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ABSTRACT

Most research in algrorithm design relies on worst-case analysis for per-
formance comparisons. Unfortunately, worst-case analysis does not al-
ways provide an adequate measure of an algorithm's eflectiveness. This
is particuiarly true in the case of heuristic algorithms for hard combina-
torial problems. In such cases, analysis of the probable performance can
yield more meaningful results and can provide insight leading to better
algorithms. The problem of minimizing the bandwidth of a sparse sym-
metric matrix by perfoming simultaneous row and column permutations,
is an example of a problem for which there are well-known heuristics
whose practical success has lacked a convincing analytical explanation.
A class of heuristics introduced by Cuthill and McKee in 1969, and re-
ferred to here as the level algorithms, are the basis for bandwidth
minimization routines that have been widely used for over a decade. At
the same time, it is easy to construct examples, showing that the level
algorithms can produce solutions that differ from optimal by an arbi-
trarily large factor. This paper provides an analytical expianation for the
practical success of the level algorithms, by showing that for random
matrices having optimal bandwidth no larger than k&, any level algorithm
will produce solutions that differ from optimal by a small constant fac-
tor. The analysis also suggests another class of algorithins with better
performance. One algorithm in this class is shown to produce solutions
that are nearly optimal.

Submitted to SIAM Journal of Computing 2/84
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1. Introduction

Let ¥ be a symmetric matrix and let £ be the largest integer for which there is
a non-zero entry M[i,i+k]; k is called the bandwidth of M. It is often possible to
reduce the bandwidth of a matrix by performing simultanecus row and columnn
permutations. Most common matrix operations can be performed more
efliciently if the matrices are in smail bandwidth form. The matrices can also be
stored more efficiently in this form. The matrix bandwidth minimization prob-
lem is usually re-cast as a graph theory problem; for any matrix M, the graph

corresponding to M has an edge joining vertices i and j if and only if M[,7] is

non-zero.
Let G=(V.,E) be a graph with V={1,2,... ,n}. A layout of G is a permutation
on 1,2, . .. ,n}. Define the bandwidth of G with respect to a layout T by 9.(G) =

:ﬁ?fx' T(u)=1(2) |. The danduidth of G is defined by ¢(G) = rn,m ¢?{G). The

bandwidth minimization problem (for graphs) is to determine for a graph & and
an integer k if ¢(G)=k. Papadimitriou [9] first showed that the bandwidth
minimization problem is NP-complete. Garey, Graham, Johnson and Knuth [7]
later strengthened this resuit, showing that the problem remains NP-complete
when restricted to free binary trees. Several heﬁristic algoz'it:.hms for bandwidth
minimization were proposed in the late sixties and early seventies. More
recently, Saxe [10] has found a dynamic programming algorithm which can

determine if a graph has bandwidth k in time O(n®*!) for any fixed value of k.
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Monien and Sudborough [8] showed how to reduce the time bound to O(n*). One
of the most successful heuristic algorithms is one discovered by Cuthill and
McKee [5] which is a member of a class of algorithms which are referred to here
as the level algorithms. An algorithm is classified as a level algorithm if for all
graphs G=(V.E) the layout T produced by the algorithm satisfies
vuveV d(tH1)u) <d{r7(1),v) = {u) < 7(v)

where d{z,y) denotes the length of the shortest path connecting vertices z and
y¥. The level algorithms are reasonably fast and have proved to be quite success-
ful in practice. On the other hand, one can easily construct examples in which
the ratio of the bandwidth of the layout produced by a level algorithm to the
actual bandwidth of the graph is arbitrarily large. Consequently one must resort

to probabilistic analysis to gain insight to their practical success.

Let G=(V.E) be generated by the following random experiment. Let
V=§12,....n}, E=¢. For each {u, v} 15u <v=n, add the edge fu,v} to £
wif.h probability p.

The probability distribution defined by this experiment is denoted I', {(p) and the

notation G el (p) means that G is a random graph generated by this experi-

ment. In section 2 it is shown that for almost all Gel',(p), WBGTS 1+¢ when

p=2clon/n and £>0, ¢ >0 are fixed. (We say that a property holds for almost
all graphs if the probability of the property holding approaches one as the
number of vertices gets large.) Consequently, if 7 is any layout at all,

G
2-3!—-)—5 (1+¢) for almost all random graphs Gex{p). This makes it pointless

#(G)
to compare the probable performance of bandwidth minimization algorithms on

random graphs in I',(p). Therefore another class of probability distributions is

introduced and used for most of the results given here. Let G=(V,E) be gen-
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erated by the following random experiment. Let V={12,...,ni. E=¢. For
each {u,v} 1S4 <v<n such that [u-v|=<% include the edge {u,v} in £ with

probability p.

The probability distribution defined by this experiment is denoted ¥,(¥.p).
Now, let Ge¥,(¥.p)} and randomly re-number the vertices of G. The resulting
distribution is denoted ,(¥.p). Note that if Ge(,(¥.p) then ¢(G)<¥. Also, if
H is a graph with ¢(H)<¥, then H can be generated by ,(¥,p). The use of
0, (¥.p) allows us to explore properties that are common to most graphs having
bandwidth €%, but rare for unrestricted graphs. Heuristics like the level algo-

rithms exploit such properties to produce good layouts for most graphs.

It is shown in section 3 that if 4 is any level algorithm and A(G) is the bandwidth
of the layout produced by A on the graph G then A(G) < (1+£)(3—p)¢(G) for
almost all GeQ,{Y¥,p), where £>0, 0<p<1 are fixed, and Inn =o(¢). If in addi-
tion ¥ <n/2, then (1-£){2-p)¢(G) < A(G). The analysis leads to a new class of
algorithms called the modified level algorithms, for which A(G) < 2{(1+£)¢{(G)
where 4 is any modified level algorithm and GeQ), (¥.p). In section 4, a specific
modified level algorithm, MLA1l is studied and it is shown that MLA1(G) <
(1+¢)¢(G) for almost all Ge,(¥.p) when ¥ <n/4, Section 5 presents several
other modified level algorithms, discusses running times and summarizes empir-
ical studies comparing their performance. Section 8 shows how to improve the
running times of the above algorithms through more careful selection of the
‘starting vertex’. Finally, section 7 contains several results concerning proper-
ties of random graphs., Conditions are given for connectivity of random graphs

in ¥,(¥,p) and probable upper bounds are given for the diameter of random

graphs in I, (p) and ¥, (¥.p).
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2. Bandwidth of Graphs in I', (p) and ¥, (¥.p)

Define A, (c) = - % Note that A,(c)>0 when 0<c <1 and n >1, ¢ = -};—

and “].i%)\,.(c)= oo for ¢ fixed 0<c¢ <1. We will usually write A(c) for Ap(¢). The
following results demonstrate that almost all random graphs in the usual model,

have bandwidth nearly as large as the number of vertices.

Theorem 2.1. Let 0<p <1 be fixed. For almost all Ge',(p), (G) >n—4r(1-p).

Theorem 2.2. Let £>0, ¢ >0 be fixed, p=c¢ % For almost all Gelp(p),

p(G)=n(1-¢).

For G = (V.E), the notation u— v means {u,v}ef and u# ¥ means that
fu,v}g E. Similarly if USV and W €V then U— ¥ means that some vertex in U
is adjacent to some vertex in ¥. The proofs of Theorems 2.1 and 2.2 require the
following lemmas.

Lemma 2.1. Let G=(V,E) be a graph on n vertices. ¢{(G)<n—-2k = 3V, VeV
such that | V| =|Va| =k and Vi£ Va.

proof. It ¢(G)<n-2k then there is a layout T such that u— v =
I{u)=r(w)|sn-2k. Let Vi=§{r'(1) ,...,7%(k)} and Ve={r"Y{n-k+1)
vor T Yn)]. If Vi— V3 then there are vertices 4 « V; and v ¢ ¥z such that u—
v. But by the deflnition of V, and Va, 7(u)<k and T(v)2m-k+1, hence
|r{w)=r{v)| >n -2k, which contradicts the definition of T.

a

Lemma 2.2 Let 0<p<l1 and G=(V.E)elL(p). P(¢(G)sn-2k)

< [;,‘E_(l_p)ki z]u.
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proof. By Lemma 2.1, P(p(G)sn =2k )<P(3V,.V; such that |V;|=|Vp|=k A V£
Vz). Since there are k2 ‘potential edges’ joining ¥, and Vg, all of which must be

absent if V-4 Vp, this last probability is
k 2 an i 2 an e
< ) r¥amer [ aprt < [anr .

Proof of Thaoraem 2.1. Applying Lemnma 2.2 with & =2\(1-p) gives

4A(1-p)
] -0

4A(1-p)
P(p(G)sn—4A(1-p)) = [aﬁﬁ_p—)(l_p)h(l-p) ]

[21\ 1-p)
Proof of Theorem 2.2. Applying Lemma 2.2 with k =en /2 gives

Ple(@®)sn(1-r)) <

o, e en
me";a (l_p)mlil < [%3_3-@/4] = [?f_n-n/4] + 0[]

Theorems 2.1 and 2.2 show that even for sparse random graphs Geln{(p)

e 1. Consequently, even the most trivial algorithms (for example, the

#(G)
algorithm that always outputs the identity layout) can produce layouts having

bandwidth close to ¢(G) as n gets large. If one is to make meaningful distinc-
tions among algorithms based on their probable performance some other proba-
bility distribution is required. The distributions Q,(¥,p) and ¥,(¥.p) are used
here. Qbviously, any structural property of a graph occurs with the same proba-
bility in both distributions. It is clear that if Ge¥,(y,p) then ¢(G)=4v. The fol-

lowing theorem gives a probabilistic lower bound on ¢{G).

Theorem 2.3. Let 0<p<1 be fixed, Inn<¥<n., For almost al Ge¥,(¥.p).
?(G) >¥Y—4My(1-p).

proof. Let G'SG be the subgraph induced by vertices {1.2, . . ., ¥}. Note that &'

is a rendom graph with distribution I'y(p). Applying Theorem 2.1,
#(G') > y=4ry(1—p) The theorem follows from the fact that p(G) = ¢(G"). O
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An immediate consequence of this result is that as ¢ gets large, it comes within
a factor of 1+£ of ¢(G), for any fixed £>0. While Theorem 2.3 is sufficient for the
results proved here, it is interesting to consider a tighter relationship between ¢
and ¢(G).

Conjecture. Let 0<p <1 be fixed. There is some constant ¢ =¢ (p)>0 such that
ife lnn <y < n—clnn then for almost all Ge ¥, (Y.p), p(G)=¥.

3. Probabilistic Algorithms for Bandwidth Minimiwsation

Before proceeding we need the following definitions. Let G=(V,EF) and define
Vi(u)=itv |d(u,v)=i} for all ueV. Also let V¥ =V,(1). Next, define
L(u)=min ¥;(u) and r(u)=max V;(u). Let L;=%(1) and r; =7;(1). Note that
| V| <7r;=1. Define

MBI(G} = mig max |V (u)|
LEVEL(G) = min meax| % (u )Ju e (u)| - 1
Note that if A is any level algorithm at all

leval(G) = A(G) (1)
and if 4 makes the best possible choice for 7~(1)

A{(G) = LEVEL(G) (2)
In the next few sections, we will consider only algorithms that do always make
the best choice. We can satisfy this requirement by trying all possible choices
for v"1(1), at a cost of a factor of n in the running time. In section 8, we will

relax this restriction.

Consider the tree T in Figure 1. It is not difficult to see that ¢(T)=2 and
lavel(T)=4. The exampie is readily extended. For any integer k& >0 one can
construct a tree T such that ¢(T;)=2 and leval(T,) = k. This implies that the

worst case performance of the level algorithms can be arbitrarily poor. In spite
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of this, the level algorithms perform quite well on random graphs.

[ Figure 1 here ]

Theorem 3.1. Let 250, 0<p<1 be fixed, ¥<n, Inn =o(y). For almost all
G €0y (¥.p). LEVEL(G) < (1+£)(3-p)e(G).
The theorem is proved by deriving probable upper bounds on |¥;| and applying

equation (2). These bounds are developed in the following lemmas.

Lemma 3.1. Let £>0, 0<p<1 be fixed, a={1+2)A(1—p®)<s¥<n. For almost all
Ge¥,(¥,p), there exists a path of length two between every pair of vertices u,v
such that |u —v|=2y-a.

proof. Let uveV with |[u—v|<2y—a. Let i =2y~—|u-v|. The probability that
d{u,v)>2 is <(1-p®)*. Since for each i there are €n such pairs, the probability

that any pair is not joined by a 2-path is

sE’nu-p“r‘ <n(1pEa-pY =pn a0 0
Lemma 3.2 Let £>0, 0<p<1 be fixed, a=(1+2)A(1-p?)<y<n. For aimost all
Ge¥,(y.p). r—3Wsr < —(2y~a), foralli=3.

proof. The shortest path from 1 to 7y must pass through some u € ¥;_3. Clearly
Ti—u <3y, hence r{-3W=<u <73 To see that r;_s<i—(2¢y—a), assume other-
wise. Then there is some vertex v on the shortest path from 1 to ry_g such that
L—(2Yy-a)sv <} and d(1,v)=<i—3. By Lemma 3.1 there is a 2-path from v to {4,

giving d(1,;)=i-1, which is a contradiction. O

Lemma 3.3. Let £>0, 0<p<1 be fixed, a=(1+2)A{1-p?)<y<n. For almost all
Ge¥, (¢.p), r;=l <¥Y+a, foralli=3,

proof. By Lemma 3.2 r; <7, .9+3¥ and ;> r;_g+(2¢—a) Hence,



7=l < (r;g+39)—(r;a+(2Y—a))=y+a O
Note that Lemma 3.3 says nothing about the size of V; and V. As we shall see,
these cases differ from the rest and will be handled in Lemma 3.5. First how-
ever, we need a lemma concerning the binomial distribution, B{n.p). By

definition if z «B{n,p) then P(z=k)= [z‘]p"(i-p)""’. The following lemma is
from Angluin and Valiant [1].
Lemma 3.4 If zeB(n,p) then for any z, 0<z<1, P(z <(1-2)np) <e~**™®/2 and
P(z = (1+&)np) ce ™/,
Lemma 3.5 Let £>0, 0<p<l1 be fixed, ¢ = =(1+e)/In(1-p?), a=clnnsy<n,
For almost all Ge¥,(¥.p), (1-e)py<|Vi|<{(i+e)py and |Vz| < (1+e}(2-p Y.
Also, if Y <n/ 2 then (1-e)(2=p)y—-a < |Vp|.
proof. | V,| is a binomial random variable in B(¥,p). By Lemma 3.4,

P(I7] < (1-2)py) <e~*?¥2 40

P(IVi| > (1+&)py) <e™P¥3 .,
This establishes the bounds on | ¥;|. Since |Vaj<2¢—| V|,

{Va| <2¢ - (1-2)py < (1+2)(2-p ¥
When ¥ < n/ 2, Lemma 3.1 gives
| V3l = (Ry—a)—{¥1| > (=(1+e)p}¥—a > (1-e)(2~p)¥-a O
Proof of Thaoram 3. 1. By Lemmas 3.3 and 3.5, LEVEL(G) < (1+¢'){(3=p)¥ for any
fixed ¢'>0. By Theorem 2.3, ¥ < (1+2')¢(G). Selecting &' so that (1+2')* = (1+e)

yields the theorem. []

The analysis that leads to Theorem 3.1 also yields level(G) > (1—-z)(2-p)¢(G)
when Inn =0 (¢), since in this case | V3 | > (1-£){2—p)¢(G) with high probability.
Consequently the level algorithms are not capable of near optimal performance.

However a related class of algorithms, called the modified level algorithms is.



Define

Va(u) if Va(u)=¢
2= vau)ntulv—we Va(u)] if Va(u)#d
Vi(u)=(Vi(u)nVa(u)) - Va(u)
Vi(u)=Vi(u) 4=0,i23
Also, let Vi=V,(1), U(u)=min V(u), ry{u)=max V(u), I'=1¢(1),

r'y=r'((1). Formally, 4 is a modified level algorithm, if the layout 7 produced
for the graph G=(V,E) satisfies
vuveV ueV(r" (1)) Av e Vi(t (1)) =21(u) <r(v)

Let

lavel'(G) =min max | V"y(u)|

LEVEL(G) = min max | V'e(u)uVe, )] - 1
It A is any modifled level algorithm then level'(G) <= A(G) and if 4 makes the
best possible choice for the starting vertex then A{G)< LEVEL'(G). For the
modified level algorithms, we can show that for almost all Ge¥,(¥.p).
V] < (1+e) for all =20 when Inn =o(¥), y<(1-2)n/2. From this we obtain
the following resuit.
Theorem 3.2, Let 2>0,0<p<l1 be fixed. ¥<n, Inn =o(¥). For almost all
GeQ,(y.p) LEVEL'(G) < 2(1+2)p(G).
The proof of Theorem 3.2 requires the following lemmas.
Lemma 3.6 Let £>0, 0<p<1 be fixed, (1+£)A(1—p%)<y<n. For almost all
G=(V.E)e¥, (Yyp).ueVA |fu=y, ..., u+yl n¥| = (1+e)A(1-p)mu-1V,.

proof. Note that by Lemma 3.1, for each vertex u there are at most five sets ¥
such that |ju—y,...,u+¥] n¥|=1. Hence, the probability that for any
G e ¥, (¥.p), the assertion is not true is < 5n {1—p Y{1+sM1P) = 505 4 0, ]
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Lemma 3.7. Let £¢>0, 0<p<1 be fixed, a =(1+&¢)A(1-p?)<y<n. For almost all
GeV¥,(¢,p) there exists a path of length three between every pair of vertices
4,v such that ju-v|<3¥-a.

[ Figure 2 here ]

proof. Let u,v € ¥ be such that i =3y—|u—v|2za. Let z;=u+y—j for 0<j<i, as
illustrated in Figure 2. Clearly any 3-path connecting ¥ and v must pass
through one of zg, . . . ., 2;. The probability that no 3-path joins % and v is

= P(no 3-path A u+L TgA © - - Ausk 2q)
+ P(no3-path A UL ZgA © - AUL Ty ) AU=Z)
+P(no3-pathAu£ ZgA * ** AUL Zy_ g A U—Z(_,)
+ -+ + P(no 3-path A u—zg)

= (1-p)**VP(no 3-path|u£ zgA A UL Z)
+ (1-p)¢*UP(no 3-pathju+ ZgA -+ AuL 2 Au—z)
+ (1-p)'P(no 3-path|u£ ZoA «* * A UL ZgAU—Z(y)

+ +++ + (1-p)P(no 3-pathju—=zy)

< (1=p)#*1[ P(no 3-path|u+ ZgA - AuL )
+ P(no 3-pathjuA zg A *** AUL Z_ 1 AU—TZ)

+ (1—p)~'P(no 3-path| UL ZgA ** * AUL By_p A U—Ty—1 N Uk Ty)

+ -+ +(1=p)"*P(no 3-pathjlu—zo A u£ ;A - -+ Au+ x7}]
(1-p)* 1 + (1-p®) + (1-p) + (1-p)? + u (1-p )

1 | (14p)*1-1 |
= (1-p )+ 1+(1-p)i(1+p)’]=(1-1’)‘”[1 +(1-p% S I: = I

§=0
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1 )
= o (1P (p*+p-1)(1-p)'*

Since for each value of i there are at most n vertex pairs u, v such that
|u=v| =1, the probability that any pair #,v with |u—v|<3¥—a is not connected

by a 3-path is

1
=% 2 lu-p s Ghp-00-p)]

=0 i=0

< 2fusr§as|eforer-siame Sa-n |

<k ..:‘!'_ﬂ-(lﬂ) + ﬁ'?Ll,,,-(m)I < iﬂ" -0
P | P? P I P’

Lemma 3.8 Let £>0, 0<p<1 be fixed, a={1+z)A(1—p%), f#=(1+2)A(1—p) and
max{a,28)sy=<(n-8)/2. For almost all Ge¥,(y.p) |V'(|Ssy+atfori=0.

proof. The result follows from Lemma 3.3 for i3 and is immediate for {=0.
Before proving the theorem for 1€i<2 we first need to show that
| Vany+2, ... .29+ =B Let A={y+2, ... ,2¢9+1]. By Lemmas 3.3 end 3.7
ASVpuVs Let £=|4ANnVy|. Clearly if 22>8 then we're done. Assume then that
z<f end let B=[29+%2, ...,2¢+(f-2)+1] and let ¥y =|8|. Note that since
Y226 that vueB |{ju=y, ..., u+y{nVg|=p. Thus by Lemma 3.8 <V, Since
z+y =f we have that | Vaniy+2, ..., 2¢9+8}|=4.

Now, by Lemma 3.2, lg22y—~a+1l. This implies that I's2¥-a+l and since

r'a< 29+1, it follows that | V3| < ¥+a as claimed.
Finally, note that if u €4 and u29+8 then by Lemma 3.4 u— V3 and hence
ue V. Thus |V,|S¥+8<y+a as claimed. O

Proof af Theorem 8.2. It ¥ > (n—A(1-p))/ 2 then since LEVEL'(G) <n

LEVEL'(G) < 2¢9+A(1-p) < (2+&')¥
for any fized &' >0. If ¢ < (n—A(p))/ 2 then we can apply Lemmas 3.3 and 3.5 giv-

ing
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LEVEL'(G) < 29 + AM(1-p%) < (R+&')y
By Theorem 2.3, ¥ < {(1+£")¢(G). Selecting &' so that (2+¢&')(1+¢') = 2(1+¢) yields

the theorem. O}

The same analysis shows that level'{G) < (1+2)(G).

4, Obtaining Nearly Optimal Layouts
In this section a specific modified level algorithm denoted MLA1 is described and
analyzed. It is shown that MLA1 is capable of producing nearly optimal layouts

for random graphs in O, (¥.p).

Let G=(V.E) and deflne forallu v eV

goyu(v) = Va(v)n¥eg(u) vve¥K(u)
gpu(v) = Ve(v)n¥g(u) vve¥(u)
Also let ge(v)=gc,(v), gp(v)=gpi(v). The algorithm we will analyze is based on

the observation that for Ge ¥, (¥.p) if u,v € V'; and v = 4 is not too small, then
with high probability |ge (u)| < Ige(v)| A |gp(u)i > lgp (v)|.
Modifted Level Algorithm 1 (MLA1)
Foreachu eV
Let T be any layout that satisfles the following
conditions for allz,y e V.
(8) zeVi(u) Ay e Viy (u)=a7(2) < r(y)
(b) 15152 A 2,y € V(1) A [gey ()] < 9o, ()] = 7(z) <7(y)
()iz3Anzy eV A lgp(z)| > lgpu(¥)] = (z) <7(y)
Output the layout having minimum bandwidth.

Define MLA1(G) as the bandwidth of the layout produced by HLZA41 on graph G.

Theorem 4.1. Let £>0, 0<p <1 be fixed, Inn =0(¥), ¥y < n/4. For almost all
GeQ(v.p) HLAL(G) < {(1+2)e(G).



-13 -

The proof of Theorem 4.1 requires the following lemmas.

Lemma 4.1. Let ¢>0, 0<p <1 be fixed, a=(1+2)A(1-p?), 2a<y<n. For almost
all Ge¥,(¥.p), r'i-1=2a <y €7 +]1 and 7' +Y—a < r'( < 7' +¥+a, for all

iz1 Fori>l, r'{<€r'_+¥, and fort#2, r'i—a < l'.

[ Figure 3 here ]

proof. Figure 3 illustrates the assertions being made. For 15i=<2 the result is
implicit in the proof of Lemma 3.8. For i =3, Leamma 3.2 gives I'{ > r'(—g+2¥—a,
Since ry_;S7r'y_9+29, l'{>r_;-2a. By Lemmas 3.3 and 3.7 {r'j—g+¥y+1 ,.. .,
rigt2Yy—al SV, and {r_gty+1 ..., rgt3Y-aj S V; and
fri_gty—a+l, ... . ry_g+2Pl SV, v V. This implies 7;_,+1¢€ V;, hence
l'y<sr,+1. For i>2 it is clear that r'ysr_+¢¥ysr 1 +¥+a. 7 (27 +¥—a
follows from Lemma 3.7 and r';_; <7';_g+2¥. O]

A consequence of Lemma 4.1 s that at least ¥—3a of the vertices in ¥ are found
in a region containing only vertices in ¥;. These regions are shown as the solid
areas in Figure 4. The regions associated with ¥’y and V', are separated by a

transition region containing at most 2a vertices.

[ Figure 4 here ]

Lemma 4.2, Let >0, 0<p <1 be fixed, a = (1+2)A(1-p?), 4a<y<n/4. For

almost all Ge ¥, (Y.p) 12i<2Auv eV Au—v 24a = |ge(u)| > |ge(v)|.

proof. Lemma 3.1 implies that if u,v € V"; and u—v = a then go{v) Sge(u). It
remains only to show that there is some vertex z such that z ege(u)-—go(v).
Letz = u+2-¢r—[a]. It u—v 2 4a, Lemma 4.1 yields,

T'inSr gty <l+29+2a < v+2¢+20 < u+2¢-2a <z
Thus z¢ V(4. and since by Lemma 3.1 there is a 2-path from u to z, 2z egc(u).

Since z > v +2¢, z¢ge (v). O
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Lemma 4.3. Let >0, 0<p<1 be fixed, a = (1+2)A(1~p?), 4ta<y<n/4. For almost
all Ge¥p(Yp)iz3nuvelV Au-v2da = |gp({u) < [gp(v)].
proof. Lemma 3.1 implies that if u,v € ¥y and u—v 2 a then gp{u)Sgp(v). It
remains to show that there exists some vertex 2 in gp(v)-gp(u). Let
z= v—2¢+h]. If u—v = 4a, Lemma 4.1 yields

1 >ryg-2n2r'(—2¢-2a2u-29-2a2v-2¢y+2a >z
Thus z¢ ¥y, and since by Lemma 3.1 there is a 2-path from v to =, z egp(v).
Since z < u -2y, zegp(u).O
Lemma 4.4. Let £>0, 0<p<1 be fixed, a = {1+2)A(1-p?), Inn = o(¥), .¢,5n/4.'
For almost all Ge¥,(¢¥.p), |7(u)—u| < 4a, where u € V and T is the layout pro-
duced by MLA1 for which (1) =1.

proof. By Lemmas 4.1 to 4.3, if u—v > 4a then 7(v) < {2 ). Consequently, for any
u there can be at most 4a vertices v such that #>v and T{u) < r(v). Similarly,
there can be at most 4a vertices w such that u < w and T{u) > r(w). Hence,
|r{u)=u| = 4a. O

Proof of Thaoram 4.1. By Lemma 4.4, MLA1 will compute a layout in which no
vertex is more that 4a from the ‘right position’. This implies that the bandwidth
of the layout output by MLA1 is at most y+8a < (1+2')y s (1+¢)%(G) for any

fixed ¢'>0. Choosing &' so that (1+¢') = (1+¢) yields the theorem. []

5. Pragmatics
This section reports on the results of empirical studies of several modified level
algorithms, including MLA1, described in the previous section. It also contains

some implementation details and analyses of the algorithms’ running times.

Four modified level algorithms were studied. They are denoted here as MLA1
throuugh MLA4. An implementation of MLA1 is shown in Figure 5. This
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procedure returns a layout 7, with v as the starting vertex. The strategy for ord-
ering the vertices within levels is the one described in the previous section. The
procedure shown calls several others Make_mad_jevels(G,u,Vg, ..., Va-;) com-
putes V'i(u) and returns it in the list V; for 0 £i < n -1, using breadth-first-
search. The procedures count_go() and coun{_gp() count the number of
‘grandchildren’ and ‘grandparents’ for vertices in the levels specified by the last
two arguments (for example, the call to counf_ge() in line [4] counts the
grandchildren of all vertices in the first two levels). The procedure
sort(L,R(z,y)) sorts the list L so that £ precedes ¥ in the sorted list if and only
if z is related to ¥ under R. For example, sort(V;, ngc(z) < nge(y)) sorts V;
so that if nge(z) < nge(y) then 2 precedes ¢ in V. The running time of MLA1 is
dominated by the calculation of the nge and ngp functions. A straightforward
implementation of these gives a running time of O(n¢?). The procedure
make_mod_levels{) can be implemented to run in 0(|EF|) = O(np) time, and the
sorting steps in lines [8] and [7] require at most O(nlogn).

[ Figure 5 here ]

There are other possible strategies for arranging the vertices within each level
Cuthill and McKee [5], who first suggested the level algorithms, arranged the
vertices within levels according to the order in which they were visited by a
breadth-first search algorithm. This results in an arbitrary ordering of the first
level and arranges each vertex in subsequent levels based on the position of its
‘leftmost’ neighbor. Cheng [2,3] refined this strategy by ordering the vertices in
the first level in increasing order of the number of neighbors in the next level.
Adapting this algorithm to the modified level strategy gives the algorithm MLAZ,
which is shown in Figure 8. MLA2 calls the procedure couné ch(), which counts

the number of neighbors each vertex has in the ‘next' level. As with count_ge()



-18 -

and count_gp(), the calculation is done only for those levels specified by the last
two arguments (in this case, just the first level). This can be done in O(p?) time,

while the remainder of HLA2 can be done in O(n¢) time.

[ Figure 8 here ]

The procedure MLA3, shown in Figure 7 is a cross hetween MLA1 and MLA2. 1t
uses the strategy of 4LA1 to order the vertices in the first level, then reverts to
the strategy of HLAZ2 for all subsequent levels. Computing nge for the vertices
in the first level requires O(¢%) time. The remainder of HI..-AS can be done in

O{n¢).

[ Figure 7 here }

HLA4 is a refinement of MLA3 designed to improve the running time when the
bandwidth is fairly large. Instead of using the number of ‘grandchildren’ to order
the vertices in the first level, it uses the number of paths to grandchildren. This
can be computed more quickly, since it eliminates the necessity of throwing out

duplicates. The total running time of MLA4 is O(ng).

MLA2 through HLA4 are more difficult to analyze than MLA1 because decisions
made in ordering each level affect the ordering of subsequent levels, Conse-
quently, one might expect that errors made in ordering the early levels could
accumulate and cause large errors further on. Experimental resuits suggest
that in fact this does not happen, that the process is self-limiting. However,
straightforward analytical technigues for bounding the error give unsatisfactory
results.

Figures 8 through 10 summarize the results of a series of experiments that were

undertaken to verify the theoretical performance bounds described in the previ-

ous sections for MLA1, provide tighter bounds for graphs of moderate size and
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compare MLA1 to the other modified level algorithms. For each of the data
points shown in Figure 8, ten random graphs in ¥,{n/ 4,4 were generated and
each of the algorithms was run. For each algorithm, these ten results were aver-
aged and the difference between these averages and n/ 4 were plotted. The
results show that all the algorithms produce good layouts. All of the results are
within 20% of n/ 4 and the best are within 2.

[ Figure 8 here ]

Figure 9 shows the measured execution times for these runs. (The algorithms
were coded in the C programming language and run on a VAX 11/750 under
Unix®*.) Here, HLA2 and MLA4 enjoy a substantial advantage. Of course, this
speed advantage is directly related to the large value of ¥ relative to n. For
smaller values of ¥ the differences would be less.

[ Figure 9 here ]

One last set of results is shown in Figure 10. This shows how the .performance of
the algorithms deteriorates as ¥ becomes large relative to n. MLA1
deteriorates first, when Yy ”"in/ 4. This is because, the strategy used to order the
levels becomes less effective when V', becomes much smaller than ¥. MLA3 is
not aflected by this phenomenon until Yy~=n/3 since the ‘grandchildren’ stra-
tegy is used only to order the first level. MLAZ2 and MLA4 are more robust,
maintaining their good performance until Y~n /2. At this point all four degen-
erate from modified level algorithms to level algorithms.

[ Figure 10 here ]

® Unix is a trademark of AT&T.
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8. Selection of Starting Vertices

Up until this point we have largely ignored the question of how- one selects a
good starting vertex in the modified level algorithm. Of course, the brute force
solution is simply to try all possibilities and pick the best result. This adds a fac-
tor of n to the running times quoted in the previous sections, but does ensure
the best possible choice. In this section, we consider strategies that permit us to
select small sets of candidate starting vertices, that with high probability, con-

tain a good choice.

The most obvious strategy (suggested by Cuthill and McKee) is to concentrate on
vertices with small degree. For Ge¥,(¥.p) it's reasonable to expect the degree
of vertex 1 will be smaller than the degree of most other vertices. The following
lemma puts a probable upper bound on the number of low degree vertices that
need to be tried to obtain near optimal performance. For G=(V,E), deflne
1d(G)={v e V|d(v)sd(1)].

Lemma 8.1. Let £>0, 0<p<1 be fixed, 12(1+2){(1/p)inn sy <n. For almost all
Ge¥,(y.p), 1d(G)| <av {3/ pX1+e)¥Inn.

proof. Let 0<a=<v¥p/ 2. By Lemma 3.5

P(d(1)=yp+a) < 2/ 3¥p
For v € V such that (2a/ p)<v<n —(2a/ p)

P(d{v)<ykp+a) < e~=VE¥P
Letting a = V3(1+z)¢yplnn yields

P(d(v) <d(1)) < 282 3¥7 = g -(t+s)

Since there are <m such vertices v,

P(3v|(Ra/p)<v <n —(2a/p) n d{v) <d{1)) < 2r¢-0
Consequently there are at most 4a/p vertices in ld(G).
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Lemma 8.1 gives us a way of ensuring a good starting vertex. The cost is an

added factor of O(¥Inn) in the running time.

The next theorem suggests another method for identifying a good starting ver-
tex. Let I;(G) be the layout of G produced by MLZA1 when 2 is the starting ver-
tex and let MLA1,(G) be the bandwidth of G with respect to Ly, (G).

Theorem 6.1. Let 0<p<1 be fixed, Inn=0o(¥), ¥=n/16. For almost all
Ge¥n(¥.p) (e VAT=L(G) Ay=T")(n)) = MLAL(G) <(1+e)¢(G).

The procedure suggested by Theorem 8.1 is this. Pick an arbitrary vertex 2 and
run MLA1 with 2 as the starting vertex. Let ¥ be the ‘rightmost vertex’ in the
resulting layout. Now, re-run MLA1 with ¥ as the starting vertex. Theorem 8.1
states that the resulting layout is close to optimal. The proof of Theorem 8.1

requires the following lemmas.

Lemma 8.2 Let £>0, 0<p<1 be fixed, a =(1+2)A(1—p?), Inn =o(¥), y<n/186.
For almost all Ge ¥y (9,p) (B eVAT=L(G) Ay =7"(n)) = (y<4a v y>n —4a).

proof. Let z eV, 7=L,(G) and y=7"'(n). Also let & be the subgraph induced by
§1,2,...,z1 and let G. be the subgraph induced by {z,...,n|. Note that G € ¥, {¥.p)
and G e¥,_ o (¥.p). Next, let 7,=L,(&) and T, =L,{(G.) and note that for
uvell, ..., z{, T(u)<r(v) & 7 {u)<n(v). Similarly, for u,veiz,....n]|,
Tu)<r(v) et (u)<r.(v). Now, let ¢, =7"(z) and ¥, =7, (n -2 +1) and note
that ¥ efy;. -], We consider three cases.

Case 1. n/4<x<3n/4 Suppose ¥=Y¥,;. Since the number of vertices in G is at
least n/ 4 and Y<sn/ 16, we can apply Lemma 4.4 to & and conclude that ¥ <4a.

Similarly, if ¥ =¥,. we can apply Lemma 4.4 to G yielding ¥ > n—4a.

Case 2. z<n/ 4. By Theorem 7.3, d(::.y;)<2£-+3 < —=—+3. Also, observe that

L4 2y
d{z.n)= "—;“—>% Since y<n/ 18, d(z,y;) < 2’; +3< a’; + ;; <d{z,n). This
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implies that ¥ =y,. Applying Lemma 4.4, we conclude that y>n —4a.

Case 3. z>3n/ 4. Similar to case 2, {J

Proaf of Theorem 8.1. Let z eV, 7= L,(G) and ¥=7"(n). By Lemma 6.2, either
Y/ <4a or ¥y >n—4a. Since the two cases are symmetric, we will only discuss the
former. Define G, and T, as in the proof of Lemma 6.2. By Lemma 3.1, every
vertex in {1,....,y=1} is connected to y by a 2-path and no vertex in
§1,....y~1] is adjacent to any vertex in V4(y). Consequently,

f1,...,y=-1}SV,. Let fu,v}c £, and consider the following three cases.

Case 1. fu,viSiy,....n} By Lemma 4.4, |T.(u) ~T,(v) |<¥+8a. Consequently,
| T(w)~T1(v) | <¢+12a.

Case 2. ju,vic{l,...,y-1}. Since {u,v}SV,(y) and by Lemma 3.8, | V,{y) |
< 4a+(y+a) =¥+5a, it follows that | 7{u) = r{v) | <¢+5a.

Case 3. uecfl, ..., y=1},vefy....,n}]. Because u <y, v <y +¥. By Lemma 4.4,
| r{v)=v | <4a, giving T{v) <y+y+4a<y+Ba. Since u eV, r{u)sy+5a. Thus,
| r(w)=r(v} | = ¥+8a.

In all three cases above, we conclude that |7{u)=7(v)|<sy+12a=<(1+e)y
< (1+¢')%(G) for any fixed ¢'>0. Choosing &' so that (1+¢')>=(1+¢) yields the

theorem. [

The method for selecting a starting vertex outlined above can be refined in
several directions. One way is to run JLA1 several times, each time using the
rightmost vertex from the previous run as the starting vertex for the next run.
This extends the applicability of the method to larger values of ¥. Another
refinement is to run MLA1 several times as just described, but then take the 4a
rightmost vertices from the last run and use these as a set of candidate starting

vertices. With high probability, either vertex 1 or vertex » is in this set. The
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results obtained in this way may be somewhat closer to optimal, but the cost is

an extra O(Inn) factor in the running time.

7. Properties of Random Graphs

This section is largely independent and examines several properties of random
graphs, particularly graphs in ¥,(¥.p). The following theorem is a special case
of a result proved by Erdos and Renyi in [8].

Theorem 7.1. Let ~1<e <1 be fixed, p =(1+e)h’T"’. Gela(p). If2>0, G is almost

always connected. If ¢ <0, & is almost always disconnected.
The following is a similar result for random graphs with smalil bandwidth.

Theorem 7.2. Let —1<2<1 be fixed, 0<p <1, ¥=¥(1+2)A(1=-p), ¥+co. If >0
then almost all Ge¥,(2¢,p) are connected. If £<0 then almost all Ge¥,(¢¥,p)

are disconnected.

To prove Theorem 7.2 we need to introduce another probability distribution and
prove two lemmas. Let n and ¥ be positive integers, ¥<n, 0<p <1, and let

G=(V.F) be a random variable deflned by the following experiment.

- Let V¥V={§12,...,ni For each pair u2v 1su<vsn and

|# =¥ | sy~ | —v | = n—y include the edge {u,v] in £ with probability p.

The probability distribution deflned by this experiment is denoted ¥5(¥.p).

Lemma 7.1. Let -1<&<1 be fixed, 0<p <1, ¥=%1+2)A(1-p), 15'{:5%

Ge¥i(y.p). If £>0 then G almost always contains no isolated vertex. If <0

then G almost always contains at least one isolated vertex.

proof. First part -£>0. Let
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1 if ¥ is isolated

X = 0 if v is not isolated

X=X+ Xa+ ' +X,

p=E(@) = 3 E) =n(-p)
va
P(X=1)su=n(1-pf*=n"*>0
This completes the proof of the first part.

Second part - £<0. Let X, X, . ...X,; be deflned as before.

B = Y P EXL)

usal val

n n
= ) ) P(u and v are both isolated)
uzl val

= n(1-p)?* + 2¢yn(1-p)¥*! + n(n-2y-1)(1-p)¥

By Chebyshev's inequality,

oy &a EOO® 1 ~Line T
Pa=0 < = _(T;‘)*_F_' w’ % n < ) G/ TR

) gets large as p-+1. However, 1<y <

.
The tfunctlon =N 17 (1)

(1+e)A(1-p) = p=1-n"U1*%), Hence,

Inn
n“lnn“‘

Lemma 7.2 Let 0<z<p <1 where £ is fixed, and let Gel,(p). Then

P(X=0) < n® + (1+¢) =2n*-+0 O

P(D(6)>2)s [B](1-en

proof. Let u and v be any two vertices in G. The number of possible 2-paths
between them is n—2 and the probability that any one of them is absent is 1-p?
Hence the probability that # and v are not connected by a 2-path is (1—p?)*~2.
Consequently, the probability that any pair of vertices is not connected by a 2-

path is
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<gJa-pres [Fla-er :
Proof of Theoram 7.2. First part - £¢>0. G is connected if the first 29 vertices
induce a connected subgraph and all other vertices have at least one edge to a
lower numbered vertex. By Lemma 7.2, if p > a for some a>0 then the probabil-
ity that the first 29 vertices induce a subgraph of diameter >2 is

5[2; ](1—«3)”'“-00. Hence, if p is bounded below, the first 2y vertices almost

always induce a connected subgraph. If on the other hand p-+0 we must use
Theorem 7.1 to establish that the first 2y vertices induce a connected subgraph.

This requires that we show that there exists some Y>0 such that

pa(ity) E(z%ﬂ— From the hypothesis of the theorem

p(2¥) _ 1+ o lnn [

= : >{1+

n@y) - T meEn ¢t D

for large enough n since p-In(1/(1—p)) as p-+0 and n >2¢. Now, the probabil-
ity that any of the remaining vertices have no edges to lower numbered vertices

is <n{1-p)? = n*+0. This completes the proof of the first part of Theorem 7.2.

Now let £¢<0 and let G'e¥i(y.p). Clearly, P(G is connected)=<P(G' is con-
nected) and since by Lemma 7.1, &' is almost always disconnected, it follows

that @ is almost always disconnected. O

Let D(G) be the diameter of G. A simple lower bound for the bandwidth of any

connected graph is given by

p(G) = (G) =

n-1 ]
since the first and last vertices in any optimal layout are connected by a path of
length at most D(G) and hence at least one edge in this path has length 2w(G).

Chvatal [4] was apparently the first to notice this. A more general lower bound

is given by
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¢(G) =2 w*(G) = Mo {G")
where (' ranges over all connected subgraphs of ¢. The graph shown in Figure
11 shows that w*{G)#¢(G) in general. It is natural to ask if there is any con-
stant ¢ such that for all connected graphs ¢(G)<cw*(G). Ronald Graham has
pointed out that this is not the case. The argument is given in [11]. In spite of
this result however, we can show that for almost all Ge¥,(¥.p)

i)
D{(G)<(1+2) ;'(G—)+ 3.
[ Figure 11 here ]

Let G=(V,E)e¥,(¢¥,p) and let @ =(vy, . . . ,7,) be the unique path in G that
satisfies

vp=1

y=maxfueV| fuw_jeF] 1sisr

w<n—-y 1<si<r

v =N =Y

'
Next, let zy = v = (1<i<r)andletz = Ez;. In what follows we will derive a
i=1

probable upper bound on £ which will be used to obtain an upper bound on r.
Its is clear that for 1<i<r

P(zg=0)=p
P(z =1) = (1-p)p

P(z¢=j)=(1-p¥p 1<jsy
For j larger than ¥, P(z; =j) depends on whether or not v;<%. For simplicity we

will assume that P(z; =j)=(1-p)¥p for all k=0. The error committed by this

approximation vanishes as y¥-+co, This can be used to prove the following,.
Theorem 7.3. Let £>0,0<p <1 be fixed, A(1-p?)sy<n. For almost all

Ge¥n(¥.p) D(G) < (1+=):;—+ 3.
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The proof of Theorem 7.3 requires the following lemmas.

Lemma 7.3. Let 0<p <1, ¢>0, ¥y<n, ¥ »0c, For almost all Ge¥,(y.p)
1
P(z>(1+eyr(1-p)/p) < e r—

proof. Using the approximation discussed above,

E(z) = $i(-pyp = p-(—'m- —'L

J'l
E(zn?®) = EJ’(i—p)’p =p E(l—p)’(l +3+ 0 +25-1)
i=1 j=t
=p (1-p) . 3(1-—p)*  501-p)® .
P P P

L ]

= 2|(1-p) + 21p)* + 3(1p)* # - - | = [(1-p) + (1-p)P + (1p Y+ - -

=glp_l>p
P p
Let 4 be the mean and ¢® the variance of =z,
p=rE(z)=r 1—-;2-
= r(B(=D)-E%z) =7 F-
By Chebyshev’s inequality

o" r{1-p)/p* 1 -
T Eri(1-p)i/p? | eor(1-p)
Lemma 7.4 Let 0<p <1, ¢>0, Yy<m, ¥ 00, For almost all Ge¥,(y.p)

n ]s 1
y—(1+e)(1—p)/p| efr(1-p)

Plr2

proof. From the deflnition, v,—1 = ry==2, hence

n-i2>v,-1= r(‘:#-‘:—}

n
< v-z/T
The result now follows from Lemma 7.3. O
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Proof of Theorem 7.3. By Lemma 7.4

1
or{1-p)

n l
pP = y-(+a)(1-p)7p) =
holds for any a > 0. Letting a = ¥/ Vn,

n n
P[' > Wi- (1-p)/p~/ﬁ] = Vriip)

Consider two cases. If ¥ > n/2 then

4

i
Vr(ip) - m(i-p) O

andifysn/2

— n £ 4 LC < 2 -
Vr(i-p)  Y((n/9)-1)(1-p)  ¥(1-p)
Thus for any flxed £>0, r < (1+a);—with high probability for large enough n. By

0

Lemma 3.1 there is a 2-path from each w € ¥ to some v; 1<i<r. This implies
D(G)=r+3.0

By Lemma 7.2, if p2¢>0 then for almost all Gel(p), D(G)=2. When p is

allowed to approach zero as n gets large the diameter can become larger. By
Theorem 7.1, when p is much less than h:t_n the graph is likely to be discon-
nected. We now consider the probable diameter of random graphs in 'y (p ) when
p=cZ and ¢ is a constant. We do this by examining the probable size of
V1. Va..... Let ny=|¥;|. Clearly,

ﬂ.o = 1 .
nNge B(ﬂ-"l.p)
ngeB(n—(ni+1),1-(1-p)"")

nper €B(n~5,,1-(1-p)™)

k
where s, = );n;. Deflne fip=1, fizy,= (ﬂ.—'§,)(1—(1—p)£"). where §, = iﬁ,. We
J=0 §=0
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can use fi; as an estimator for n,. Figure 12 gives values of fi, for particular
values of n and p. The sequence grows very rapidly until a large fraction of the
vertices in the graph has been ‘captured’. Then the remaining vertices are
taken in the last step. The figure also gives values of the function (np)*. For

k <3, (np)* gives an excellent estimate for #,,.
[ Figure 12 here ]
Let k* be such that s, =n. In the following we show that for k=k*-2,

n, > (np/B8)* with high probability. We can use this to get a probabilistic upper

bound on k* and hence on D(&). The main results are
Theorem 7.4. Let ¢>8 be fixed, p=c-l-‘?-; v=np/8. For almost all Gely(p),

1<k sk*-2=>n,>79.

Theorem 7.5. Let ¢c>8 be fixed, p=a-l;lﬂ, v=np/8. For almost all Gely(p),

D(G) szﬂm ;1{7 ! + 2|.

The proof of Theorem 7.4 is contained in the following lemmas.
Lemma 7.5. Let ¢>8 be fixed, p =c-“nﬂ; y=np/8. For almost all Gely(p)
1SkESE'-2AN  <1/PASH_1SN/2D0 >Ny,

proo. Since ny € B(n —sh—1,1~(1-p)"*"),

iy = B(my) = (n-se-)(1-(1-p)*) = Zp i1 -pra1/2) > Fompy = 2ymey
By Lemmma 3.4

Plny < yny_,) < P(ng < i) <a 7% % c g TV
Let A, denote the event n,; < oyn,_;. The probability that there exists a k& satisfy-

ing the hypothesis of the lemma, such that 4; holds is
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SP(4) +P(Az | A) + -+ #P(dyeg | 4; " - Auons)
<gViyg iy ... 4 g,

Lemma 7.6 lLet c>8 be fixed, p=c% For almost all Gel,(p)

l1sksk®*-2A8_1Sn/2=>n,,<1/p.

proof. Assume that ny_;21/p. Then since ny € B(n ~gp_;,1-(1—p)™™),

i = E(ny) = (n-sa1)(1-(1-p)™") = 2{1-1/8) >n/4
By Lemma 3.4
P(n, sn/8)sP(n, s¥m)<e ™ <ca R,
Hence, assume n, > n/8. Then the probability that any of the remaining ver-
tices is not adjacent to something in V} is
< (n-5)(1-p)™ <ne /2= n1"/2 50
This implies that k* < k +1 which is a contradiction. O

Lemma 7.7. Let c>B be fixed, p=c-'%’5-. For almost all GeTl,(p).

1<k <k*-2=>8, ,<n/2.

proof. Assume that s,.; >n/2 and let &' be the smallest integer such that
S >n/2. By Lemma 7.6, ny._; <1/p and by Lemma 7.5, for all £k <k',
ny > yn,-;. where ¥y =np/8., Since for large n, ¥ > 2, we have s, > 253, for
k < k', Consequently Ny = Sy— Sp—; > S/ 2 > n/ 4. Now, the probability that
any of the vertices in V-(VouV¥,u * - - UF}) ia not adjacent to some vertexin ¥ is

< (n=-5,){1=p)™ <ne®/t=ple/t 5
This implies that k* < k' + 1 which is a contradiction. (]

This establishes Theorem 7.4.

Proof of Thaorem 7.5. Note that D(G)<2k®. Let k' be the smallest integer such

12111;-{72)-!_ If k' > k*—2, we'redone. If k'< k*-2 we

that ¥*' = 1/p. Clearly k' =
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can apply Theorem 7.4 giving np = 1/p. By the argument used in the proof of
Lemma 7.8, this implies k* < k' + 2. O

8. Conclusions

The work reported here is part of an ongoing research effort aimed at develop-
ing hetter methods for evaluating the performance of heuristic algorithms for
hard combinatorial problems. This is an area where the usual analytical tools
often fail us, and the available results are unsatisfying. To be useful, a perfor-
mance evaluation must satisfy two basic criteria. First, it must be ablie to
explain the practical success of popular algorithms and the differences observed
between competing algorithms. Second, it should provide insight suggesting
new and better algorithms, and supply a basis for making predictions about
their success in practice. The ultimate utility of such a method depends on how

accurately it predicts the performance of algorithms in real applications.

Worst-case analysis is inadequate for evaluating the performance of heuristics
for bandwidth minimization, precisely because it fails to satisfy the criteria
given above. As shown in Theorems 2.1 and 2.2, even probabilistic analysis can
be of little use if one is naive in choosing the probability distribution. The key to
the work reported here is in the choice of distribution. Because ¥,(¥.p) gen-
erates only graphs having bandwidth €9, we can explore properties that are
common to most such graphs, even though they may be rare among unres-
tricted graphs. The success of heuristics like the level algorithms is due to the
fact that they expioit these properties.

The methods used in this paper at least partially satisiy the criteria outlined

above. They provide the first satisfactory analytical explanation of the practical

success of the level algorithms and they provide insight leading to methods,
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which at least in theory are better. If the modifled level algorithms fare as well

in practice as they do on paper, the utility of these methods will have been

demonstrated.
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Figure 1. Tree Demonstrating Poor Worst-Case Performance of Level Algorithms
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Figure 2. Definition of z;s
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[1] procedure MLA1(G=(V.E)u,T)

(2]
k)
[4]
[5]
[6]
[7]
[8]
[e]
[10]
[11]
[12]
[13] end

n « |V

make_mod _levels (G.u,Vy, ..., Va_y);
count_gc{(Gu, V', ..., Va_1.ngc,1,2);
count_gp(G.u, V. ... . Va_1,ngp.3,n~1);

fori « 1 to 2 do sort(V'y, ngc(z) < nge{y)) o&
fori « 3 ton-1 do sort (", ngp(z) > ngp(y)) ok
nezt +« 1; { next position in layout §
fori « Oton-1do

forz e V'; do r(z) + nart; next « next+1 od;
od;
return;

Figure 5. Implementation details for MLA1
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[1] procedure HLAZ2(G=(V.E).u,T)

[2]
[3]
[4]
(5]
[6]
(7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
(18]
[17]
[18]
[19]
[20]
[21]
[22]
(23] end

ne| Vi
make_mod_levels (Gu,Vy, ..., Va_1)i
count ch(Gu,Vy, ..., Va-1nch,1,1);

sort (V' ,neh(z) < nch(y)):
forzeVdoT(z)+0od {0denotes undefined }

Tu) « 1;
nezt +« 2;

{ next position in layout {

forz e V", do 7(z) + next; naxt « next+1 od;

left « 2;

} left end of V", in layout §

right + nazt —~1; f right end of 1", in layout }
fori « 2ton-1do
while left<right do

od

z « T"Ylaft);
for {z.yicE do
if 7(y)=0 then 7(y)+nezt: nezt+nazt+1 1
od
left « left+1;

right « nezt ~1; { right end of V' |

od;
return

Figure 8. Implementation details for MLAZ2



-138 -

[1] procedure MLA3(G=(V,E)u,T)

(2]
[3]
[4]
(5]
[8]
(7]
(8]
[8]
[10]
[11]
[12]
[13]
[14]
[15]
(18]
{17]
[18]
[19]
[20]
[21]
[22]
[23] end

n « |V];
make_maod_levels (G,u,Vy, ..., Vu_1)i
count_gc(G.u,Vy, .. ., Vp-1.ngc,1,1);

sort(V1.nge(z) < nge(y)):
forzeVdor(z)«00od {0 denotes undefined }

T(u) « 1;

nezt « 2; { next position in layout }
forz ¢ 1", do 7(z) « nazt; nezt « nazt+1 od;
left « 2; { left end of ¥, in layout }

right « nezt -1; § right end of ") in layout {
fori «2ton-1do

while left < right do
z « 17(left);
for {z,ylc £ do
if T(y) =0 then 7(y) « nest; nezt « nezt+1fi
od
laft « left+1;{ left end of V'; }
od;
right « nezxt—-1;  {right end of V¢ |
od:
return

Figure 7. Implementation details for MLA3
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Figure 8. Performance of Modified Level Algorithms
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k ﬁg {np)*

0 1 1

1 27.6 7.8
2 763 783

3 20,850 21,096
4 | 428,450 582,890

S_| 549,910 -

Inn

Figure 12. Comparison of i, with (np)* forn=10% p = 2—7-"——



