp): m=1{ be the family of paths or
line graphs (see Figure 1). In this section, the
embeddings are understood to be with respect to L.
The resulting special case of the graph embedding
problem is called the bandwidth minimization prob-
lem. It is known principally for its application to
matrix bandwidth minimization and is known to be
NP-complete [4,7]). In 1989, Cuthill and McKee [2]
proposed a heuristic that has met with great practi-
cal success in systems that routinely perform
bandwidth minimization on large matrices. The
first convincing analytical explanation for its suc-
cess appeared only recently in [10,11]. The algo-
rithm deseribed by Cuthill and McKee is a member
of the class of level algorithms. An algorithm is
classified as a level algorithm if for all graph:
G=(V,E), the embedding T produced by the algo-
rithmn satisfles

d(r™¥{1)u) <d(T7H(1),v) = T(u) < 7(v)

for all vertices w, v in V (the vertices of L, are
numbered consecutively, with one of the end ver-
tices numbered 1). Figure 2 shows an embedding of
a graph G in L,, that was produced by a level algo-
rithm. The level algorithms arrange the vertices in
the order of their distance from a starting vertex,
which is mapped to one endpoint of the target
graph. Notice that the cost of the embedding is at
least as large as the largest set of vertices that are
at the same distance from the starting vertex. The
cost is smaller than the largesi set of vertices
whose distances from the starting vertex differ by
at most one. The lower bound can be used to show
that the performance of the level algorithms can be
arbitrarily bad in the worst case.

Let G=(V.E) be a random graph with vertex set
{1, ....n}, in which edges are generaled indepen-
dently with probability p. This distribution is
denoted I, (p), and we say thal Gel',(p), meaning
that & is a random variable generated by such an
experiment. It is shown in [11] that for almost all
such graphs G, ¢() > n—o{n); that is, most graphs
have only very expensive embeddings in L,. To
understand the practical success of the level algo-
rithms, we're forced to consider probability distri-
butions that allow us to focus on random graphs
with small bandwidth. We can use such distribu-
tions to discover properties that occur frequently in
small bandwidth graphs and are exploited by
heuristics such as the level algorithms.

Let G=(V,E) be a graph in ['n(p) and let ¥ be a
positive integer. Select at random an embedding T

IFigure 2. Embedding in a line produced by levei
algorithm

of & in L, and remove from £ all edges {x,y{ such
that [r{z)-T1(y)I>¥. The probability distribution
described by this experiment is denoted ), (y¥.p)
and we write Ge(l, (¥, p) to denote that G is a ran-
dom greph generated in this way. Note that
p(G)<y. In[11], it was shown that there is a level
algorithm which for rendom graphs GeQ,(¥.p).
produces an embedding with cost at most 3y, with
high probability. The key to the proof is a probable
upper bound on the sizes of the sets of vertices that
are equidistani [rom the starting vertex. Similar
results are given in the next section for a general-
ized level algorithm for embedding graphs in grids.

3. Embedding Graphs in Grids

In this section, we consider the problem of embed-
ding graphs in rectangular grids. We are interested
in efficient heuristics with good probable perfor-
mance. One possibility is suggested by the level
algorithms for embedding graphs in lines. The level
algorithms select a starting vertex, which is placed
at one endpoint, and then place the remaining ver-
tices based on their distance from the starting ver-
tex. We can use a similar strategy to embed graphs
in grids, but two starting vertices are needed.
These are placed at non-opposite corners of the tar-
get rectangular grid, then the remaining vertices
are placed depending on the pair of distances from
the two starting vertices. The idea is illusirated in
Figure 3. The diamond shaped regions in the top
figure contain vertices that are equidistant from the
two starting vertices in the lower corners. The bot-
{om figure shows a mapping onto an 8x8 grid.



t1gure 3. Embedding in a grid produced by level
algorithm

Let R={Ry, , : m,n21] where Ky n=(Wp0.Fipn) is
an m X n rectangular grid. Select two corner ver-
tices separated by a distance of m ~1 and number
them 1 and 2. These are referred to as the basis of
Rp n. Each remaining vertex is identified with a
unique integer belween 3 and mn.

Let 4 be an algorithm that produces an embedding
of a graph in some rectangular grid. We say that 4
18 a level algorithm if for all graphs G=(V,E), the
embedding 7 : V+ ¥, ;, produced by 4 satisfies the
following properties.

(1) There are verlices u,veV such that t(u)=1
and r{v)=2.
() Forallz,yeV
d{u,z) <d(u,y) =»d(l,7(z)) < d(1,7(y))
d(v,z) < d(vy) => d(2,7(z)) < d(2,7(y))

As in the case of mapping graphs onto lines, the size
of the sets of equidistant vertices provides a
mechanism for proving a lower bound on the perfor-
mance of any level algorithm. This bound is cou-
Lained in our next lemma. Define

Viddauyug) =fzeV:dupz)=d,Ad(uzz)=dy
Hu(ulau'Z) = max “V(dlldziu’lluzn . dl:dzaoi
Mazx(G) = min {Maz(uyup) : uy,uze V|

level(G) = 2Hax,(G) -1 -1

Lemma 3.1. Let & =(V,E) be a graph and let T be an
embedding of G produced by a level algorithm.
level (G) < ¢ (G).

We can use this lemma tc show that the level algo-
rithms caen in the worst-case produce solutions that
differ from optimal by an arbitrarily large factor.
For example, Figure 4 shows a tree T with p(T)=1
and level(T)=4.

Our next lemma shows that there are level algo-
rithms that can produce solutions with cost close to
the lower bound of Lemma 3.1. Define
LEVEL(G)=28Maz (G) + 2.

Lemma 3.2. There is a level algorithm which for any
graph G=(V.F) produces an embedding 7 that
satisfies . {G) < LEVEL(G).

In order to describe the algorithm we need the fol-
lowing definition. For Ry =(Wp 0. F) let

W#;,n(dl'dZ) = iyewm.n :
h(d,—1)<d(1,y)shd Ah(da—1)<d(2,y) shdy]

Now, we can describe the algorithm for embedding
G=(V.E)inR.

(1) Letw,ugeV satisly Max (u,,up) = Mazy(G).

{(2) Leth =~/8Maz,(G) + 1 and m =hd(u,u,) + 1.
(3) Let n be the smallest integer thal satisfles
I V(ulluZDdl'dz)l SI Wi}:;,n(diadZ)l for all dlndzz 0.

(4) Let T be any embedding of G that satisfies
T e V{uugd; dy) =>1{z)e Wh . (d).ds)
forallzeV.

It is easy to verify that this is a level algorithm. The
proof of the lemma mainly involves showing that the
value of A chosen in the second step is large
enough,

We now turn o the study of the probable perfor-
mance of the level algorithms. For the remainder
of the section we consider only embeddings in
square grids. That is, we redeflne K to be the set
{Rm,m:™ = 1] and restricl our altention to embed-
dings in this smaller set. Our firsi theorem gives a
probable lower bound on the embedding cost of a
random graph.

Theorem 3.1. Let 0<p<l be fixed, m be the smal-
lest integer larger then Vn . For almost ell ¢ in
Ta(p), ¢(G) = 2m —o(m).

Theorem 3.1 implies that few graphs have good
embeddings in rectanguler grids. We now consider
random graphs that do have good embeddings in
the hope of discovering properties that can be used
Lo construcet good embeddings. The first task is to
select a probability distribution. Let G=(V,E)} be a
random graph in I, (2}, where n =m? jor some posi-
tive integer m, and let ¥ be a positive integer.
Select al random an embedding 7 of & in By, and



b(T) = |
level (T) = 4

Figure 4. Tree showing poor worst-case performance
of level algorithms for grids

remove from FE all edges f{u,v] such that
d{t{u),7(v)) > ¥. The distribution implied by this
experiment is denoted Q,(¥,p). Note that 0, (y.p)
generales only graphs with embedding cost <y¢. The
next theorem shows that most of these graphs have
embedding cost close Lo ¥.

Theorem 3.2. Let 0<p<1 be fixed, n =m?2, ¥ be an
unbounded function of n, ¥<2(m—1). For almost

all G in Qn (¥.p), 9(G)2y~o0 (¥).

The main theorem of this section gives a probable
upper bound on LEVEL(G).

Theorem 3.3 Let 0O<p<l
Inn =o(¥?), ys2(m-1).
Gelly(¥.p). LEVEL(G) < 3¢(G).
This is proved by a probable upper bound on
Maz(G). The spirit of the proof is similar to that of
Thecrem 3.1 in [11], although the details are more
involved. Taken together with Lemma 3.2, this
implies that there is a level algorithm that preduces
embeddings within a factor of three of optimal with
high probability.

be fixed, n=m?
For almost all

4. The General Problem

We now turn to the general problem of embedding
one graph in another. We describe a generalized
level algorithm for graph embedding and give a
framework that can be used to evaluate its perfor-
mance for specific farilies of target graphs.

A basis for a graph J=(W F} is a subsel {v,, . .. , v}
of W such ihat for every u in ¥, the vector
[d(wv,y). ....d{u,v,)] is unique. An r-basis is a
basis with r vertices. We say that a family of graphs
has an r-basis if each of its members has an r-
basis.

Let H = {H,, :m =21} be a family of graphs where
Hp=(Wq.Fym). Each Hy, is assumed to have an r-
basis {1,....r]. In this section, we consider only
embeddings in H.

Let 4 be an algorithm that embeds graphs in H., We
say that A is a generalized level algorithm if for any
graph G=(V.E), the embedding r produced by A4
satisfles the following.

o 1

(1} For 1sxz <7, there is a vertex u in ¥V such that
T(u)=z.
(2) For 1=z =<7 and all vertex pairsu, v in V

dlrz)u) <d(t™Vz)v) = d(z.T(u)) < d(z,7(v))

Notice that the line graph L, has a 1-basis, the rec-
tangular grid Ry, has a R2-basis and the =-
dimensional rectangular grid has an r-basis. Alse
notice that the triengular grid has a 2-basis and
each of its r-dimensional analouges has an r-basis.
For all of these classes of target graphs, one can
prove theorems like those of section 2. In particu-
lar, one can show that with high probability, the
generalized level algorithms produce embeddings
having costs within a small constant factor of
optimal for randomly generated graphs. This obser-
vation provides the motivation for a detailed study
of the performance of the generalized level algo-
rithms in arbitrary families of target graphs.

Let G=(V.E)} be a graph. Define

vid,, ... d u, ... Uy =

fzeV d(uz)=d 1sisr]
Max(u,, ... u) =

max {|V(d,, .. .. douy. ... U ) dy, ... dy 208
Maz,(G) =

max {Max(u,, ... w):uy, ., ueV|

If a level algorithm makes the best possible choice
for the r vertices to be mapped to the basis ver
tices of a graph in H, then Mox,.(G) is the size of
the largest set of vertices that are equidistant from
the selected set of . Now, let J=(#,F) be any
graph with an r-basis {1, . . . ,r]. Let ¥’ be a subset
of W and define the breadth of W' as follows.

B(W) =max {[d(izu)~d(zr}):uveF' Alsesr]
Define the h-breadth of J as
Bp(J) = min {B(W"): W 13 an h veriex subset of ¥}
If H is a femily of graphs,
Br(H) =min [B,(J}: /e H}
Finally, let tevel(G) = By, (H) where h = Maz,(G).

Lemma 4.1. Let & be a graph and let 7 be an
embedding of G produced by a level algorithm.
P G) = level (G).

One can use the lemme to show that for many
classes of target graphs, the performeance of the
level algorithms can differ from optimal by an arbi-
trarily large factor.

The next lemma is a generalizalion of Lemma 3.2; it
gives an upper bound on the performance possible
with certain level algorithms. For Hp=(Wn.Fm),
define

Waldy . .. dp)=
fyeW, hid,-1) <d(z,y)<s hd, 1sz<r]

Let G=(V.E) be a graph and let & be the smallest
inleger for which there is a subset fu,, ... ,tpfof ¥



and an integer m that salisfy
[V{uy, ...  updy....d)] S |FE(dy, ...
for alld,,...,d, > 0. Finally, let
LEVEL(G) = max {d{u,v):
ueWh(d, ...  d I+ veWi(f,. ...
where |d;—f;|=1 for 1si=<r]

Lemma 4.2. There is a level algorithm which for any
graph & produces an embedding 7 that satisfies
¢AG) = LEVEL(G).

The definitions and lemmas of this section provide a
uniform framework that can be used to analyze the
probable performance of level algorithms for vari-
ous classes of target graphs. As indicated above,
versions of Theorem 3.3 can be derived for certain
regular families of target graphs using this frame-
work. A continuing goal of this research is to for-
mulate and prove meta-theorems, so that a result
like Theorem 3.3 becomes a special case of a more
general statement.

]
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5. Open Problems

Thia work began from an earlier study of the
bandwidth minimization problem, which is in some
ways the simplest case of graph emhedding. The
fascinating part of this research has been to s
how the significance of the earlier results h:
changed as they were extended and generalize:
The process of generalization forces one to foc.-
more clearly on the essential features of the orig:
nal problem that made the proofs work. The result
has been a much deeper appreciaiion and a keener
understanding of their significance.

This process of generalization is not yet complete.
it remains to establish meta-theorems describing
the probable performance of the level algorithms in
arbitrary classes of graphs. In addition, there are
several other results established for the bandwidth
minimization problem that may be also be
extended. Modified level algorithms similar to those
described in [11] can be applied to the general
embedding problem as well, end at least for regular
graphs (like the rectangular grids), their perfor-
mance should be superior to the level algorithms.
The level and modified level strategies define only
the gross structure of an embedding. Practical
algorithms based on these stralegies also need
heuristics for properly positioning vertices within
the levels. Good heuristics are known for bandwidth
minimization, but it's not clear how best to extend
them Lo other families of target graphs.

The special case of embedding graphs in grids of
particular interest because of its applications to
circuit layout end process allocation in mesh-
connected parallel computers. Research on this
case should include experimentation with various
versions of the level heuristic to find out in detail
what works best. To be realistic, such experiments
should use graphs arising from real circuits in addi-
tion to random graphs.

The resulls deseribed here are based on a probabL
ity distribution that is simpler than may be
appropriate in some cases. For example, the distri-
butions used in section 3 generate only graphs on
m?2 vertices. It may be useful to extend these
results to more general distributions.

Hong, Melhorn and Rosenberg [6] discuss two cost
measures for graph embedding. We have only
addressed what they call the dilation cost. How-
ever, the analysis that leads to our results can also
provide good bounds on the expansion cost of the
level algorithms, at least for rectangular grids and
similar target graphs.
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