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ABSTRACT

We consider the problem of embedding one graph in another, where the
cost of an embedding is the maximum distance in the target graph
separating vertices that are adjacent in the source graph. An important
special case, known as the bandwidth minimization problem, is when the
target graph is a path. This author has shown that for random graphs
having bandwidth at most k£, a well-known heuristic produces solutions
having cost not more than 3k with high probability. This paper considers -
generalizations of this heuristic and analyzes their performance in other
classes of target graphs. In particular, we describe a heuristic that for
random graphs having a cost ¥ embedding in a rectangular grid, pro-
duces embeddings having cost not more than 3k with high probability.
This problem has applications to laying out circuits in the plane so as to
minimize the length of the longest wire. Similar results can be obtained
for multi-dimensional grids, as well as triangular and hexagonal grids.
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1. Introduction

We define a graph G=(V,E) as a set of vertices V={1, ... ,n} and a set of edges
E consisting of unordered pairs of vertices. Let H={H,=(Fpn.Fm): m =1] be an
infinite family of graphs. An embedding of a graph ¢=(V,E) in H is a function
T:V < Wy, for some m = 1. The embedding cost of ¢ with respect to 7 (and H) is
given by

pr(G) = max td(7(u),7(v).Hm) : fu,vieE]

where d(z,y./) is the length of the shortest path joining vertices z and Yy in the
graph J. (We will usually write just d(z,y), when the graph in question is clear
from the context.) For example, Figure 1 shows embeddings of a graph G in the
line graph Ly and the rectangular grid £y having costs 8 and 3 respectively. The
embedding cost of G (with respect to H) is given by

#(G) = min §{G) : 7 is an embedding of G in H}

Several other authors have studied this embedding problem. Rosenberg [8,9],
DeMillo, Eisenstat and Lipton [3] and Hong and Rosenber {5] consider embed-
dings of graphs in trees. Hong, Melhorn and Rosenberg [6] consider trade-offs
between the cost measure used here (which they call the dilation cost) and the
ratio of the sizes of the target graph to the source graph (which they call the
ezpansion cost). Aleliunas and Rosenberg [1] study embeddings of rectangular
grids of arbitrary aspect ratio in square grids, which has applications to ecircuit
layout.

In this paper, we consider the probable performance of heuristics for graph
embedding, This is based on earlier work by this author on the bandwidth
minimization problem [10,11]. We describe a class of heuristics that can be
applied to many families of target graphs, and establish a framework for analyz-
ing their performance for specific families, In particular, we show that there is
an algorithm which for random graphs having a cost £ embedding in a rectangu-
lar grid will produce embeddings having cost not more than 3k. Similar results
can be obtained for other regular structures, such as triangular and hexagonal
grids and multi-dimensional grids of various sorts.

2. Review of Results for Bandwidth Minimization

Before proceeding, we briefly review carlier results for the bandwidth minimiza-
tion problem, that provide the foundation for what is to follow. Let
L = {Ln=(Wm.Fp,) : m=1} be the family of paths or line graphs (see Figure 1). In
this section, the embeddings are understood to be with respect to L. The result-
ing special case of the graph embedding problem is called the bandwidth minim-
ization problem. lt is known principally for its application to matrix bandwidth
minimization and is known to be NP-complete [4,7]. In 1969, Cuthill and McKee
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[2] proposed a heuristic that has met with great practical success in systems
that routinely perform bandwidth minimization on large matrices. The first con-
vincing analytical explanation for its success appeared onty recently in [10,11].
The algorithm described by Cuthill and McKee is 8 member of the class of level
algorithms. An algorithm is classified as a level algorithm if for all graphs
G=(V,E), the embedding T produced by the algorithm satisfies

d{r7(1),u) <d{77Y(1)v) = 7(u) < T(v)

for all vertices 1, v in V (the vertices of L, are numbered consecutively, with
one of the end vertices numbered 1). Figure 2 shows an embedding of a graph &
in L,, that was produced by a level algorithm. The level algorithms arrange the
vertices in the order of their distance from a starting vertex, which is mepped to
one endpoint of the target graph. Notice that the cost of the embedding is at
least as large as the largest set of vertices that are at the same distance from
the starting vertex. The cost is smaller than the largest set of vertices whose
distance from the starting vertex differs by at most one. The lower bound can
be used to show that the performance of the level algorithms can be arbitrarily
bad in the worst case.

Let G=(V,E) be a random vertex graph {1,...,n}, in which edges are gen-
erated independently with probability p. This distribution is denoted I'; (p). and
we say that G ey (p), meaning that & is a random variable generated by such an
experiment. It is shown in [11] that for almost all such grephs G,
@(G) > n—o(n); that is, most graphs have only very expensive embeddings in L.
To understand the practical success of the level algorithms, we're forced to con-
sider probability distributions that allow us to focus on random graphs with
small bandwidth. Using such distributions, we can discover properties that
oceur frequently in small bandwidth graphs and can be exploited by heuristics
such as the level algorithms.

Let G=(V,E) be a graph in I'x () and let ¥ be a positive integer, Select at ran-
dom an embedding T of G in L, and remove from F all edges {z,y] such that
|7(z}=T(y)| >¥%. The probability distribution described by this experiment is
denoted Q,(¥.p) and we write Ge{d, (¥,p) to denote that & is a random graph
generated in this way. Note that ¢{G)<4¥. In [11], it was shown that there is a
level algorithm which for random graphs Ge(},(¥.p). produces an embedding
with cost at most 3¢, with high probability. The key to the proof is e probabilis-
tic upper bound on the size of the sets of vertices that are equidistant from the
starting vertex. Similar results are given in the next section for a generalized
level algorithm for embedding graphs in grids.

3. Embedding Graphs in Grids

In this section, we consider the problem of embedding graphs in rectangular
grids. We are interested in efficient heuristics with good probable performance.
One possibility is suggested by the level algorithms for embedding graphs in
lines. The level algorithms select a starting vertex, which is placed at one end-
point, and then place the remaining vertices based on their distance from the
starting vertex. We can use a similar strategy to embed graphs in grids, but two
starting vertices are needed. These are placed at non-opposite corners of the
target rectanguiar grid, then the remaining vertices are placed depending on
the peir of distances from the two starting vertices. The idea is illustrated in
Figure 3. The diamond shaped regions in the top figure contain vertices that are
equidistant from the two starting vertices in the lower corners. The bottom
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figure shows a mapping onto an 8x8 grid.

Let R={R,, :m=1] where Rm=(Wp,F) is an m x m rectangular grid. Two
non-opposite corner vertices are designated the basis of R, and are numbered
1 and 2. Every other vertex is assigned a unique integer between 3 and n=m2,

Let 4 be an algorithm that produces an embedding of a graph in some rectangu-
lar grid. We say that 4 is a level algorithm if for ell graphs G=(V.E), the
embedding 7: V- Fp produced by 4 satisfies the following properties.

(1) There are vertices u, v in V such that 7{u)=1 and r(v)=2.
(2) Foralz,yinV
d(u.z)} <d(u.y) = d(1,7(z)) < d(1,7(y))
d{v,z) <d(v,y) = d(2,7(z)) < 2(2,7(y))

As in the case of mapping graphs onto lines, the size of the sets of equidistant
vertices provides a mechanism for proving a lower bound on the performance of
any level algorithm. This bound is conteined in our next lemma. Define

V(d, dguyug) = iz in V: d(u,z)=d, and d(usz)=dp}
MHaz (u.,.'u.g) = max i I V(di,dg.‘ul.ug)l : iy da2 D;
Mozg(G) = min {Maz(u),u,) : 1, upe V]

lWBl(G) =W 5?&34@5 - I -1
Lemma 3.1. Let G=(V,E) be a graph and let 7 be an embedding of G produced
by a level algorithm. level (G} =< ¢.(G).
We can use this lemma to show that the level algorithms can in the worst-case
produce solutions that differ from optimal by an arbitrarily large factor. For
example, Figure 4 shows a tree T with ¢{T) =1 and level (T)=4.

Our next lemma shows that there are level algorithms that can produce solu-
tions with cost close to the lower bound of Lemma 3.1. Define
LEWL(G) =2v 2:‘3@21 E’ + 2.

Lemma 3.2 There is a level algorithm which for any graph G produces an
embedding T that satisfles ¢.(G) < LEVEL(G).

Our first theorem gives a probable lower bound on the embedding cost of a ran-
dom graph.

Theorem 3.1. Let 0<p<1 be fixed, m be the smallest integer larger than Vn .
For almost all G in I, (p), ¢(G) = 2m <o (m.).

Theorem 3.1 implies that few graphs have good embeddings in rectangular grids.
We now turn to the study of random graphs that do have good embeddings in the
hope of discovering properties that can be used to construct good embeddings.
The first task is to select a 2proba!:uility distribution. Let G=(V,E) be a random
graph in [, (p), where n=m# for some positive integer m, and let ¢ be a positive
integer. Select at random an embedding 7 of G in H,, and remove from E all
edges fu,v{ such that d(v(u),7(v)) > ¢. The distribution implied by this experi-
ment is denoted {1, (¥,p). Note that {},{3.p) generates only graphs with embed-
ding cost <¢. The next theorem shows that most of these graphs have embed-
ding cost close to ¢.

Theorem 38.2. Let 0<p<1 be fixed, » =m?% ¢ be an unbounded function of n,
¥=2(m~1). For almost all G in Oy (¥,p), ¢{G)=y—o (¥).
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The main theorem of this section gives a probable upper bound on LEVEL(G).

Theorem 3.3. Let 0<p<1 be fixed, n=m? Inn = o (y®%), y<2(m-1). For almost
all Ge D, (Y. p). LEVEL(G) < 3¢(G).

This is proved by a probable upper bound on Mazy(G). The spirit of the proof is
similar to that of Theorem 3.1 in [11], although the details are more invoived.
Taken together with Lemma 3.2, this implies that there is a level algorithm that
produces embeddings within a factor of three of optimal with high probability.

4. The General Problem

¥We now turn to the general! problem of embedding one graph in another. We
describe a generalized level algorithm for graph embedding and give a frame-
work that can be used to evaluate its performance for specific families of target
graphs.

A basis for a graph J=(¥,F) is a subset {v,, ... ,v,} of ¥ such that for every u
in ¥, the vector [d(u,v,),...,d{u,v.)] is unique. An r-basis is a basis with r
vertices, We say that a family of graphs has an r-basis if each of its members
has an r-besis.

Let H = {Hy : m21] be a family of graphs where Hp, =(¥p.F). Bach H, is
assumed to have an r-basis {1, ... ,7]. In this section, we consider only embed-
dings in H.

Let A be an algorithm that embeds graphs in H. We say that 4 is a generalized
level algorithm if for any graph G=(V.E), the embedding T produced by 4
satisfies the following.

(1) For 1sz<r, there is a vertex » in V such that T{u)=x.
() For 1€z <7 and all vertex pairsu, v in ¥

d{r~z)u) <d(v7z)v) = d(z,7(u)) = d{z,7(v))

Notice that the line graph L, hes a 1-basis, the rectangular grid R,, has a 2-
basis and the r-dimensional rectangular grid has an r-basis. Also notice that
the triangular grid shown in Figure 4 has a 2-basis and each of its r-dimensional
analouges has an r-basis, For all of these classes of target graphs, one can
prove theorems like those of section 2, In particular, one can show that with
high probability, the generalized level algorithms produce embeddings having
costs within a small constant factor of optimal for randomly generated graphs.
This observation provides the motivation for a detailed study of the performeance
of the generalized level algorithms in arbitrary families of target graphs.

Let G=(V,E) be a graph. Define

Vdy....dptty, ... .4y ={zin Vid{y.z)=d 1sisr]
Moz(u,, ... , % )=max§{|V({d,, ..., dpuy ..., %)} :ds....dp =0}
Moz, (G) = max {Mox(uwy, ..., Up) Uy, ..., Up € V]

If a level algorithm makes the best possible choice for the r vertices to be
mapped to the basis vertices of a graph in H, then Maz,.(&) is the size of the
largest set of vertices that are equidistant from the selected set of r. Now, let
J =(W,F) be any graph with an r-basis {1,...,7}. Let ¥’ be a subset of ¥ and
define the breadih of W' as foliows.



-5-

B(F') = mex {d(z,u)~d(zv):uveW and 1<z <)
Define the h-breadih of J as
By (J) = min {B{W'): ¥' is an h vertex subset of ¥}
It H is a family of graphs,
By(H) = min §By(J): J e H}
Finally, let level(G) = B, (H) where h = Max,(G).
Lemma 4.1. Let G be a graph and let T be an embedding of G produced by a
level algorithm. ¢.{G) = level(G).

One can use the lemma to show that for many classes of target graphs, the per-
formance of the level algorithms can differ from optimal by an arbitrarily large
factor. The construction used to show this is indicated in Figure 5. For any fam-
ily of target graphs H with an r-basis, level(T, ;) = 5. For many such classes,
#(T,.r) = 2. In particular, this is true of r-dimensional grids. The next lemma is
an generalization of Lemma 3.2; it gives an upper bound on the performance
possible with certain level algorithms. For Hp =(W,,.F) ), define

Fan(dy ... d)=lyeclW,:h(d,~1) <d(z,y)<hd, for 1<z <r]|
Let G=(V.E) be a graph and let h be the smallest integer for which there is a
subset {u,, . .. ,u,{ of ¥ and an integer m that satisfy
[Vuy, ... oupidy, oo de) | € [Fp(dy, ... dp)|
foralld,,...,d. 2 0. Finally, let
LEVEL(G) = max {d(u,v): ueWpu p(dy, ... .d) and veWpn s (l1. .. . . [)

where |d;—f;|<1 for 1<i<r]

Lemma 4.2. There is a level algorithm which for any graph & produces an
embedding T that satisfies ¢.(G) € LEVEL(G).

The definitions and lemmas of this section provide a uniform framework that can
be used to analyze the probable performance of level algorithms for various
classes of target graphs. As indicated above, versions of Theorem 3.3 can be
derived for certain regular families of target graphs using this framework. A
continuing goal of this research is to formulate and prove meta-theorems, so
that a result like Theorem 3.3 becomes a special case of a more general state-
ment.

5. Open Problems

This work began from an earlier study of the bandwidth minimization problem,
which is in some ways the simplest case of graph embedding. The fascinating
part of this research has been to see how the significance of the earlier results
has changed as they were extended and generalized. The process of generaliza-
tion forces one to focus more clearly on the essential features of the original
problem that made the proofs work. The result has been e much deeper appre-
ciation and a keener understanding of their significance.

This process of generalization is not yet complete. It remains to establish
meta-theorems describing the probable performance of the level algorithms in
arbitrary classes of graphs. In addition, there are several other results esta-
blished for the bandwidth minimization problem that may be also be extended.



Modified level algorithms similar to those described in [11] can be applied to the
general embedding problem as well, and at least for regular graphs (like the rec-
tangular grids), their performance should be superior to the level aigorithms.
The level and modified level strategies define only the gross structure of an
embedding. Practical algorithms based on these strategies also need heuristics
for properly positioning vertices within the levels. Good heuristics are known for
bandwidth minimization, but it's not clear how best to extend them to other
families of target graphs.

The results described here are based on a probability distribution that is
simpler than may be appropriate in some cases. For example, the distributions
used in section 3 generate only graphs on m® vertices. It may be useful to
extend these results to more general distributions.

Hong, Melhorn and Rosenberg [6] discuss two cost measures for graph embed-
ding. We have only addressed what they call the dilation cost. However, the
analysis that leads to our results can also provide good bounds on the expansion
cost of the level algorithms, at least for rectangular grids end similar target
graphs.
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Figure 1. Embeddings of a graph in a line and a grid
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B(T) = 1
level(T) = 4

Figure 4. Poor worst case performance of level algorithms for grids
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Figure 5. Triangular grid
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Figure 6. Poor worst case performance of level algorithms for general graphs



