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POLYNOMIAL TIME ALGORITHMS FOR THE MIN CUT
PROBLEM ON DEGREE RESTRICTED TREES*

MOON-JUNG CHUNG#*, FILLIA MAKEDONH{,
IVAN HAL SUDBOROUGHS§ anp JONATHAN TURNERS

Abstract. Polynomial algorithms are described that solve the MIN CUT LINEAR ARRANGEMENT
problem on degree restricted trees. For example, the cutwidth or folding number of an arbitrary degree d
tree can be found in O(x (log n)?~2) steps. This has applications to integrated circuit layout, in particular
the layout of Weinberger arrays [41]. This also yields an algorithm for determining the black/white pebble
demand of degree three trees. We also show that for degree three trees, cutwidth is identical to search
number and give a forbidden subgraph characterization of degree three trees having cutwidth k.

Key words. MIN CUT LINEAR ARRANGEMENT problem, cutwidth, search number, black/ white
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1. Introduction. Let G =(V, E) be a finite undirected graph. A (one-dimensional)
layout of G is a one-to-one function o mapping the set of vertices V onto
{1,2,--+,|V|}. We consider the following layout problem:

MIN CUT LINEAR ARRANGEMENT PROBLEM (MIN CUT)

Instance: A finite undirected graph G =(V, E) and a positive integer k.

Question: Does there exist a layout o such that, for all i (1=i<|V|), there are
at most k edges in the set cut, (i) = {{x,y}e Elo(x)=ina(y)>i}?

The cutwidth of G with respect to a layout o, denoted v,(G) is defined as
max {|cut, (i)|: 1=i<|V|}. The cutwidth of G, denoted y(G), is defined as the
minimum over all layouts o of ¥,(G). A simple example is shown in Fig. 1.
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FIG 1. (a) A tree T. (b) A layout minimizing the sum of the edge lengths. (¢) A layout minimizing the
ciitwidih,

* Received by the editors October 31, 1983.

1 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York. The
research of this author was supported in part by the National Science Foundation under grants MCS
79-08919 and 81-09280.

# Department of Computer Science, Illinois Institute of Technology, Chicago, Hlinois 60616. The
reascarch of this author was supported in part by the National Science Foundation under grants MCS
79-08919 and 81-09280.

§ Department of Electrical Engineering and Computer Science, Northwestern University, Evanston,
Iinois 60201. The research of this author was supported in part by the National Science Foundation under
grants MCS 79-08919 and 81-09280.

% Bell Laboratories, Murray Hitl, New Jersey 07974, Current address, Computer Science Department,
Box 1045, Washington University, St. Louis, Missouri 63130.

158



POLYNOMIAL TIME ALGORITHMS FOR MIN CUT 159

MIN CUT is one of several one-dimensional layout problems for undirected
graphs. Other layout problems are the BANDWIDTH MINIMIZATION problem
and the OPTIMAL LINEAR ARRANGEMENT problem [2], [9], [10], [13], [15],
[22],[30], [38]. The MIN CUT problem for general graphs is known to be NP-complete
[11], [39]. A recent result shows that it is NP-complete even when restricted to graphs
with maximum vertex degree three [23]. F. R. K. Chung [3] and others call the cutwidth
of a graph its “folding number.”

The complexity of the MIN CUT problem when restricted to trees has been an
open problem of some recognized importance. Lengauer [19] described a polynomial
time approximation algorithm for this problem. Lengauer’s algorithm obtains a layout
o for any tree T such that y,(T)<2y(T). In addition, Lengauer gave a linear time
algorithm to obtain an optimum layout of a complete k-ary tree, where k is any
positive integer. Some of the known applications for the MIN CUT LINEAR
ARRANGEMENT problem when restricted to trees are discussed below.

1.1. Black/white pebble demand for binary trees. Let G =(V, E) be a directed
acyclic graph. The black/white demand of G is the minimum number of pebbles
required to play the black/white pebble game on G. The rules of the black/white
pebble game are:

¢ A white pebble may be placed on any vertex at any time.

* A white pebble may be removed from a vertex only if all the predecessors of

that vertex are pebbled.

» A black pebble may be placed on a vertex only if the predecessors of that vertex

are pebbled.

» A black pebble may be removed from a vertex at any time.

The object of the pebble game is to place a pebble on a distinguished vertex called
the sink, using as few pebbles as possible.

Let T=(V, E) be a directed binary tree with a sink vertex of degree one. The
number of black and white pebbles needed to pebble the sink of T is equal to the
cutwidth of the underlying undirected tree. (We wish to thank Nick Pippinger for
pointing this out to us [34], [35], [36].) This can be seen by the following observations:

1. Let T be such a tree and let S be a black/white pebble game strategy for T
using k pebbles. (We can assume that S does not involve recomputation [21].) A
defining move of the sequence of steps in S is a move that either adds a black pebble
to a vertex or deletes a white pebble from a vertex. Define a layout o of T by o(x) =
if and only if the ith defining move of S involves vertex x. It follows that ¥, (T) = k.
This is because at the ith defining move if the edge (y, z) is in cut,(i) then there is a
pebble on y. Since every vertex has out-degree at most one, it follows that each of
these pebbles is on a unique vertex. Hence the size of cut,(i) is bounded by k for all i.

2. Let T be a directed binary treee whose sink has degree one. Given a cutwidth
k layout o of T we can construct a pebbling strategy S for the black/white pebble
game on T that uses at most k pebbles. During step i of this strategy the goal is to
add a black pebble or to remove a white pebble from vertex o~ '(i). To accomplish
this, white pebbles are added to all unpebbled predecessors of o~ (i), a black pebble
is placed on o~'(i) or a white pebble is removed, and then black pebbles are removed
from all vertices o~ *( ), j =i which are not predecessors of some vertex o™ '(h), h>i.
By induction on i it can be shown that the number of pebbles on the vertices of T at
each step i is not greater than the sum of the number of edges passing over o '(I) in
the layout and the number of predecessors of o~'(i). Using the fact that every vertex
in T has at most two predecessors and one successor and the fact that any vertex with
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two predecessors has a successor, this sum can be shown to be bounded by k. As this
is true at every step, the black/white pebble demand of T is bounded by its cutwidth.
{Note: it follows by a similar argument that if T is a directed tree with in degree =d
in which the sink has degree one, then the black/white pebble demand of T is not
greater than ¥(T)+|(d—1)/2]. Thus it follows that the black/white pebble demand
of such a tree is between ¥(T) and y(T)+ [(d—1)/2}. So, the algorithm we present
for determining the cutwidth of a tree also gives approximate information about the
black/white pebble demand for arbitrary degree bounded trees.)

Previous work on the black/white pebble demand of trees has appeared in [16],
[17],[21], [26]. Our MIN CUT algorithm gives an O(n In 1) algorithm for determining
the black/white pebble demand of binary trees.

1.2. VLSI layout. A central problem in VLSI is area efficient embeddings of
various graphs in the plane. There are methodologies for automated component
placement that suggest placing circuit elements in rows or along a single line [5], [6],
(73, (201, [27), [33], [40], [43]. For example, Dolev and Trickey [5] have such a strategy
in mind when they consider the MIN CUT LINEAR ARRANGEMENT problem for
trees with the additional restriction that the edges are not allowed to cross. (They give
an O(n log n) algorithm for this planar layout version of MIN CUT on trees.) Foster
and Kung [7] consider the construction of VLSI circuits for regular languages with
programmable building blocks. The circuits form degree three trees and, when auto-
matic construction is desired from a given regular expression, one assigns the active
¢lements to positions along the bottom row of a *“programmable recognizer array”
(PRA)}; the connections using at most log n tracks above. To minimize the number of
tracks (and hence the area) for such circuits one positions the basic cells along the
bottom row of the PRA in such a way that cutwidth is minimized.

Another important application is the layout of logic circuits using Weinberger
gate arrays [1], [41], [43]. This technique is used in several experimental silicon
compilers.

We describe an algorithm which solves the MIN CUT problem for trees. The
algorithm obtains the optimum cutwidth or folding number for an arbitrary tree. In
addition, for any fixed d =3, the algorithm takes at most O(n(log n)*~2) steps to
determine the cutwidth of a degree d tree with n vertices. We observe that the degree
of the polynomial time bound grows with the degree of the tree. {Recently, Yannakakis
[42] has also found an O(n log n) algorithm for all trees.)

We also give an algorithm that not only determines the cutwidth but produces an
optimal layout as well.

It should, perhaps, be noted that a layout to minimize cutwidth is not, in general,
the same as a layout to minimize the sum of all the edge lengths (the latter being the
goal of the OPTIMAL LINEAR ARRANGEMENT problem). For example, in Fig.
1, the first layout is among the best for OPTIMAL LINEAR ARRANGEMENT, but
is not optimal for cutwidth, and the second layout is among the best for cutwidth, but
is not a good layout for OPTIMAL LINEAR ARRANGEMENT. There are several
results concerning the OPTIMAL LINEAR ARRANGEMENT problem on trees in
the literature {2}, [12], [15], [38]. The best result currently is due to F. R. K. Chung
[2] and gives an O(n"*®) algorithm. Optimal layouts for cutwidth are quite obviously,
in general, not good layouts for bandwidth. It is known that the BANDWIDTH
MINIMIZATION problem, even for degree three trees, is NP-complete [9].

In § 2 we give a general characterization of cutwidth k trees. For the special case
of degree three trees we give a specific sequence of tree families with the property: a
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tree has cutwidth at most k if and only if it does not contain a homeomorphic image
of a tree in the (k+1)st family. In fact, the same result was obtained by Parsons [31],
[32] for the notion of search number. Thus, we obtain the somewhat surprising result
that, for the class of trees with degree three, a tree has cutwidth k if and only if it has
search number k. (The search number of a graph is defined in [25]. In fact, a more
recent resuit shows that search number and cutwidth are the same for all degree three
graphs [22]. This uses the fact that “recontamination” does not reduce search number
[14].) In § 3 we give an O(n(log n)*""') algorithm for determining the cutwidth of any
degree d tree. In § 4 we give a related algorithm for determining the cutwidth of a
degree three tree in time O(n log n). This algorithm is then used to speed up the
degree d algorithm to O(n(log n)* ). The decision algorithms described in §§ 3 and
4 yield information that can be used to produce an optimal layout of the tree. An
algorithm to construct the layout is described in § 5. We conclude with a list of open
problems.

2. Characterization of frees with cutwidth k Let T=(V, E) be a tree and let
{u, xy,- -+, x}c V. Define T(u, x,,-+,x,) as the largest subtree of T that contains
u but does not contain any of x,,- - -, x,. This definition is illustrated in Fig. 2. Let o
be a layout of T The vertex which is mapped to 1 by o is referred to as the leftmost
vertex in the layout. The vertex which is mapped to | V| by ¢ is referred to as the

rightmost vertex.
O I ) v< x

1

Tixg.v) Tl Xy, %5}

FIG. 2. Notation for undirected iree.

THEOREM 2.1 (general characterization theorem). Let T be an undirected tree.
Y(T)= k< every vertex u of degree at least two has neighbors x, x; such that
Yy(T(u, x, ) =k—1.

It follows from Theorem 2.1 that the tree in Fig. 3 has cutwidth four since vertex
u does not have neighbors x,, x, such that y(T(u, x, x2)) =2.

gogegoRegegos
238,

FiG. 3. Application of Theorem 2.1.

Proof. (=) Assume to the contrary that y(T) = k and there exists a vertex u of
degree =2 such that for every pair of vertices x,, x; adjacent to u, y(T(u, x;, X,;)} 2 k.
Now let o be a layout of T such that y,{T) =k and let P be the path connecting the
leftmost and rightmost vertices of T under o. If u is an internal vertex of P let x,, x,
be the neighbors of 4 on P. As shown in Fig. 4(a), P passes entirely over T(u, x,, x,)
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in the layout but since y(T(u, x,, x,)) = k it follows that the cutwidth of the layout
exceeds k, contradicting the assumption. If « is an endpoint of P then let x be the
neighbor of # on P. In this case P passes over T(u, x) and again we obtain a contradiction
since ¥(T(u, x)) = k. Finally if u is not on P, let x be the neighbor of 1 on the path
from u to P. Once again, P passes over T(u, x) vielding a contradiction.

(<) Consider two cases. First suppose that every vertex u has a neighbor x such
that y(T(u, x)) = k- 1. Starting from any vertex yj, constructa path y,, - - -, y,, where
Y(T(yy yer))=k—1for1=i<rand Y(T(,, ¥,-1)) = k — 1. This construction is shown
in Fig. 4(b). It is clear that y(T)= k.

1TMyyyg)) <k RIL( % TR

© @ -- - B @ --- @
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Wyl <k (Tioy,z, N<k Wiz wzi<k

FIG. 4. Hlustrations for Theorem 2.1.

Next suppose that there is some vertex u such that for all neighbors x of
u, ¥(T(u, x)) = k. By the hypothesis, « has neighbors y,, z, such that y(T(x, y,, z,)) =
k—1. Now if y, is not a leaf then it has a neighbor y, such that y(T(y, 4, y,)) = k—1.
Similarly if y; is not a leaf then it has a neighbor y3 such that y(T(y,, y,, va)) = k—1.
Continuing in this fashion one can construct a path u, y,,- - -, ¥, such that for 1=
i2r=2, Y(T(¥is1, ¥ ¥i+2))Sk—1, and y, is a leaf. One can construct a similar
path u, z;,- - -, 2,. This construction is illustrated in Fig. 4(c). Again it is clear that
vT)=k D

Let T4(k) denote the set of smallest trees with degree d and cutwidth k.

COROLLARY 2.1. T3(1) is the singleton set containing the tree with two vertices.
For k>1 each tree in Ty(k) can be formed by identifying a leaf in three (not recessarily
distinct) trees from Ty(k—1).

This construction is illustrated in Fig. § for Ty(2), T5(3), and T5(4).

Proof. The proof is by induction. The basis, k =1 is immediate. Assume then that
k>1 and let T be any tree in Ty(k). By Theorem 2.1, T must contain a vertex u
with neighbors x,, x;, x, such that y(T(x, Xy, X2))Z k~1, y(T(u, x,, %)) 2 k—1 and
Y(T(4, x3, x3)) 2 k—1. Since T is a smallest degree three tree with cutwidth k, it
follows that T(u, x,, x,), T(u, x,, x3) and T(u, x5, x3) must be smallest degree three
trees with cutwidth k—1, that is they must be in Ty(k-1). O

Let n4(k) be the number of vertices in a smallest degree d tree with cutwidth k.

COROLLARY 2.2, ny(k)=3%1+1.
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FI1G. 5. T3(2), T5(3), and Ts(4).

Proof. By induction. The basis k =1 is immediate from Corollary 2.1. Assume
then that n;(k—1)=3%*2+1. By Corollary 2.1,

na(k) =3n3(k—1)~2=3(3* 24+ 1)=2=3"+1, .

The next corollary relates the cutwidth of a tree to its search number. To understand
the notion of search number, let G=(V, E) be a graph and think of the vertices of
G as rooms, and the edges as interconnecting corridors. Now, assume that there is an
escaped convict lurking somewhere within G. Your job is to organize a search party
to capture the fugitive and since you have limited resources you want to do it with
the fewest possible number of searchers. The search number of G is the minimum
number of searchers required to guarantee that the fugitive is captured. The following
result follows immediately from Theorem 2.1 and a characterization of trees with
search number k given by Parsons [31]. (We are indebted to S. L. Hakimi for pointing
out Parson’s result.)

COROLLARY 2.3. A degree three tree has cutwidth k & it has search number k.

The next theorem provides a forbidden subgraph characterization of degree three
trees with cutwidth k. First we require some definitions. Let f(T) be the set of trees
obtained from T by replacing a single edge {«, v} with the tree shown in Fig. 6, where
x and y are new vertices and neither u nor v is adjacent to a leaf of T. If § is a set
of trees, f(S) is the union of the sets f(T) for all T in §. Let L3(1) be the singleton
set containing the tree on two vertices. M;(k) is the union of Li(k) and f(L;(k)).
Ly(k+1) is the set of trees that are obtained by identifying a leaf in three (not
necessarily distinct) trees from M,(k). For k=5, Ly(k) = T3(k).

()
00 = O~
Fi1G. 6. Definition of f(T).

THEOREM 2.2. Let T be a degree three tree. y(T) = k& T contains a homeomorphic
image of a tree in Liy(k) and does not contain a homeomorphic image of any tree in

Li(k+1).
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Proof. By induction. The basis, k =1, is obvious. By Theorem 2.1, T has some
vertex u with neighbors x,, x,, x; such that y( T(u, x, x:))Z k=1, y(T(u, x,, x3)) =
k—1and y(T(u, x;, ;)2 k—1. By the induction hypothesis each of these subtrees
contains a homeomorphic image of a tree in Li(k—1). Consider the subtree consisting
of these three images together with the paths that join them to . Thisisa homeomorphic
image of a tree in L,(k). Since each tree in Li(k+1) has cutwidth k+1, T cannot
contain a homeomorphic image of any tree in Ly(k+1). O

Theorem 2.2 can be generalized to give a somewhat more complex forbidden
subgraph characterization of degree d trees.

The next theorem relates the number of vertices in a degree bounded tree to its
cutwidth. This will be used in the complexity analysis of our cutwidth minimization
algorithm.

THEOREM 2.3. Let T be a degree d tree with cutwidth k. T contains at least
(d/(d=2))*""+1 vertices.

Proof. By Theorem 2.1 T contains a vertex u with neighbors x, -+, x, (r=d)
such that y(T(w, x; x))2 k-1 for 1=si<j=r Now select x, X; so that |T(x, u)|=
| T(x, u)|Z|T(x), u)| for 1=hsr, i#h #J If |T|=n and |T(w, x;, x;)| = m then (m—
D=((r=2)/r)(n~1) or n=(d/(d—2)}(m— 1)+1, since r/(r-2)=d/(d—2). Since
this holds for all trees T and since m = na(k—1) it follows that

d

nd(k) = d-2

d k—1 d k-1
-1)- z|— - ={—=) +1
(ng(k—1)-1)+1 (d-—z) (ny(1)-1)+1 (d—2) 1 a
COROLLARY 2.4. Let T be a degree d tree with n vertices. Y(T)<(d/2)Inn+1.
Proof. Let k = y(T). By the theorem

Inn d

____ln(d/(d~2))<51nn' 0

n>(d/(d-2)"", k-1<
3. A cutwidth minimization algorithm for trees. This section describes a general
algorithm for the cutwidth minimization problem on trees. The time bound for the

algorithm is
k+d—-1
O(( d—1 )nlog n),

where n is the number of vertices in the tree, k is its cutwidth and 4 is the maximum
vertex degree. For trees with fixed maximum degree this quantity is O(n(ln n)?™").
In the remainder of this section we assume that all trees are directed and rooted.
This is strictly for notational convenience. The cutwidth of a directed tree is the same
as the cutwidth of the underlying undirected tree.
If T is a tree, T[u] denotes the induced subtree with root . Tlu, x1,+ -, x,]=
T{u]—-U]_, T[x]). These definitions are illustrated in Fig. 7.

Tux] TIx.¥) Ty}

FiG. 7. Notation for directed trees.
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Let T be a tree with root ¥ and children v, -, vy of u Define 8(T)=
min, ;54 max {¥(T[v:]), ¥(T{w, v;])} when d=1 and, 8(T) =0 when d =0. Note that
S(T)=y(T)=8(T)+1,since T is formed by joining T[v;] and T[u, v;] together with
an edge, for every L

Let x be a vertex in a tree T and let k be a positive integer. We say that x is
k-critical if k= 8(TT[x]) and for all children y of x, ¥(T[x, y) = k.

The next theorem is essentially a restatement of Theorem 2.1. We will find this
form more convenient in what follows.

THEOREM 3.1. Let T be a tree with root u and let k =8(T). y(T)=k& T has no
k-critical vertex or T has exactly one k-critical vertex x and x has children y, z such that
y(T(u, y, Z]) <k.

Proof. (=) Let T' be the underlying undirected tree. If T has two k-critical
vertices v, x then one can show that at least one of them, say x, does not have neighbors
y, z such that y(T'(x, y, z)) <k, contradicting Theorem 2.1. Similarly, if T has a
k-critical vertex x with no children y, z such that y(T[u, y, z]) <k, then x has no
neighbors y, z such that y(T"(x, y, z)) < k, contradicting Theorem 2.1. (Note T'(x, y, 2}
is the underlying tree for T[u, y, z].)

(<) If T has no k-critical vertex then every vertex x in T’ has neighbors y, z
such that ¥{T'(x, y, z)) <k, and by Theorem 2.1 ¥(T)= k. Since 8(T)=k, y(T)=k.
If T has exactly one k-critical vertex x that satisfies the condition stated, then Theorem
2.1 applies and again y(T)=k. O

Using Theorem 3.1 we can compute the cutwidth of small trees by hand. We will
illustrate this procedure with an example before giving the formal presentation of the
algorithm. Given a tree T, we work from the bottom up assigning labels to each of
the vertices in the tree, These labels consist of a decreasing sequence of integers; the
largest integer in the sequence is the cutwidth of the subtree whose root is the associated
vertex. Consider the tree T, shown in Fig. 8(a). The label next to vertex b means that
the cutwidth of the subtree containing just vertex b is 0. Given the labels on b and ¢
we want to use Theorem 3.1 to determine the cutwidth of T,. The first step is to
determine 8(T;). In this case, one can see that 8(T;) =1, hence the cutwidth of T; is
either 1 or 2. The next step is to determine if 7, contains a 1-critical vertex. In fact,
a is 1-critical, so the next step is to determine if a satisfies the condition given in the
theorem. In this case the answer is yes, since y{Ti[a, b, c}) =0 < 1. Thus, according to
the theorem, y(T;) =1, which is clearly true. The label next to vertex a in the figure
is [1, 0]. The meaning of this label is that (1) the cutwidth of Ti[a]is I and (2) Ti[a]
contains a 1-critical vertex with children b, ¢ such that the cutwidth of Ty[a, b, c] is 0.

Now consider the tree T, shown in Fig. 8(b). Using the result for T}, one can
show that 8(T3) =1. Thus, we want to determine if T, contains a 1-critical vertex. In
fact 4 is 1-critical, so the next step is to determine if d has children x, y such that

T,

T

@10l
OIOLNOLIOLEOTUIOLIO UROL 01 (3)10)
{a) (L] (e d

Fi1G. 8. Example to illustrate cutwidth computation.
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Y(T[d, x, y])< 1. Since it does not, we conclude from Theorem 3.1 that ¥(T;)=2.
The label next to vertex d means that the cutwidth of T,[d] is 2 and T.[d] contains
no 2-critical vertex. A similar argument can be used to determine the cutwidth of T,
in Fig. 8(c).

Now consider T, in Fig. 8(d). Using the results of the previous examples we can
show that 8(T,) =2. We can also see that J is a 2-critical vertex. Since J has children
a, d such that y(T,[j, a, d])=0<2 it follows from Theorem 3.1 that the cutwidth of
T,=2. Furthermore, the label for vertex Jis {2,0].

We now proceed with the formal presentation of the algorithm. We will use the
usual lexicographic ordering on decreasing sequences of integers. [a,, -, a,]<
[(by,+++, b, if (1) for some i (1=i=min {r, s5}), a;<b and forall j(1=j<i), a;=b;
or(2)r<sandforl=js, a;= b;. We will also apply set operations to such sequences
with the obvious interpretation.

Let T be a tree with root u, We define I'(T) recursively as follows:

* If y(T)=0 then I'(T) =[0].

* If (T)=k and T contains no k-critical vertex then I'(T) =[k].

* If ¥(T)=k and T contains a k-critical vertex x then,

I(T) =[k]Uny1izn N(Tlw, y, 2])

where y, z range over all children of x.

We can restate this definition in iterative form as follows. I'( T") =[ay, -, a]if
a,> - >a,Z0and T contains vertices X1, 5 X1 Where x; has children y,, z; such
that

1. For 1=isr, y(Tu, y,, z,, - - - 2 Yie1s Zimq]) = a.

2. For 1=i<r, x; is an a;-critical vertex in Tlu, yi, 2y, -+, yiey, 2; 1)

3. Tlu, y, 20, +, y,_1, 2,_,) contains no a,-critical vertex.

4. There is no sequence [b,,- - -, b,1<[a,,- -+, a,] that also satisfies conditions
1-3.

Let T be a tree with root u having children U3, * ", g In Fig. 9, an algorithm
called I' is described which computes I'(T) from ['(T[v,]),- - -, I'(T[v4)). By applying
Gamma (-) recursively we can attach a label A(x)=T(T[x]), to each vertex x A
procedure for computing these labels is shown in Fig. 10. An example of a tree with
the labels attached to the vertices is shown in Fig. 11. Once the labels have been
computed finding an optimal layout is straightforward. The layout algorithm is described
in § 5.

(1] procedure Gantma (S, ..., L
n [ Reiabel if necessary so that S, 3 25,1

[} il & =0 then retorn [0]
[4) i = then begin

18 il min 8, 20 then retum 5,
(O] y=minix>0|zes$}

&)} returm [z >y [xes)]
L] od

I8t {d3»2]

[16} 3, —Gomma(s,. . .. 5,)
11l S;=Gamma (s, .., .5,
(12l k—max 5us)) -
N (k=4 ]
(14] Wk =maxS; then retyrm (% +1)
[t5]  if k = max§, o k =minS, then begin
[16} il =maxS, then retwrn Lk U S,
b se retorn [4)
end

[19F 1 Tlv,} conains a k-criticat vertex )
1201 # & =max5, then rerum [k+|}
(211 H—Gamma (S ~[k]5,. ... .5,)
1221 ir &k =max ¥ then recurw (k+1}
1231 edse vetwmn (kU 7

[24)  end

FiG. 9. Recursive algorithm for compusing I(T) from I'(T[w, v,)), - - »T(TLw, v4]).
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[1] procedure Labet (T x)

2 Letv, .. .. ¥4 be the children of x.
131 Let S, —Label(Tlwlw) fr 1€i%d
l4] M) =Gammal(S,.. .., Se)

[s} returm A(x)

161 ol

Fi1G. 10. Vertex labeling procedure.

(a)13,2.1]

(cfiol (c)3.2l  (a)it.0l

(a)i2] (113,11 (@)io) {m)io]
OUNOUNOUNOCENG N0

Ol OO RO AL

[2)

OO LUNOIOFOROIONOIOE O UIOHIO U
B ©/T\E B B

E)or (For  (@or (o1 (Do o) (<o (L1 (Myio) (N)io}
FIG. 11. Example of vertex labeling produced by Gamma ().

The following theorem establishes the correctness of the algorithm,

THEOREM 3.2. Let T be a tree with root u having children v,,- -, vy and let
Si=T(T[uv:]), foralli (1=i=d). Gamma (S,,---,8,)=T(7T).

The proof of Theorem 3.2 requires a technical result given in Theorem 3.3. Let
T, and T, be trees. The notation T: T, denotes the tree obtained by making 7> a
subtree of the root of T,. This operation is illustrated in Fig. 12.

THEOREM 3.3. Let R, S, S’ be trees with roots u,v,v" andlete T=R-S5, T'=R-§".
[(S)=I(S)=T(T)=I(T").

The situation described in Theorem 3.3 is shown in Fig. 13. The proof is given in
the appendix.

T+,

T T2
FI1G. 12. Definition of T- T,,.

R s R s
F1G. 13. Hiustration for Thearem 3.3.
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The following corollaries to Theorem 3.3 are used in the proof of Theorem 3.2.

Let Tl'Tz """ T., denote("'((T]'Tz)'T:;)"‘)'T:)‘
CoroLLaRrY 3.1. LetR,S,,-++,S,81,-+,S, betrees. If T(S)=T(S) forl=i=
rthen '(R-8;----- S)=Tr(R-81----- S}
Proof. By successive applications of Theorem 3.3,
I'(R-Sy-+-" S)=T(R-8{-8----- S)=---=T(R-§+++-- S7). 0

Let R, S be trees and let u be a vertex in R. Let R-§|, denote the tree formed by
making the root of $ a child of u as shown in Fig, 14,

R=8),

R s
FiG. 14, R-S.

CoRrOLLARY 3.2. Let R, S, S’ be trees and let u be a vertexinR and let T=R- S|,
T'=R-§|.T(S)=I(S)=T(TY=I(T).

Proof. Let v be the root of R. The proof is by induction on the length of the path
from v to . (Basis} Assume v = u. In this case the statement reduces to Theorem 3.3.
(Induction) If v # u then let w be the child of » that is on the path from v to u. By
induction we can assume that I{T{w]) =['(T’[w]). We can then apply Theorem 3.3
with R[v, w], T[w] and T'[w] and the result follows. 0O

CoroLLARY 3.3. Let T be a tree with root u having children v,,---,v4,d2z1,
such that T{T[v,])z - - - 2(T[v4]). 8(T) =max {y(T[v,]), y(T{u, v;]}.

Proof. The result is trivially true for d = 1. Assume then that 1 <i=d. Since T[v,]
is a subtree of T{u, v;], y(T[v,]) = y(T[u, v;]). We can now apply Theorem 3.3 (with
R=T[u, v, t;), $=T[v;] and §' = T[v,]), yielding v(T[u, v,]) = y(TTu, v;]). Hence
max {y(T{v]), ¥(T[&, v;)} S max {y(T[»]), (T[4, »:]}. O

CorOLLARY 3.4, Let T be a tree with 5(T) =k and let u be a vertex with child x
such that for all children y of u,T(T[x)) = '(T[y]). Then u is k-critical & v(T[u, x]) = k.

Proof. The forward implication is immediate. For the converse, et y be any child
of u, let $=T[y], 8'=T[x], R=T[u, x, y] and note that R-S=T[u,x]and R-§' =
T{u, y]. By Corollary 3.2, y(T[u, x]) = y(T[u, y]). O

COROLLARY 3.5. Let T be a tree with root u, let v(T)=k and let x be a k-critical
vertex. If y, z are children of x such that for all children w of x (w#y), [{T[yD =
N(T[zD=T(T[w)) then ¥y(T(u, y, z)) <k and T(T) =[kJUT(T[y, y, z]).

Proof. By definition of I'(T), x has children v,w such that T'(T)=
[K]JUT(TTu, v, w]). By Corollaries 3.1 and 3.2, I'(TTy, y, 2]) =T'(TTu, v, wl). Hence
M(T)=[k]JUT(T[w, y,2z]). D

Proof of Theorem 3.2. Let T be a tree with root « having children v, -, v,
let §;=T(T[v;]), for all i (1=i=d), and let $,=---=§,. We want to show that
Gamma (S,, - - -, 84) =I'(T). We first prove the correctness for the special cases (d = 1)
and (d=24 8(T)=1). When d £1, Gamma (-} is given by one of lines [3], [5] or [7].

line [3]. d=0. This means that T consists of a single vertex and by definition
r(Tr)y={0].

line [5). d=1amin §;#0. Let $,=I'(T[v,])=[a,,---,a,) and let x, y, z; (1=
i<r) be the vertices referred to in the definition of TI'(-). Let H=
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T{u, ¥1, 215" * * s Yr-1» 2,-1) and note that 6(H) = a,. Since a, >0, H has no a,-critical
vertex, and by Theorem 3.1 y(H) = a,. Now, let J=T[u, y;, Z;,* ", Yr-2, 2,—2) and
note that 8§(J) =a,_,. Since a,_; > 0, the only possible a,_;-critical vertex in J is x,_,,
and since y(H)=a,<a,_,, ¥{J)=a,_, by Theorem 3.1. Continuing in this fashion
yields T(T)=I(T[v,]).

line[7). d=1amin §;=0. Let $,=0(T[v,]) =[a,, - -,a.])and let x;, y;, z; (1=
i <r) be the vertices referred to in the definition of I'(+). Let w=min {x>0]x& S,}
and let a;=w—1. Since a,=0, T{vy, y1, 21, * *, Yom1» Z,—1 ] CONsists of a single vertex.
ObViOUSlY ‘Y(T[ua Yi: 3157 Y1 zr—l]) =1. For all ](léjé r)’ ‘Y(T[u’ Y2ty
¥i-1; Zj-1]) = a;_, + 1, by repeated applications of Theorem 3.1. Since w>0and w € S,
T{u, y1, 2y, * *, ¥i—1, Zi—1) has no w-critical vertex. For 1=j<i, x; is an a;-critical
vertex in T[4, y1, 21, " * » ¥j~1» 2Zi—1)- Thus T(T}=[a,,- - -, a;—;, w] as claimed.

When (d=2A8(T)=1) T is a subtree of the tree shown in Fig. 15. If d =2 then
the values of S, and S, computed in lines [10] and [11] are correct, since we have
established the correctness of Gamma (-) for d <2. In particular §, =[1], $,=[0] and
hence the value of k computed in line [12] is 1. If T(T[v,]) =[1] then v, has one child
and Gamma will return [1,0] at line [16] which is correct. If I'(T[v,]) =[1, 0] then
v, has two children and Gamma will return [2] at line [20] which is correct. Thus
Gamma is correct if d =2 and §(7T) =1. Consequently, when d =3 and 8(T) =1, the
values of §, and S, computed in lines [10] and [11] are correct. In particular S, =[1, 0]
and S, =[1]. In this situation, Gamma returns [2] at line [14] which is correct.

(u)
W B O

/N Y \
d/ | \) N
F1G. 15. Special case of Theorem 3.2—d=2A8(T)=1.

The proof now proceeds by induction on d and &(T). Assume that Gamma is
correct for all trees T' in which either the root has fewer than d children or the root
has d children but 5(T) < k. Thus, the values of $; and §, computed in lines [10] and
[11] are equal to T'(T[u, v,]) and I'(T[u, v,, v;]) respectively, and the value of k
computed in line {12] is equal to 8(T) by Corollary 3.3. Now considering each of the
return statements in lines [14], [16], [17], [20].

line [14). d=2ak=d(T)ak =vy(T[u, v, v,]). Since k=y(T(y, vy, ), k=
¥(TLu, v,]) and by Corollary 3.4 u is k-critical. By Theorem 3.1, ¥(T)=k+1 and
since T contains no (k +1}-critical vertex, I'(T) =[k +1].

line{16). d=2Ak=8(T)a k> y(T{u, vy, v2]) » T[v;] does not contain a k-
critical vertexa u is k-critical. By Theorem 3.1, ¥(7) =k, and by Corollary 3.5,
[(T) =[k]JUT(T[u, v, v2]).

line [17]. d=2nak=8(T) A k> y(T[u, v,, 1;]) oA T does not contain a k-critical
vertex. By Theorem 3.1, ¥(T) =k, and since there is no k-critical vertex, I'(T) =[k].

line [20). d=2ak=8(T)ak>y(T[u, v,, v,]}A T{v,] contains a k-critical
vertex A u is k-critical. By Theorem 3.1, ¥(T)=k+1, and since T contains no (k+
1)-critical vertex, I(T)=[k+1].
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At line [21], we have d=22 AT (T{u, v,]) < k A T{v,] contains a k-critical vertex.
Let x be the k-critical vertex in T{v,] and let y, z be children of x such that
[{T[vy, y, 2)) =8;—(k]. Since 8(T[u, y, z]) <k, the value of H computed in line 21
is I'(TTu, y, z]) by the induction hypothesis. Considering the return statements in lines
[22] and [23].

line [22). T(T[u4, y, z])= k. By Theorem 3.1, y(T)=[k+1], and since T contains
no (k+1)-critical vertex, I{T)=[k+1].

line [23]). I'(T[w, y, z]) <k By Theorem 3.1, y(T)=[k] and by Corollary 3.5,
I(T)=[kJUI(T[y, y, z]).

Thus, we have shown that the procedure Gamma returns the correct value,
I(T{x]). O

The time required to execute Label! (- ) is proportional to n times the time required
to execute Gamma (). Excluding the recursive calls to Gamma at lines {10], [11]
and [21], the time required to execute Gamma is O(d log n}. (This follows from
Corollary 2.4.) Note that the recursive call at line [11] can be ignored since the
computation performed there is actually a subset of the computation made at line [10].
Consequently we can express the number of recursive calls required to compute
Gamma (S,, "+, S4) using the recurrence M(k, d) = M(k,d—1)+M(k—1, d) where
k=max $,U: - -US,. This follows from the observation that in line [10] the number
of subtrees is reduced by one and in line [21] the max $,U- - - U S; is reduced by at
least one. Of course this is the defining recurrence for the binomial coefficients. Using
the boundary conditions M(k, 1) = M(0, d)=1 yields

k+d—-1

Mk, dy= .

was(*34)

Using Corollary 2.4 we can show that for fixed d, M (k, d) = O((log n)*™"). This means

that the time complexity of Gamma is O({log n)?). If we select a degree one vertex

as the root of T then d = D—1 where D is the maximum vertex degree for the entire
tree. Hence the time required to execute Label is O(n(log n)®™1).

4. A cutwidth minimization algorithm for degree three trees. Megiddo et al. [25]
describe an O(n log n) algorithm for determining the search number of a tree. Megiddo
[24] shows how to reduce this time bound to O(n). As a direct consequence of Corollary
2.3 these algorithms can be used to determine the cutwidth of a degree three tree,
although of course they will not directly yield the optimal layout. In this section we
describe an O(n log n) algorithm for degree three trees that is based on the general
algorithm presented in § 3. This algorithm is simpler than the search number algorithm
given in [25] and can be used to obtain an optimal layout. Furthermore, we can use
it to reduce the complexity of the degree d algorithm by a factor of log n.

Let T be a tree with root u having children v,, v;. Figure 16 gives a procedure
Gamma?2 for computing I'(T} from I'(T[v,]) and T'(T[v,]). Notice that there is no
degree restriction on T[v,] or T[v,]. The correctness of the algorithm is established
by the following theorem.

THEOREM 4.1. Let T be a tree with root u having children v,, v, and let 5§, =
[(Tv,]), $;=T(T[v.)). Gamma2($,, $;}=T(T).

Proof. The correctness of the assertion at line [13] of Fig. 16 follows from Theorem
3.2. Let k =max H, and note that k= y{(T)= k+1. Consider three cases.

Case 1. HNH,=J. Let kh=max {min H,, min H;}. We claim that I'(T)=
[iz h|i e H, U H,). The proof is by induction on [|H,|+|H.|. (Basis) Assume H, =[k].
Then T[v,] contains no k-critical vertex and since H,; 2 H, and H,N H,=J, max H, <
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(1] procedure Gamma2(5\.5;)
21 {Relabet if necessary so that 5,3 53
{31 Y min 5, ™0 thew H,—5,

4] clse begln

(5 j=min{t >0litS5))
(8l Hiy—lfluli>jlies))
171 d

18] Wmin 50 tea H,—5;
191 «lse begin

o) j=min[{>0lieSy]

hil Hy=ljluli>j|ieSy
od

3] [y =T Ly D Hy=T{T e D}
(141 H, N Hy=2 then begls

18] A —max {min #,min M)
sl veturm [i 2 4 |i 6 /W M)
(7 ud

18]  A—max H, NN,

N9 WA =minHy=minH; thew

f201 setern (OIUIF 2k i o 4, UHY)
[2t]  feminlj> b |jeHUR

122]  wmetarm (Wi 0 i Hy U M)
(2] end

FiG. 16. Procedure for computing T(T) from T'(T[v,]) and T(TTv.)).

k. Hence u is not k-critical either and ['(T) =[k] as claimed. (Induction) If [H,|>1
then T[v,] contains a k-critical vertex x with children y, z such that [(T[v,, y, z]) =
H,—[k]. By the induction hypothesis T'(T[u, y, z]) =[i = hlie (H,—[k]) U Hz). Since
the largest integer in this sequence is less than k it follows from Corollary 3.5 that
N(T)=[kJUT(T[u, y, z1).

Case 2. HyN H,=[min H,]=[min H;]. Let h =min H,. We claim that I'(T) =
[0JU[i=z hlie H U H,). The proof is by induction on |H;|+{H,|. (Basis) Assume
H,= H,={h]. Then neither T{v,] nor T[v,] contains an h-critical vertex. However
u is h-critical and hence by Theorem 3.2 I'(T)=[k,0] as claimed. (Induction) If
|Hy|+|Hy{>2 then T[v,] has a k-critical vertex x with children y, z such that
T(T{v,, ¥, 2]} = H, —[k]. By the induction hypothesis

T(Tlu, y, z) =[0]U[iz hlie (H,~[k])U H.}

Since the largest integer in this sequence is less than k it follows from Corollary 3.5
that I'(T) =[k]UT(T{u, y, z]).

Case 3. H{NH,#OA(H,NH,#[min H]v (H,NH,# [min H,]). Let h=
max HNH, and i=min[j>hlje H{UH,)]. We claim that I(T)=[i]U
[j> ilje H,U H,]. We consider two subcases.

Subcase 3a. i> k. In fact, in this case, i = k+1 since k =max H, > max H,. We
claim that I'( T) = [k + 1]. The proof is by induction on k — h. (Basis) Assume k—h =0.
Note that T[v,] contains a k-critical vertex. Since ke H, it follows that u is also
k-critical, and by Theorem 3.2, (T} =[k + 1] as claimed. {Induction) Assume k—h >
0. Note that H, contains a k-critical vertex x with children y, z such that '(T{v,, y, z]) =
H,—-{k]. By the induction hypothesis I'(T[u, y, z]) =[k] and thus by Theorem 3.2,
(ry=[k+1].

Subcase 3b. i < k. The proof is by induction on k — i. (Basis) Assume that k—i=1.
Then T[v,] contains a k-critical vertex with children y, z such that F(T[vy, y, 2]) =
H,—[k]. By Subcase 3a, ['(T[u, y, zJ) =[i]. Applying Theorem 3.2 yields (TYy=[k,il.
(Induction) Again T[v,] contains a k-critical vertex x with children y, z such that
I(T[oy, y, 2)=H,—[k]). By the induction hypothesis I'(T{y,y,z])=
[(JU[j>ilje (H,—[k])UH,). By Theorem 3.2 then I'(T)=[k]JUT(T[u,y, z]) as
claimed. 0O

For any degree three tree T we can determine the cutwidth by applying Gamma2
from the bottom up. Each call to Gamma?2 requires time O(| S| +|S,|) = O(k) where
k = y(T). By Corollary 2.4 k = O(log n), hence the cutwidth of T can be determined
in time O(n log n).
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The procedure Gamma2 can also be used to speed up the degree d algorithm.
By calling Gamma?2 whenever the current vertex has two children, one step of recursion
is eliminated, reducing the time required to execute Gamma by a factor of log n. This
yields an O(n (log n)**) algorithm for determining the cutwidth of a degree d tree.
In [24], Megiddo gives a linear time algorithm for determining the search number of
a tree. The technique used there can also be used to give a linear time version of
procedure Gamma2. This in turn, can be used to reduce the complexity of the general
algorithm by another factor of log n.

It is also worth noting in passing that almost all random trees have a maximum
vertex degree that is O(log n/log log n) [29]. Using this one can show that the general
cutwidth minimization algorithm runs in time O(n***) on randon trees where ¢ is any
positive constant.

S. A layout algorithm. The labeling algorithms described in the previous sections
produce a label A(x)=T(T[x)) for every vertex x in T. Using these labels one can
produce an optimal layout of T. The basic idea is contained in the proof of Theorem
2.1.1f y(T)=k and T has no k-critical vertex then every vertex x has a child y such
that y(TT[x, y]) <k. Consequently one can construct a path v,,- - -, v, where v, is the
root of T, v, is a leaf and ¥(T[v;, v;11]) <k for 1=i<s This is illustrated in Fig. 17.
Once we have found this path we apply the layout algorithm recursively to the subtrees
T[v;, vi41). If T does have a k-critical vertex x then one can construct a similar path
vg,***, Us. In this case v, and v, are both leaves and x is contained in the path.

v. ¥ Vy. vy

vl <k HTvsr. vl <k
FIG. 17. Motivation for layout algorithm.

[1] peocedure Lapout (T A% o pos}
{21 r—tbe root of T
031 i 7 is the only vertex in T then begin

(4] alr)—por

(L1} pos=—por +1

4] renars

7 nd

[8) I ¢ bas a child x such that A(e) > (k] then begin
191 »*— the voricx that satisfies A{y) > (%]
ol and for all children x of ¥, Mz} £ [£]
1) esey—r

N2} <wy,.... vy > —chain (T p N

[13}  For each vertex x in T do

[14) Alxd=aix) k)

sl Lapour (T v i) Ak =1 .5p08)
N6l for j=210 51 do

(1] Layour (Flv,v,_ 1 v, Ak =10, pos)
118)  Leyowt (Tlv, v, ) Mk =~1 0 005)

[19)  return

(200 esd

FI1G. 18. Layout procedure.

A procedure for computing the layout from the labeis is shown in Fig. 18. T is
a tree for which a cutwidth k layout is required and A is the set of labels produced
by one of the labeling algorithms from the previous sections. Upon return from
Layout (T, A, k, o, i) each vertex in T is assigned a unique position in the layout o
starting at position i More precisely Vxe T,iZo(x)<i+|T| and Vx, ye T, oo(x) #
a(y). Note that the notation for undirected trees is used to specify the subtrees in the
recursive calls to Layout. The procedure chain (-) locates the path discussed above,
and is shown in Fig. 19. Figure 20 shows the layout obtained for the tree whose labels
were given in Fig. 20.
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[1} procedwrs chain (Tv2)

[2} Let vg=v and et vy . .. .¥ be 8 mazimum Jength

{30 pathin 7 satisfying the foliowing conditions for 0 &F <r.
[4) (a) v is the parent of vyq and

[5) () for wll children x of v, Alvy,,) 3 Alr).

16)  if v bas less than Iwo children then

7 ebore <y, ..., '

[8]  Let wy be u child of v (hat satisfies u, ® v, and

190 Alwyd 3 Alc) for all children x of v such that x v,

il Lawy..., 4, be 8 maximutn length path in T savis(ying
111l tbe following conditions for | € < 3.

[1}] (a) w; is the parent of w4 and

N3l b) for il children x of vy, Ay,,) 2 Ax).

4] retwrm <v,. ..V VUL

115)  end

Twil  Tiowi Telnl  Tins  TrC] TICN]

Fi1G. 20. Example of layout procedure.

6. Open problems. Until recently, the main open question was whether the MIN
CUT problem could be solved in polynomial time for unrestricted trees. Yannakakis
[42] has now reported a polynomial time algorithm for this problem.

To our knowledge, no good approximation algorithms have been proposed for
the MIN CUT problem on graphs. At the same time there is no evidence that such
algorithms do not exist. No effort has been made to bound the cutwidth of random
graphs. This is a necessary first step in understanding the probabilistic performance of
cutwidth minimization algorithms.

A natural extension of the MIN CUT problem is to edge weighted graphs; the
weight of a cut being the sum of the weights of all edges in the cut. There is a
straightforward log space reduction from the PARTITION problem to this weighted
MIN CUT problem on trees. Hence even for trees the problem is NP-complete.
However it is not known to be strongly NP-complete. In particular the complexity of
the MIN CUT problem on trees with edge weights in {1, 2} is open.
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Perhaps the most surprising aspect of current research on the MIN CUT problem
is the connections that have been found to seemingly unrelated problems. The
equivalence of cutwidth and black/white pebble demand on degree three trees in which
the sink has in-degree one was completely unexpected and we thank Nick Pippenger
for pointing it out to us. As we noted above, this connection not only yields an exact
pebbling algorithm for degree three trees, it also yields approximation algorithms for
pebbling degree d trees. A closer study of this relationship could deepen our under-
standing of both problems. Another surprise was the connection between cutwidth
and search number. We have shown their equivalence for degree three trees. Makedon
and Sudborough [22] have strengthened this to degree three graphs. Recently Chung
[4] has shown a connection between the topological bandwidth and the cutwidth of
trees. This could lead to efficient algorithms for the topological bandwidth problem.

Appendix. The proof of Theorem 3.3 requires the following two lemmas.

LEMMA 3.1. Let R be the tree consisting of the single vertex u, let S and S’ be trees
with roots v, v' and let T=R-§, T'=R-§'". T(S)=T(8)=y(T)=v(T").

Proof. If y(S)<vy(S’) then the result is immediate. Assume then that y(§)=
y(S') =k. Note that k=8(T)=6(T"). The proof proceeds by induction on [['(S)|. If
I'(S)=[0], then ¥(T)=1= y(T'). Assume then that k> 0. If I'($) =[k] then S has
no k-critical vertex. Consequently T has no k-critical vertex, and by Theorem 3.1,
¥(T) =k = y(T’). This establishes the basis of the induction.

Now assume that § and §’ violate the lemma, where |[T'(S)|> 1. Also, assume that
there is no pair of trees H, H' that also violate the lemma where |['(H)| <|T(S)|. We
continue to let ¥(S) = y(S") =k. Note that since I'(S)=T(S§"), |[T'(S")|> 1. Hence, S
contains a k-critical vertex x with children y, z such that T'(S[v, y, z]) =T'(S)—[k] and
$’ contains a k-critical vertex x' with children y’, z' such that [(S'[v’, ¥, 2']) =
I'(S’)—[k]. Thisis illustrated in Fig. 21. Since § and $’ violate the lemma, ¥(T) > y(T").
In fact, we must have y(T)=k+1 and y(T') = k. Now, since x is the only k-critical
vertex in T, y(T)=k+1=>¥(T[u, y, z]) = k, by Theorem 3.1. Also, since x' is k-
critical, y(T")=k=>y(T'[u, y', 2’ <k Thus y(T[w,y, z])> y(T'[y, ¥, 2’]). Since
F(S)=r(s"), I'(S[v, y, zZ)=T(S'[v', ¥, 2']). Hence S[v, y, 2] and S’[v, y', z'] also
violate the lemma, giving the desired contradiction. 0O

F1G. 21. Illustration for Lemma 3.1.

LemMMa 3.2. Let R, 8,8’ be trees with roots u,v, v and let T=R-S, T'=R-§".
(S =r(S$Y=y(T)Y=y(T).

Proof. 1f ¥(5) < ¥(S’) then we can take any optimal layout of T’ and substitute
S for §’ without increasing the cutwidth of the layout. Assume then that y(5) = ¥(S’) =
k and let y(R)= m. The proof is by induction on |R- S|. The lemma is clearly true if
S consists of a single vertex. This together with Lemma 3.1 provides the basis of the
induction. Assume that R, 8, $' violate the lemma and that there are no H, J, J' that
also violate the lemma, where |H-J|<|R-S|. We consider three cases.
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Case 1. m < k. Note that 8(T) = k, and since R, S, S’ violate the lemma, ¥(T)=
k+1, y(T")=k. If S has no k-critical vertex then neither does T and by Theorem
3.1 ¥(T)= k, which is a contradiction. If, on the other hand, S does have a k-critical
vertex then so does S’. Assume then that $ has a k-critical vertex x with children y, z
such that I'(S[v, y, z]) =T(S)—[k]and §’ has a k-critical vertex x’ with children y’, z'
such that T(S'[v', ¥', 2’) <T(8")—[k]. Now, since x is the only k-critical vertex in T,
w(TY=k+1=v(T[w, y, zZ) = k by Theorem 3.1. Also, since x’ is k-critical, y(T"}) =
k=y(Tw,y, 2’ )<k Thus, y{T[w, y, z1})>¥{T'[w, ¥, 2']). Since I'(S[v, y, 2)) =
I($)—[k] and T(S'[v", ¥', 2’]) =T(S")— [k, R, S[v, y, 2], S'[v". ¥', z'] also violate the
lemma giving a contradiction.

Case 2. m> k. Note that 8(T) = m, and since R, S, $' violate the lemma, y(T) =
m+1 and y(T’)=m. If R has no m-critical vertex then the only possible m-critical
vertex in T is . But if u is not m-critical in R then u has two children r, s in T such
that y(TTu, r, s]) < m. Then, by Theorem 3.1, y(T) = m, which is a contradiction. Thus
R must contain an m-critical vertex x. Since x is also m-critical in T', ¥(T') = m=>that
x has children y, z such that y(T'[u, y, z]} <m. If x is the only m-critical vertex in T,
then by Theorem 3.1, y(T)=m+1=y(T[u, y, 2]} Z m. If x is not the only m-critical
vertex in 7T, then the other must be u, and by the definition of me-criticality,
v(T{u, y, 2]) = m (since y and z are both in the same subtree of u). Thus Rlu,y, 21,8, 8
violate the lemma giving a contradiction.

Case 3. m = k. Note that 8(T) = k. Since R, S, §' violate the lemma, y(T)=k+1,
¥(T") = k. Now, if u is k-critical in R, then by Theorem 3.1, v(T')=k+1, a contradic-
tion. If neither R nor S has a k-critical vertex then the only possible k-critical vertex
in T is u. But since u is not k-critical in R, u has children r,s in T such that
y(T[u, r, s]} < k. Then, by Theorem 3.1, ¥(T) =k, which is a contradiction. Thus, if
neither R nor S has a k-critical vertex, then neither does 7, and again by Theorem
3.1, ¥(T) = k. Thus either R or § must have a k-critical vertex. By Theorem 3.1, they
cannot both have a k-critical vertex since, that would imply ¥(T")> k. If S contains
a k-critical vertex x then S’ contains a k-critical vertex x’ and we proceed as in Case
1. If R contains a k-critical vertex we proceed as in Case 2. 0

Proof of Theorem 3.3. The proof is by induction on |[(T)|. Lemma 3.2 provides
the basis Assume then that R, S, §’ violate the theorem and that there are no H, J, J’
that violate the theorem such that [['(H-J)|<|[(T)|. By Lemma 3.2, ¥(T)=y(T"),
thus for [(T)>T(T’) to be true we must have ¥y(T)=y(T")=k and T must have
some k-critical vertex x. We consider three cases.

Case 1. xe S. In this case x has children y, z such that I'(S[v, y, z2]) =T(S) - [k].
Since T'(S)=T(S’), $’ must have a k-critical vertex x' with children y’, z such that
T(T'[u,y', 2’y =[(T')—[k]. Hence T(T'[u,y',z') <I(T)-[k]=T(T(u, y, z]) and
T{S[v, y, zD=T(S")—[k]J<T(T[u, y, zD =T(S'[v', ¥, 2']). Thus R, S[v,y, z] and
§'[v', y', '] violate the theorem giving a contradiction.

Case 2. x< R—{u}. In this case x is k-critical in both T and T’ and has children
y, z,¥', ' such that I'(T{uw, y, z])=T(T)—[k] and T(T'[uy, 2z’ =T(T")—[k]. Since
L(TY<I(T), T(T'[u, y', 2D <T(T[u, y. 2D =T(T[w, y', z']). Thus Rin, y’, z'], 5, 8
violate the theorem giving a contradiction.

Case 3. x=u. Since u is k-critical in T, it has no child y such that y(T[w, y]) <k.
If u is not k-critical in 7' then u has a child y' in T such that y(T'[u, y']) < k. If
y'eR then R[#,¥'] S, S violate Lemma 3.2. If y'=v" then y(T[w,v])=k>
v{T'[u, v']), but this is clearly absurd, since T{u, v]=R =T[4, v’]. Thus u is k-critical
in both T and T’. Further u has children y, z, ', z’ such that T'(TTw, y, z]) =T'(T) —[k]
and T(T'[w, ¥', 2']) =T(T")—[k]. Consider two subcases.
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Subcase 3a. y'#v'# 7. Since I(T')<I(T), I(T'[w,y, 2’ ) <T(Tluy, z)) =
I'(T[u, y', 2']). Hence R[u, y', 2']), S, §' violate the theorem giving a contradiction.

Subcase 3b. y'=v'. Since I(T)<I(T), I'(T'[u, v,z D<I(T(uy, 2])=s
I'(T[u, v, 2']), but this is contradictory since T'[u, v', z’1=T[u, v,2'). O
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