ON THE PROBABLE PERFORMANCE OF HEURISTICS
FOR BANDWIDTH MINIMIZATION

Jonathan S. Turner*

Abstract. Most research in algorithm design relies on worst-case analysis for performance com-
parisons. Unfortunately, worst-case analysis does not always provide an adequate measure of an
algorithm’s effectiveness. This is particularly true in the case of heuristic algorithms for hard com-
binatorial problems. In such cases, analysis of the probable performance can yield more meaningful
results and can provide insight leading to better algorithms. The problem of minimizing the band-
width of a sparse symmetric matrix by perfoming simultaneous row and column permutations, is an
example of a problem for which there are well-known heuristics whose practical success has lacked
a convincing analytical explanation. A class of heuristics introduced by Cuthill and McKee in 1969,
and referred to here as the level algorithms, are the basis for bandwidth minimization routines that
have been widely used for over a decade. At the same time, 1t is easy to construct examples, showing
that the level algorithms can produce solutions that differ from optimal by an arbitrarily large factor.
This paper provides an analytical explanation for the practical success of the level algorithms, by
showing that for random matrices having optimal bandwidth no larger than k, any level algorithm
will produce solutions that differ from optimal by a small constant factor. The analysis also suggests
another class of algorithms with better performance. One algorithm in this class is shown to produce
solutions that are nearly optimal.

Keywords. bandwidth minimization problem, heuristic algorithms, approximation algorithms,

probable performance, probabilistic analysis, NP-completeness

1. Introduction. Let M be a symmetric matrix and let k& be the largest integer for
which there is a non-zero entry M[i,i + k]; k is called the bandwidth of M. It is often
possible to reduce the bandwidth of a matrix by performing simultaneous row and column
permutations. Most common matrix operations can be performed more efficiently if the
matrices are in small bandwidth form. The matrices can also be stored more efficiently in
this form. The matrix bandwidth minimization problem is usually re-cast as a graph theory
problem; for any matrix M, the graph corresponding to M has an edge joining vertices @
and j if and only if M|[i, j] is non-zero.

Let G = (V,FE) be a graph with V' = {1,2,...,n}. A layout of GG is a permuta-
tion on {1,2,...,n}. Define the bandwidth of GG with respect to a layout 7 by ¢,(G) =
max(, ,yer |7(u) = 7(v)[. The bandwidth of G is defined by ¢(G) = min, ¢,(G). The band-
width minimization problem (for graphs) is to determine for a graph G and an integer k
if ¢(G) < k. Papadimitriou [9] first showed that the bandwidth minimization problem is
NP-complete. Garey, Graham, Johnson and Knuth [7] later strengthened this result, show-
ing that the problem remains NP-complete when restricted to free binary trees. Several
heuristic algorithms for bandwidth minimization were proposed in the late sixties and early
seventies. More recently, Saxe [10] has found a dynamic programming algorithm which can
determine if a graph has bandwidth & in time O(n**1) for any fixed value of k. Monien and
Sudborough [8] showed how to reduce the time bound to O(n*). One of the most successful
heuristic algorithms is one discovered by Cuthill and McKee [5] which is a member of a class
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of algorithms which are referred to here as the level algorithms. An algorithm is classified
as a level algorithm if for all graphs G' = (V, E) the layout 7 produced by the algorithm
satisfies

Yu,o €V d(r7H(1),u) < d(r7H(1),0) = 7(u) < 7(v)

where d(z,y) denotes the length of the shortest path connecting vertices z and y. The level
algorithms are reasonably fast and have proved to be quite successful in practice. On the
other hand, one can easily construct examples in which the ratio of the bandwidth of the
layout produced by a level algorithm to the actual bandwidth of the graph is arbitrarily
large. Consequently one must resort to probabilistic analysis to gain insight to their practical
success.

Let G = (V, F) be generated by the following random experiment.

o Let V=A{1,2,....n}, E=0.

e For each {u,v}, 1 <u < v <n, add the edge {u,v} to E with probability p.

The probability distribution defined by this experiment is denoted I',,(p) and the notation
G € T',.(p) means that GG is a random graph generated in this way. In §2 it is shown that

for almost all G € T',(p), ﬁ <14¢whenp> (¢clnn)/nand € >0, ¢ > 0 are fixed. (We

say that a property holds for almost all graphs if the probability of the property holding
approaches one as the number of vertices gets large. This notion is often described by the
¢ (G)
P(G)
all random graphs G € I',,(p). This makes it pointless to compare the probable performance
of bandwidth minimization algorithms on random graphs in I',,(p). Therefore another class
of probability distributions is introduced and used for most of the results given here. Let
G = (V, F) be generated by the following random experiment.

phrase “in probability”.) Consequently, if 7 is any layout at all, < (1+¢) for almost

o Let V=A{1,2,....n}. E=0.

e For each {u,v}, 1 < u < v < n such that |u — v| < ¢ include the edge {u,v} in F
with probability p.

The probability distribution defined by this experiment is denoted ¥,(v,p). Now, let
G € ¥,(¢,p) and randomly re-number the vertices of G. The resulting distribution is
denoted €2,(¢,p). Note that if G € Q,(¢,p) then ¢(G) < . Also, if H is a graph
with ¢(H) < 1, then H can be generated by €2,(¢,p). Furthermore, in §2 we show that
for large enough 1, almost all G € Q,(,p) satisfy % < 1 + ¢ for any fixed ¢ > 0.
The use of Q,,(1, p) allows us to explore properties that are common to most graphs having
bandwidth < 4, but rare for unrestricted graphs. Heuristics like the level algorithms exploit
such properties to produce good layouts for most graphs.

It is shown in §3 that if A is any level algorithm and A((G) is the bandwidth of the layout
produced by A on the graph G then A(G) < (14 ¢)(3—p)@(G) for almost all G € Q,, (¥, p),
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where € > 0, 0 < p < 1 are fixed, and Inn = o(¢). If in addition ¥ < n/2, then
(1—¢)(2—p)o(G) < A(G). The analysis leads to a new class of algorithms called the modified
level algorithms, for which it is shown that A(G) < 2¢(G) + O(logn) for any modified level
algorithm A and G' € Q,(¢,p). In §4, a specific modified level algorithm, MLAT is studied
and it is shown that MLA1(G) = ¢(G)+0O(logn) for almost all G € Q,,(v, p) when ¢ < n/4.
§5 presents several other modified level algorithms, discusses running times and summarizes
empirical studies comparing their performance. §6 shows how to improve the running times
of the above algorithms through more careful selection of the ‘starting vertex’. Finally, §7
contains several results concerning properties of random graphs. Conditions are given for
connectivity of random graphs in ¥, (¢, p) and probable upper bounds are given for the
diameter of random graphs in I',,(p) and ¥, (2, p).

A word of caution. All but a few of the results proved in this paper are probabilistic
in nature. That is, they hold for almost all graphs under some probability distribution.
The statements of lemmas and theorems include the phrase “almost all” and specify the
probability distribution, but to avoid being tedious, the proofs assert various properties
without repeating this qualification.

2. Bandwidth of Graphs in I',(p) and ¥, (%, p). The following results demonstrate
that almost all random graphs in the usual model, have bandwidth nearly as large as the
number of vertices.

Define A, (¢) = _ln_n‘ Note that A,(c) > 0 when 0 < ¢ < L and n > 1, ¢*(®) = 1/n and

lim,, oo Ay(€) = 0o for ¢ fixed 0 < ¢ < 1. We will usually write A(¢) for A,(c).
Theorem 2.1. Let 0 < p < 1 be fized. For almost all G € T',,(p), ¢(G) > n—4X(1—p).

Theorem 2.2. Let € > 0, ¢ > 0 be fized, p = (clnn)/n. For almost all G € T,(p),
O(G) > n(l —¢).

For G = (V, F), the notation uv—v means {u,v} € F and u-/v means that {u,v} ¢ E.
Similarly if U € V and W C V then U—W means that some vertex in U is adjacent to
some vertex in W. The proofs of Theorems 2.1 and 2.2 require the following lemmas.

Lemma 2.1. Let G = (V, F) be a graph on n vertices. $(G) < n —2k = 3IVy,V, CV
such that |Vi| = |Va| = k and Vi -/ V;.

Proof. If ¢(G) < n—2k then there is a layout 7 such that u—v = |7(u)—7(v)| < n—2k.
Let Vi = {77Y1) ,....77 " k)} and Vo = {7 (n =k + 1) ,...,77 (n)}. If Vi— V3 then
there are vertices v € Vi and v € V5 such that u—wv. But by the definition of V; and V5,
7(u) < kand 7(v) > n—k+1, hence |7(u)—7(v)| > n—2k, which contradicts the definition
of 7. O

en

2k
Lemma 2.2. Let0 < p<land G = (V,E)e T,.(p). P(¢(G)<n-2k) < <?(1 —p)k/z) )

Proof. By Lemma 2.1, P(¢(G) < n — 2k) < P(3Vy, Va such that |Vi] = V3] = kA
Vi—+V3). Since there are k* ‘potential edges’ joining V; and V5, all of which must be absent
if Vi-+V3, this last probability is

< (Z) (" . ’“)(1 —p)F < (%)% - = (%(1 —p)m)% -
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Proof of Theorem 2.1. Applying Lemma 2.2 with & = 2A(1 — p) gives

en \(1—p) 4A(1-p)
PO < n—id1=p)) < (gm0 -0"0)

e 4/\(1—]?) 0
- (2/\(1 - p)) -

O
Proof of Theorem 2.2. Applying Lemma 2.2 with k£ = en/2 gives
en €n 26 €n
P <n(l-¢) < 1- E”/‘*) < (— —E”p/‘*) 1
e <ni-a) < (Zpa-pt) < (e 1)
= (2—%—“/4) —0 (2)
€
O
Theorems 2.1 and 2.2 show that even for sparse random graphs G € I',,(p), oy

¢(G)

Consequently, even the most trivial algorithms (for example, the algorithm that always
outputs the identity layout) can produce layouts having bandwidth close to ¢(G) as n gets
large. If one is to make meaningful distinctions among algorithms based on their probable
performance, some other probability distribution is required. The distributions Q,(, p)
and ¥, (1, p) are used here. Obviously, any structural property of a graph occurs with the
same probability in both distributions. It is clear that if G € W, (4, p) then ¢(G) < 1p. The
following theorem gives a probabilistic lower bound on ¢(G).

Theorem 2.3. Let 0 < p < 1 be fized, Inn < ¢ < n. For almost all G € ¥, (1, p),
HG) > b — g1~ p).
Proof. Let G' C G be the subgraph induced by vertices {1,2,...,%}. Note that G’ is

a random graph with distribution T'y(p). Applying Theorem 2.1, ¢(G") > ¥ — 4Ay(1 — p)
The theorem follows from the fact that ¢(G) > ¢(G'). O

An immediate consequence of this result is that as 1) gets large, it comes within a factor
of 1 4+ € of ¢(G), for any fixed € > 0. While Theorem 2.3 is sufficient for the results proved
here, it is interesting to consider a tighter relationship between ¢ and ¢(G).

Conjecture. Let 0 < p < 1 be fized. There is some constant ¢ = ¢(p) > 0 such that if
clnn < <n—clnn then for almost all G € W, (¢, p), d(G) = 1.

3. Probabilistic Algorithms for Bandwidth Minimization. Before proceeding
we need the following definitions. Let G = (V, £) and define Vi(u) = {v | d(u,v) = i} for
all w € V. Also let V; = V;(1). Next, define [;(v) = min V;(u) and r;(u) = max V;(u). Let
l; = ;(1) and r; = 7;(1). Note that |V;| < r; — ;. Define

level(G) = min max |Vi(u)]

LEVEL(G) = min max |Vi(u) U Vigr(u)] — 1
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Figure 1: Tree Demonstrating Poor Worst-Case Performance of Level Algorithms

Note that if A is any level algorithm at all
level(G) < A(G) (1)
and if A makes the best possible choice for 771(1)
A(G) < LEVEL(G) (2)

In the next few sections, we will consider only algorithms that do always make the best
choice. We can satisfy this requirement by trying all possible choices for 771(1), at a cost
of a factor of n in the running time. In §6, we will relax this restriction.

Consider the tree T"in Figure 1. It is not difficult to see that ¢(1") = 2 and level(T) = 4.
The example is readily extended. For any integer k£ > 0 one can construct a tree T} such
that ¢(Ty) = 2 and level(Ty) = k. (This result can be improved. There is a similar but
more complicated construction which gives trees T) with n vertices, level(Ty) = Q(n/logn)
and ¢(Ty) = o(logn).) This implies that the worst case performance of the level algorithms
can be arbitrarily poor. In spite of this, the level algorithms perform quite well on random
graphs.

Theorem 3.1. Let ¢ > 0, 0 < p < 1 be fized, 1 < n, Inn = o(vp). For almost all
G € Qu(¢,p), LEVEL(G) < (14 )(3 = p)o(G).

The theorem is proved by deriving probable upper bounds on |V;| and then using the
definition of LEVEL. These bounds are contained in the following lemma.

Lemma 3.1. Let ¢ > 0, 0 < p < 1 be fized, v < n, Inn = o(vp). For almost all
G E ‘Iln(lb?p)}
Vil < (14 €)py
[Va| < (14 €)(2=p)y
Vil < (1 + )9 fori>3

The proof of Lemma 3.1 appears in §3.1 along with several technical lemmas required
for its proof. We now use it to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.1 there exists a vertex u for which max;>q |Vi(u) U

Vigr(uw)] =1 < (14€)(3—p)e for any fixed € > 0. Hence, LEVEL(G) < (14 ¢€)(3 —p) for
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any fixed € > 0. By Theorem 2.3, ¢ < (1+ € )¢(G). Selecting ¢ so that (1 +€¢)? = (1 +¢)
yields the theorem. O

In Lemma 3.5, it is shown that |V > (1 — ¢)(2 — p)¢ when Inn = o(¢) and ¥ < n/2.
This result is easily extended to show that for all w € V, |Va(u)| > (1 — €)(2 — p)¢b and
hence level(G) > (1 — €)(2 — p)tb. The details are left to the reader. A consequence of this
is that the level algorithms are not capable of near optimal performance. However a related
class of algorithms, called the modified level algorithms is. We will now describe the class
of modified level algorithms. In the next section, we describe a specific member of this class
that achieves near optimal performance. Define

Va(u) if Va(u) =
Va(w) n{o [o—w € Vs(u)} if Vs(u) #

u) U Va(u)) = Vy(u)
) i=0,i>3

0
(U)
Vi(u)
Also, let V! = V/(1), l!(w) = min V/(u), ri(u) = max V/(u), I} = I}(1), v; = ri(1). Formally,

K3

A is a modified level algorithm, if the layout 7 produced for the graph G = (V, F) satisfies

(

(V1
Vi

Vu,v eV uwe V(e 1) Av eV (r7H1) = m(u) < 7(v)

Let

' —
level (G) = irél‘l}rgagd‘/( w)

LEVEL'(G) = Hél‘l/lm>aX|V (W) UV (u)] -1
If A is any modified level algorithm then level’(G) < A(G) and if A makes the best possible
choice for the starting vertex then A(G) < LEVEL'(G). For the modified level algorithms,
we can show that for almost all G € ¥, (¢,p), |V/| < ¥+ O(logn) for all ¢ > 0 when
Inn = o(v), ¥ < (1 —€)n/2. From this we obtain the following result.

Theorem 3.2. Let 0 < p < 1 be fized, Inn = o(2)), ¥ < n. For almost all G € Q,(, p)
LEVEL'(G) = 2¢(G) + O(logn).

The proof of Theorem 3.2 is contained in §3.2. This result shows that the class of
modified level algorithms is capable of better performance than the class of level algorithms.
In §4, we focus on a specific modified level algorithm and show that it produces nearly
optimal layouts.

3.1. Technical Lemmas. The following lemmas are used in the proof of Lemma 3.1.

Lemma 3.2. Let € > 0, 0 < p < 1 be fized, @ = (1 + e)A\(1 — p*) < ¢ < n. For almost
all G € W, (1, p), there exists a path of length two between every pair of vertices u,v such
that |u —v| <29 — a.

Proof. Let u,v € V with |u — v| < 2¢p — a. Let i = 2¢0 — |u — v|. The probability
that d(u,v) > 2 is < (1 — p?)'. Since for each i there are no more than n such pairs, the
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probability that any pair is not joined by a 2-path is

29—1 00
<D =p) <n(l-p)* Y (1-p)) =p~*n =0 D
=0

=[a] =

Lemma 3.3. Let € > 0, 0 < p < 1 be fized, @ = (1 + e)A(1 — p*) < ¢ < n. For almost
al G eV, (Y,p),ri =30 <ri_s<l;—(2¢p — «), foralli > 3.

Proof. The shortest path from 1 to r; must pass through some u € V;_5. Clearly
ri —u < 31, hence r; — 3¢ < u < r;_3. To see that r;_3 < [; — (21 — a), assume otherwise.
Then there is some vertex v on the shortest path from 1 to r;,_s such that [;—(2¢—a) < v < ;
and d(1,v) < ¢— 3. By Lemma 3.2 there is a 2-path from v to [;, giving d(1,1;) < i -1,
which is a contradiction. O

Lemma 3.4. Let € > 0, 0 < p < 1 be fized, @ = (1 + e)A\(1 — p*) < ¢ < n. For almost
al G eV, (Y,p), i —l; <Y+ a, for alli > 3.

Proof. By Lemma 3.3 7; < r;_3+ 3t and [; > r,_3 + (29 — a) Hence,

ri—li < (ricg +30) = (rica+ (20 —a)) =V + a 0

From Lemma 3.4, we conclude that |V;| < 1 + « for i > 3, but the lemma says nothing
about the size of V; and V5. As we shall see, these cases differ from the rest and will
be handled in Lemma 3.5. First however, we need a proposition concerning the binomial

distribution, B(n, p). By definition if z € B(n,p) then P(z = k) = (Z)pk(l —p)" . The
following proposition is from Angluin and Valiant [1].

Proposition 3.1. If 2 € B(n,p) then for any e, 0 < e <1, Pz < (1 —¢€)np) < e=€np/2
and P(z > (14 €)np) < e~ 2/3,

Lemma 3.5. Let ¢ > 0, 0 < p < 1 be fived, c = —(14+¢€)/In(1-p?), a = clnn <Y < n.
For almost all G € ¥, (¢, p), (1 —€)py < |[V1| < (14 €)pyp and |V3| < (14 ¢€)(2—p). Also,
if v < n/2 then (1 —€)(2 — p)b —a < V3.

Proof. |Vi] is a binomial random variable in B(1, p). By Proposition 3.1,
P(Vi] < (1= epw) < =P/ — 0

P(VA > (L4 pe) < e/ — 0
This establishes the bounds on |Vi]. Since |V3| < 29 — |V4],

Vo] <20 — (L= e)pv < (14 €)(2—p)ob
When ¢ < n/2, Lemma 3.2 gives

Vol 2 (20 —a) = [Vi| > 2= (1 + )p)p —a > (1 = )2 - p)y — O

Proof of Lemma 3.1. Immediate from Lemmas 3.4 and 3.5. O
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)
Tl
)
)
u &) W, v
poi ¢ ¢
2 — 1
30 — i

Figure 2: Definition of ;s

3.1. More Technical Lemmas. The following lemmas are used in the proof of
Theorem 3.2.

Lemma 3.6. Let ¢ > 0, 0 < p < 1 be fized, (1 + )\(1 — p?) < ¢ < n. For almost all
G=(V,E)e¥,(¢,p),ueVA{u—1v,... U+¢}QV|>(1+€) (1=p)=u—Vi

Proof. By Lemma 3.2, any pair of vertices u, v with |u — v| < %, is joined by a 2-path
and hence |d(1,u)—d(1,v)| < 2. Thus, for each vertex u there are at most five sets V; such
that [{u —,...,u+ ¥} NV;| > 1. Hence, the probability that for any G' € ¥, (¢, p), the
assertion is not true is < 5n(1 — p)U+IN1=p) = 5=c _ 0. O

Lemma 3.7. Let € > 0, 0 < p < 1 be fived, a = (1 + e)A(1 — p*) < ¢ < n. For almost
all G € W, (1, p) there exists a path of length three between every pair of vertices u,v such
that |u —v| < 3¢ — a.

Proof. Let u,v € V be such that t =3¢ —|u—v| > a. Let 2; =u+ ¢ —jfor 0 < j <y,
as illustrated in Figure 2. Clearly any 3-path connecting » and » must pass through one of
Zg,...,2;. The probability that no 3-path joins w and v is

= P(no 3-path A u—Fag A -+ A urta;)
+ ZZ: P(no 3-path A urf-zg A+ - ANutfa;4 Nu—z;)
=0
= (1- )i+1P(no 3-path | urfao A--- ANutfa;)
-|-Zp (1 —p)’P(no 3-path |ufagA - Autfa_1 ANu—zj)

< (1 - p)l“
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—I—pZ 1- (no 3-path |urfazo A+ Autfa; g ANu—a; ANutfxjpq A Autfag)

= (1 _ p)i-l-l + pz(l _ p)j(l _ pz)z’—j+1

(1—p)™ +p(1+p)1 Z“Z (1+p)

(1—p)™ +p(1+p)(1— p)”l—(l it

< (L+p)(1—p*)*!

Since for each value of i there are at most n vertex pairs u, v such that |u — v| = i, the
probability that any pair u, v with |u — v| < 3¢ — « is not connected by a 3-path is

3—1 00 ) 1_|_p
< Z n(1+p)(1—p )H'1 <n(l+p)(l-p az ) e n=¢
=[a] =0

— 0 O

Lemma 3.8. Let € > 0, 0 < p < 1 be fived, o = (1 + e)A\(1 — p?), B = (1 + )A(1 - p)
and max(a,20) <1 < (n—F)/2. For almost all G € ¥,.(¢,p) |V/| < ¥+ « fori> 0.

Proof. The result follows from Lemma 3.4 for 2 > 3 and is immediate for ¢ = 0. Before
proving the theorem for 1 <7 < 2 we first need to show that |Van{y+2,...,2¢¥+[F]} > 5.
Let A = {¢+2,...,2¢p+1}. By Lemmas 3.4 and 3.7 A C VoUV3. Let @ = |[ANV3|. Clearly if
x > (3 then we're done. Assume then that 2 < g andlet B = {2¢4+2,...,2¢4+([F] —2)+1}
and let y = |B|. If u € B, then [{u—1,...,2¢04+1}NVy| > — 3. Since v > 28, u € B =
{u—1,...,u+ 1} V3] > 3. Thus by Lemma 3.6 B C V3. Since 2 + y > 3 we have that
Van{v+2,....20 + [5]} > .

Now, by Lemma 3.3, I3 > 2¢p — o + 1. This implies that I, > ¢ — o + 1 and since
rh, < 29+ 1, it follows that |V]| < ¢ + a as claimed.

Finally, note that if « € A and u > % + [ then using Lemma 3.6, one can show that
u—V3 and hence u ¢ V{. Thus [V{| < ¢+ 8 < ¥ + «a as claimed. O

Proof of Theorem 3.2. If ¢ > (n — 2A(1 — p))/2, then since LEVEL'(G) < n
LEVEL'(G) < 2¢ +2\(1 — p) = 2¢) + O(log n) = 2¢(G) + O(logn)
If » < (n—2A(1—p))/2 then we can apply Lemma 3.8 giving
LEVEL(G) < 2+ 4X(1 — p?) = 2¢ + O(log n) = 2¢(G) + O(log n) O

A similar analysis yields level (G) = ¢(G) 4+ O(logn).

4. Obtaining Nearly Optimal Layouts. In this section a specific modified level
algorithm denoted MLAT is described and analyzed. It is shown that MLAT is capable of
producing nearly optimal layouts for random graphs in Q,(%,p).
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For each u € V
Let 7 be any layout that satisfies the following conditions for all z,y € V.
(a) v e V/(u) Ay € Vi(uw) = 7(2) < 7(y)
(b) 1<i<2n2,y € V/(u)Alge2)] < lgeu(y)|l = () < 7(y)
() i>3Nz,y € V/(u)Algpu(z)| > lgpu(y)] = T(2) < 7(y)
Output the layout having minimum bandwidth.

Figure 3: Modified Level Algorithm 1

For a graph G = (V, F), we define the grandchildren of v with respect to u by
geu(v) = Va(v) N Viia(u) Vo € Vi(u)
and the grandparents of v with respect to u by
gpu(v) = Va(v) NV 5(u) Vo € Vi(u)

Also let ge(v) = gei(v),gp(v) = gpi(v). The algorithm we will analyze is based on the
observation that for G € W, (¢, p) if u,v € V/ and v — u is not too small, then with high
probability |ge(u)| < |ge(v)] and |gp(uw)| > |gp(v)|. The algorithm M LA1 is described in
Figure 3. Define MLA1((G') as the bandwidth of the layout produced by MLAT on graph
G.

Theorem 4.1. Let 0 < p < 1 be fized, Inn = o(p), v < n/4. For almost all G €

The key fact used in the proof of Theorem 4.1 is contained in the following lemma.

Lemma 4.1. Let ¢ > 0, 0 < p < 1 be fized, @ = (1+)A(1 —p?), Inn = o(2)), ¥ < n/4.
For almost all G € W ,,(1,p), |T(u) —u| < 4a, where u € V' and 7 is the layout produced by
MLAT for which T(1) = 1.

Proof of Theorem 4.1. By Lemma 4.1, MLA1 will compute a layout in which no vertex
is more that 4a from the ‘right position’. This implies that the bandwidth of the layout
output by MLAI is at most ¥ + 8a = ¢(G) + O(logn). O

The proof of Lemma 4.1 requires the following technical lemmas.

Lemma 4.2. Let € > 0, 0 < p < 1 be fized, @ = (1 + €)A(1 — p?), 2a < ¥ < n. For
almost all G € ¥,,(¢,p)

Iy =2 p—a<r <Y+ a
r—2a< ly <741 Mm+v—a<<rb<ri+
riy—a< U<l 41 vl +v—a<<ri<ri_,+v¢ fori>3

7 —

Proof. For 1 < ¢ < 2 the result is implicit in the proof of Lemma 3.8. For ¢ > 3, Lemma
3.3 gives Il > ri_o +2¢ — . Since ri_, <rl_o4+2¢, 1! > rl_, — . By Lemmas 3.2 and 3.7

K3
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{ri_s4+v+1, .. 7l s+20—a} CV/ jand {rl_ s +2¢04+1,...,¢rl 5+30—a} CV/
and {r/_s+2¢¥—a+1,...,ri_s+2¢} C V', UV/. This implies #/_; + 1 € V/, hence
I <rl_y+1. Fori>3,rl <rl_y+1is immediate and r} > r/_; + 1 — a follows from
Lemma 3.7 and r/_; < r/_5+ 2¢. O

A consequence of Lemma 4.2 is that at least ¢ — a of the vertices in V/ are found in a
region containing only vertices in V;. The regions associated with V; and V| are separated
by a transition region containing at most 2a vertices.

Lemma 4.3. Let € > 0, 0 < p < 1 be fized, o = (1 + e)\(1 — p?), 4a < b < n/4. For
almost all G € W, (¢¥,p) 1 <i<2Au,v € V/ Au—v>4da= |ge(u)] > |ge(v)].

Proof. Lemmas 3.2 and 4.2 imply that if u,v € V/ and v — v > a then ge(v) C ge(u).
It remains only to show that there is some vertex z € ge(u) — ge(v). Let 2 = u+ 29 — [a].
If u—v>4a, Lemma 4.2 yields,

P ST 20 <420 420 <0420+ 2a <u+2¢—2a <z

Thus 2 ¢ V/, | and also by Lemma 4.2, 2 ¢ Vj’ for any j < ¢. Since, by Lemma 3.2, there is
a 2-path from u to z, € ge(u). Since z > v+ 29, & € ge(v). O

Lemma 4.4. Let ¢ > 0, 0 < p < 1 be fived, a = (1 + )A(1 — p?), 4a < o < n/4. For
almost all G € ¥, (¢, p)i >3 ANu,v € V! ANu—v>4a = |gp(u)| < |gp(v)|.

Proof. Lemmas 3.2 and 4.2 imply that if u,v € V/ and v — v > « then gp(u) C gp(v).

It remains to show that there exists some vertex z in gp(v) — gp(u). Let 2 = v — 29 + [a].
If u—v>4a, Lemma 4.2 yields

I y>rio—2a>r—-2¢v—-2a>u—-2¢p—-2a>v-2¢+2a>z

Thus z ¢ V/_, and also by Lemma 4.2, = ¢ Vj’ for any j > ¢. Since, by Lemma 3.2, there is
a 2-path from v to x, @ € gp(v). Since z < u — 2, & ¢ gp(u). O

Proof of Lemma 4.1. By Lemmas 4.2 to 4.4, if u — v > 4a then 7(v) < 7(u). Conse-
quently, for any u there can be at most 4a vertices v such that v > v and 7(u) < 7(v).

Similarly, there can be at most 4« vertices w such that v < w and 7(u) > 7(w). Hence,
|T(u) —u| < 4a. O

5. Pragmatics. This section reports on the results of empirical studies of several mod-
ified level algorithms, including MLA 1, described in the previous section. It also contains
some implementation details and analyses of the algorithms’ running times.

Four modified level algorithms were studied. They are denoted here as MLA1 through
MLA4. An implementation of MLA1 is shown in Figure 4. This procedure returns a
layout 7, with u as the starting vertex. The strategy for ordering the vertices within
levels is the one described in the previous section. The procedure shown calls several
others. Make_mod_levels(G,u,V{,...,V)_,) computes V/(u) and returns it in the list V
for 0 <@ < n — 1, using breadth-first-search. The procedures count_gc and count_gp count
the number of ‘grandchildren’ and ‘grandparents’ for vertices in the levels specified by the
last two arguments. (For example, the call to count_gc in line (4) counts the grandchildren

of all vertices in the first two levels and returns the results in the array ngc.) The procedure
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(1) procedure MLAI(G = (V,E),u,T)

(2) = |V;

(3) make_mod _levels(G,u, V', ..., V]_1);

(4) count_ge(G,u, V{,...,V!_,nge,1,2);

(5) count_gp(G,u,V§,...,V!_,,ngp,3,n—1);

(6) for i € [1,2] — sort(V/,nge(z) < nge(y)) rof;

(7) for i € [3,n—1] — sort(V/,ngp(x) > ngp(y)) rof;
(8) next := 1; { next position in layout }

(9) forie[0,n—1] —

(10) for » € V! — 7(2) := next; next := next + 1 rof;
(11) rof;

(12) return;

(13) end;

Figure 4: Implementation Details for MLA1

sort(L, R(x,y))sorts the list L so that  precedes y in the sorted list if and only if « is related
to y under R. For example, sort(V/, nge(z) < nge(y)) sorts V/ so that if nge(z) < nge(y)

K3

then x precedes y in V/. The running time of MLA1T is dominated by the count_gec and
count_gp functions. A straightforward implementation of these gives a running time of
O(ny?). The procedure make_mod_levels can be implemented to run in O(|E|) = O(nv)

time, and the sorting steps in lines [6] and [7] require at most O(nlogn).

There are other possible strategies for arranging the vertices within each level. Cuthill
and McKee [5], who first suggested the level algorithms, arranged the vertices within levels
according to the order in which they were visited by a breadth-first search algorithm. This
results in an arbitrary ordering of the first level and arranges each vertex in subsequent
levels based on the position of its ‘leftmost’ neighbor. Cheng [2,3] refined this strategy by
ordering the vertices in the first level in increasing order of the number of neighbors in
the next level. Adapting this algorithm to the modified level strategy gives the algorithm
MLA2, which is shown in Figure 5. MLA2 calls the procedure count_ch, which counts the
number of neighbors each vertex has in the ‘next level’. As with count_gc and count_gp, the
calculation is done only for those levels specified by the last two arguments (in this case,
just the first level). This can be done in O(¢?) time, while the remainder of MLA2 can be
done in O(ny) time.

The procedure MLA3, shown in Figure 6 is a cross between MLAT and MLA2. It uses
the strategy of MLAT to order the vertices in the first level, then reverts to the strategy of
MLA2 for all subsequent levels. Computing ngc for the vertices in the first level requires

O(4?) time. The remainder of MLA3 can be done in O(nv).

MLA4 is a refinement of MLA3 designed to improve the running time when the band-
width is fairly large. Instead of using the number of ‘grandchildren’ to order the vertices in
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(1) procedure MLA2(G = (V,FE),u,T)

(2) n:= [Vl

(3) make_mod _levels(G,u, V{,..., V] _1);

(4) count_ch(G,u,Vy,..., V! _ nch,1,1);

(5) sort(V{,nch(z) < nch(y));

(6) forz € V. — 7(2):=0 rof; { 0 denotes undefined }
M =t

(8) next := 2; { next position in layout }
(9) for 2 € V] — 7(2) := next; next := next + 1 rof;
(10) left := 2; { left end of V{ in layout }
(11) right := next — 1; { right end of V{ in layout }
(12) forie2,n—1] —

(13) do left < right —

(14) z = 7 (left);

(15) for {z,y} e £ —

(16) if 7(y) =0 — 7(y) := neat; next := next + 1 fi
(17) rof;

(18) left := left + 1;

(19) od;

(20) right := next — 1; { right end of V! }
(21) rof;

(22) return

(23)

O
w
o
=
o

Figure 5: Implementation Details for MLA2

the first level, it uses the number of paths to grandchildren. This can be computed more
quickly, since it eliminates the necessity of throwing out duplicates. The total running time

of MLA4 is O(n).

MLA2 through MLA4 are more difficult to analyze than MLA1 because decisions made
in ordering each level affect the ordering of subsequent levels. Consequently, one might
expect that errors made in ordering the early levels could accumulate and cause large errors
further on. Experimental results suggest that in fact this does not happen, that the process
is self-limiting. However, straightforward analytical techniques for bounding the error give
unsatisfactory results.

Figures 7 through 9 summarize the results of a series of experiments that were under-
taken to verify the theoretical performance bounds described in the previous sections for
MLA1, provide tighter bounds for graphs of moderate size and compare MLAT to the other
modified level algorithms. For each of the data points shown in Figure 7, ten random graphs
in ¥,(n/4,1/2) were generated and each of the algorithms was run. For each algorithm,
these ten results were averaged and the difference between these averages and n/4 were
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(1) procedure MLA3(G = (V,FE),u,T)

(2) n:= [Vl

(3) make_mod _levels(G,u, V{,..., V] _1);

(4) count_ge(G,u, V§,...,V!_;,nge,1,1);

(5) sort(Vy, nge(z) < nge(y));

(6) forz € V. — 7(2):=0 rof; { 0 denotes undefined }
M =t

(8) next := 2; { next position in layout }

(9) for 2 € V] — 7(2) := next; next := next + 1 rof;
(10) left := 2; { left end of V{ in layout }
(11) right := next — 1; { right end of V{ in layout }
(12) forie2,n—1] —

(13) do left < right —

(14) z = 7 (left);

(15) for {z,y} e £ —

(16) if 7(y) =0 — 7(y) := neat; next := next + 1 fi
(17) rof

(18) left := left + 1;

(19) od;

(20) right := next — 1; { right end of V! }
(21) rof;

(22) return

(23)

O
w
o
=
o

Figure 6: Implementation Details for MLA3

plotted. The results show that all the algorithms produce good layouts. All of the results
are within 20% of n/4 and the best are within 2%.

Figure 8 shows the measured execution times for these runs. (The algorithms were coded
in the C programming language and run on a VAX 11/750 under Unix!.) Here, MLA2 and
MLAA4 enjoy a substantial advantage. Of course, this speed advantage is directly related to
the large value of 1 relative to n. For smaller values of ¢ the differences would be less.

One last set of results is shown in Figure 9. This shows how the performance of the
algorithms deteriorates as 1 becomes large relative to n. MLAI deteriorates first, when
1 ~ n/4. This is because, the strategy used to order the levels becomes less effective when
V{ becomes much smaller than . MLA3 is not affected by this phenomenon until ¢ ~ n/3
since the ‘grandchildren’ strategy is used only to order the first level. MLA2 and MLA4
are more robust, maintaining their good performance until ¢ & n/2. At this point all four
degenerate from modified level algorithms to level algorithms.

1Unix is a trademark of AT&T.
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Figure 7: Performance of Modified Level Algorithms

6. Selection of Starting Vertices. Up until this point we have largely ignored the
question of how one selects a good starting vertex in the modified level algorithm. Of course,
the brute force solution is simply to try all possibilities and pick the best result. This adds
a factor of n to the running times quoted in the previous sections, but does ensure the best
possible choice. In this section, we consider strategies that permit us to select small sets of
candidate starting vertices, that with high probability, contain a good choice.

The most obvious strategy (suggested by Cuthill and McKee) is to concentrate on ver-
tices with small degree. For G € W, (1, p) it’s reasonable to expect the degree of vertex
1 will be smaller than the degree of most other vertices. The following lemma puts a
probable upper bound on the number of low degree vertices that need to be tried to ob-
tain near optimal performance. For ¢ = (V, F), define the set of low degree vertices by

ld(G)={veV|dv)<d(1)}.

Lemma 6.1. Let ¢ > 0, 0 < p < 1 be fized, 12(1 + €)(1/p)Inn < ¢ < n. For almost all
G € W1, p), [ld(G)] < 4V/(3/p)(1 + )¢ Inn.
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Figure 8: Running Time of Modified Level Algorithms

Proof. Let 0 < o < tp/2. By Proposition 3.1
P(d(1) > ¥p+ o) < e /30r
For v € V such that (2a/p) < v < n — (2a/p)
Pld(v) <¢p+a)< e/ 20p
Letting o = \/3(1 + €)¥plnn yields
P(d(v) < d(1)) < 207 /3P = 25,=(149)
Since there are < n such vertices v,
P(Iv|(2a/p)<v<n—(2a/p)Ad(v)<d(l))<2n =0

Consequently there are at most 4a/p vertices in Id(G). O
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Figure 9: Deterioration of Modified Level Algorithms as ¢ Grows

Lemma 6.1 gives us a way of ensuring a good starting vertex. The cost is an added

factor of O(v/¢Inn) in the running time.

The next theorem suggests another method for identifying a good starting vertex. Let
L;(G) be the layout 7 of G produced by MLAI for which 7(2) = 1 and let MLA1,(G) be
the bandwidth of ¢ with respect to L,(G).

Theorem 6.1. Let 0 < p < 1 be fized, Inn = o(vp), ¥ < n/16. For almost all G €
U, (Y,p) (x € VAT =L(G) Ay =7"Yn)) = MLAL,(G) = ¢(G) + O(logn).

The procedure suggested by Theorem 6.1 is this. Pick an arbitrary vertex x and run
MLAT with x as the starting vertex. Let y be the ‘rightmost vertex’ in the resulting layout.
Now, re-run MLA1 with y as the starting vertex. Theorem 6.1 states that the resulting
layout is close to optimal. The proof of Theorem 6.1 requires the following lemmas.

Lemma 6.2. Let € > 0, 0 < p < 1 be fized, @ = (1+e)A(1—p?), Inn = o)), ¢ < n/16.
For almost all G € W,(¢Y,p) (z e VAT =L, (G) A\y=7"Yn)) = (y<4aVy>n-—ia).

Proof. Let x € V, 7 = L,(G) and y = 771(n). Also let G| be the subgraph induced by
{1,2,...,2} and let GG, be the subgraph induced by {z,...,n}. Note that G| € ¥ (¢, p)
and G, € ¥,_,11(¢,p). Next, let 7 = L,(Gy), 7 = Ly(G,) and let y; = Tl_l(x), Y, =

77 (n — 2 + 1). The analysis now divides into several cases.
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Case 1. © < n/4. For any z € {1,...,2}, Lemma 3.2 implies

d(z,z) < 2% < % and d(z,n) >
Thus, d(z,z) < d(z,n) for any z < z. This implies that y € {«,...,n}. In fact, y =
yr. To see this, first note that for ¢ > 0, V/(z,G,) C V/(z,G) (the notation for the
vertices belonging to each level has been extended to distinguish between the two graphs).
Furthermore, if z € V/(z, G, ) where i > 4 then gp,(z,G,) = gps(z,G) (the notation for the
grandparents of z has been similarly extended). Consequently, y = y,. Applying Lemma
4.1 to G, yields y > n — 4a.

Case 2. n/4 <z <3n/4 Ny €{z,...,n}. By the same argument used in case 1, y = y,
and applying Lemma 4.1 to G, yields y > n — 4a.

Cases 3,4 are symmetric with 1,2. O

Proof of Theorem 6.1. Let x € V, 7 = L,(G) and y = 7=(n). By Lemma 6.2, either
y < 4o or y > n — 4a. Since the two cases are symmetric, we will only discuss the former.
Let ¢ = L,(G), G, be the subgraph induced by {y,...,n} and o, = L,(G,). Note that the
restriction of o to {y,...,n} is the same as 0,. By Lemma 3.2, every vertex in {1,...,y—1}
is connected to y by a 2-path and no vertex in {1,...,y — 1} is adjacent to any vertex in
Vi(y). Consequently, {1,...,y — 1} C V{(y). Let {u,v} € E, and consider the following
three cases.

Case 1. {u,v} C{y,...,n}. By Lemma 4.1, |o,(u) — o,(v)| < 9 + 8a. Consequently,
lo(u) —o(v)] <+ 12a.

Case 2. {u,v} C {1,...,y — 1}. Since {u,v} C V{(y) and by Lemma 3.8, |V{(y)|
<4da+ (Y4 a) =¥+ ba, it follows that |o(u) — o(v)] < ¢ + da.

Case 3. w e {l,...,y —1},v € {y,...,n}. Because u < y, v < y + . By Lemma 4.1,
lo(v) — v| < 4a, giving 0(v) < y+ ¥ 4+ 4o < ¥ + 8a. Since u € V{, o(u) < 1 + 5a. Thus,
lo(u) — a(0)] < 1+ Sa.

In all three cases above, we conclude that |o(u) — o(v)| < ¢ + 120 = ¥+ O(logn) =
&(G)+ O(logn). O

The method for selecting a starting vertex outlined above can be refined in several
directions. One way is to run MLAT several times, each time using the rightmost vertex
from the previous run as the starting vertex for the next run. This extends the applicability
of the method to larger values of 1. Another refinement is to run MLAT several times as
just described, but then take the 4a rightmost vertices from the last run and use these as
a set of candidate starting vertices. With high probability, either vertex 1 or vertex n is in
this set. The results obtained in this way may be somewhat closer to optimal, but the cost
is an extra O(logn) factor in the running time.

7. Properties of Random Graphs. This section is largely independent and examines
several properties of random graphs, particularly graphs in ¥, (¢, p). The following theorem
is a special case of a result proved by Erdés and Renyi in [6].
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Theorem 7.1. Let —1 < e < 1 be fized, p= (14 €)(Inn)/n, G € T(p). If e >0, G is
almost always connected. If ¢ < 0, G is almost always disconnected.

The following is a similar result for random graphs with small bandwidth.

Theorem 7.2. Let —1 < e <1 be fized, 0 < p <1, = (14 A1 —-p)/2, ¥ — 0. If
€ > 0 then almost all G € ¥, (21, p) are connected. If € < 0 then almost all G € ¥, (1, p)
are disconnected.

To prove Theorem 7.2 we need to introduce another probability distribution and prove
two lemmas. Let n and 1 be positive integers, 1» < n,0 < p < 1, and let G = (V, ) be a
random variable defined by the following experiment.

o Let V=A{1,2,...,n}.

e Lor each pair u,v 1 <u<v<nand |u—v| <PV |u—2v|>n-—1include the edge
{u,v} in £ with probability p.

The probability distribution defined by this experiment is denoted ¥ (v, p).

Lemma 7.1. Let =1 < e <1 be fized, 0 <p <1, v =(14+)A1—-p)/2, 1< <n/2,
G € WS(,p). If € > 0 then G almost always contains no isolated vertex. If € < 0 then G
almost always contains at least one isolated vertex.

Proof. First part — ¢ > 0. Let

0 if v is not isolated

B { 1 if v is isolated

Xy
X =X+ Xyt X,
po=E(X)=301 (X)) =a(l - p)?Y
Then,
PX>D)<pu=n(l-p*¥=n"°=0
This completes the proof of the first part.
Second part — € < 0. Let X, Xq,..., X, be defined as before.

n n

E(X? = Z Z E(X,X,) = Z Z P(u and v are both isolated)

u=1v=1 u=1v=1
= (1= p)* 4 2¢n(1 - p)" " 4 n(n - 2¢ = (1 - p)*
By Chebyshev’s inequality,

plnn

(1= p)In(1/(1 = p))

of _E(XP) -y 1 20p
1 1 g n(l—p)

P(X =0)<
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P
(L—p)In(1/(1 = p))

= p <1—n~0+9 Hence,

gets large as p — 1. However, 1 < ¢ < (1 + €)A(1 —p)

The function

P(X:0)<n5_|_(1—|—€)m:2n5—>0 O

Let D((G) denote the diameter of G.
Lemma 7.2. Let 0 < € < p < 1 where € is fized, and let G € T',,(p). Then

P(D(G) > 2) < (;‘)(1 — )"

Proof. Let u and v be any two vertices in . The number of possible 2-paths between
them is n — 2 and the probability that any one of them is absent is 1 — p?. Hence the
probability that u and v are not connected by a 2-path is (1 — p?)* — 2. Consequently, the
probability that any pair of vertices is not connected by a 2-path is

s(;‘)u—p?)”—zs(Z)(l—e?)n—2 O

Proof of Theorem 7.2. First part — ¢ > 0. G is connected if the first 2¢ vertices induce
a connected subgraph and all other vertices have at least one edge to a lower numbered
vertex. By Lemma 7.2, if p > a for some a > 0 then the probability that the first 2+
vertices induce a subgraph of diameter greater than two is

Hence, if p is bounded below, the first 2% vertices almost always induce a connected sub-
graph. If on the other hand p — 0 we must use Theorem 7.1 to establish that the first 2+
vertices induce a connected subgraph. This requires that we show that there exists some
v > 0 such that p > (14 v)(In(2¢))/(2¢). From the hypothesis of the theorem

p(2¢) plnn
ey~ ORI s

for large enough n since p — In (1/(1 — p)) as p — 0 and n > 2. Now, the probability that
any of the remaining vertices have no edges to lower numbered vertices is < n(1 — p)*¥ =

€

n~¢ — 0. This completes the proof of the first part of Theorem 7.2.

Now let € < 0 and let G’ € W (1), p). Clearly, P(G is connected) < P(G’ is connected)
and since by Lemma 7.1, G’ is almost always disconnected, it follows that G is almost

> (14 ¢€/2)

always disconnected. O

A simple lower bound for the bandwidth of any connected graph is given by

$(G) > w(@) = [Z(_Gﬂ
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Figure 10: Graph Showing w*(G') # ¢(G)

since the first and last vertices in any optimal layout are connected by a path of length at
most D((G') and hence at least one edge in this path has length g < w((G). Chvatal [4] was
apparently the first to notice this. A more general lower bound is given by
HG) > 7(G) = max ()

where G’ ranges over all connected subgraphs of G. The graph shown in Figure 10 shows
that w*(G) # ¢(G) in general. It is natural to ask if there is any constant ¢ such that for
all connected graphs ¢(G) < cw™(G). Ronald Graham has pointed out that this is not the
case. The argument is given in [11]. In spite of this result however, we can show that if

Inn = o(v), then for almost all G € ¥, (), p),

D(G) < (1+¢€)

n 45

oG

Theorem 7.3. Let € > 0, 0 < p < 1 be fizred, @ = (1 + )A\(1 — p?) < ¢ < n. For almost
n

NG e, (v,p) D(G) < —— + 5.

Proof. By Lemma 3.7, there exists a path @ = (vo,...,vs,) that satisfies

vg =1 V3 > n — 3 v3(i41) 2 V3 +3Y—a 0< i<y

n
Since n > vz, and vs, > 3Yr —ar, 3Ir < ———.
v —af3

By Lemma 3.2, any vertex u < vs, is connected by a 2-path to some vertexin {vy, ..., v3,},
and any vertex u > wvs, is connected by a 4-path to vs,. Thus, every pair of vertices is joined
by a path of length at most 3r + 5. O

By Lemma 7.2, if p > € > 0 then for almost all G € T',(p), D(G) = 2. When p is
allowed to approach zero as n gets large the diameter can become larger. By Theorem 7.1,
when p is much less than (Inn)/n the graph is likely to be disconnected. We now consider
the probable diameter of random graphs in I',,(p) when p = (¢lnn)/n and ¢ is a constant.
We do this by examining the probable size of Vi, Vs, .. .. Let n; = |V;|. Clearly,
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g (np)*
1 1
28 28
763 763

20,850 | 21,096
428,450 | 582,890
549,910 —

Uk W N = O &

Figure 11: Comparison of #, with (np)* for n = 105, p = (2lnn)/n

ng € B(n_lvp)
ny € B(n—(ni+1),1-(1-p)™)

ng41 € B(n—sp,1—(1—p)™)

where 55, = Z?:o n;. Define fig = 1, figy1 = (n— 35 )(1— (1 —p)™), where &, = Z?:o ;.
We can use 7y as an estimator for ng. Figure 11 gives values of nj for particular values of
n and p. The sequence grows very rapidly until a large fraction of the vertices in the graph
has been ‘captured’. Then the remaining vertices are taken in the last step. The figure also
gives values of the function (np)*. For k < 3, (np)* gives an excellent estimate for 7.

Let k* be such that sg+ = n. In the following we show that for k& < k* —2, ny, > (np/8)*
with high probability. We can use this to get a probabilistic upper bound on k™ and hence
on D(G). The main results are

Theorem 7.4. Let ¢ > 8 be fized, p = (clnn)/n, v = np/8. For almost all G € T',(p),
1§k§k*—2:>nk>’yk.

Theorem 7.5. Let ¢ > 8 be fized, p = (clnn)/n, v = np/8. For almost all G € T',(p),

pay<2 ([P02] 12).

In~

The proof of Theorem 7.4 is contained in the following lemmas.

Lemma 7.3. Let ¢ > 8 be fized, p = (clnn)/n, v = np/8. For almost all G € T',(p)
1<k <k —2Ang_1 <1/pA sp_1 <n/2 = ng > ynp_1.

Proof. Since nj, € B(n — sp_1,1 — (1 — p)™-1),
ny = E(ng) = (n—sp_1)(1 = (1 —p)™-1) > 51)7%—1(1 — png—1/2) > o k1= 291k
By Proposition 3.1

P(ni <yng_1) < P(ng <mp/2) < eTTR/B < T rmR—1/4
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Let Ay denote the event ny < yng_1. The probability that there exists a k satisfying the
hypothesis of the lemma, such that A holds is

IN

P(A) +P(Ay | Ay)+ -+ P(Aps_g | Ay -+ - Ape_3) (3)
6_’7/4_|_6_'Y2/4_|_“‘_I_e_’yk*_2/4_>0 (4

IN

~—

Lemma 7.4. Let ¢ > 8 be fized, p = (clnn)/n. For almost all G € T, (p) 1 < k <
E*—2Asp—1 <n/2 = np_y < 1/p.

Proof. Assume that ng_; > 1/p. Then since n; € B(n — sp—1,1 — (1 — p)™-1),

g =FEng)=(n—sp_)(1=(1=p)"*»1)g< =(1—-1/e) > n/4

N | =

By Proposition 3.1
P(ny, < n/8) < P(ny < Tip/2) < e”™/8 < /32 _

Hence, assume nj > n/8. Then the probability that any of the remaining vertices is not
adjacent to something in Vj is

< (n—sp)(1—p)™ < ne” P8 = pl=e/5 _ g

This implies that £* < k£ + 1 which is a contradiction. O

Lemma 7.5. Let ¢ > 8 be fized, p = (clnn)/n. For almost all G € T, (p), 1 < k <
E*—2 = s,_1 <n/2.

Proof. Assume that sz_y; > n/2 and let k' be the smallest integer such that sy > n/2.
By Lemma 7.4, njs_y < 1/p and by Lemma 7.3, for all &k < &/, np > yng_y, where v = np/8.
Since for large n, v > 2, we have s, > 2s;_1 for k < k’. Consequently ny = spr — sp1_q1 >
sp /2 > n/4. Now, the probability that any of the vertices in V — (VoU Vi U---U V) is not
adjacent to some vertex in Vi is

< (n—sp)(1—p)™ < ne” P/t = pl=e/t

This implies that &* < &’ + 1 which is a contradiction. O
This establishes Theorem 7.4.

Proof of Theorem 7.5. Note that D(G') < 2k*. Let &’ be the smallest integer such that
/ In(1
7% > 1/p. Clearly k' = [M-‘ If £/ > k* — 2, we're done. If &/ < k* — 2 we can
ny
apply Theorem 7.4 giving ny > 1/p. By the argument used in the proof of Lemma 7.4, this

implies k* < k' +2. O

8. Conclusions. The work reported here is part of an ongoing research effort aimed
at developing better methods for evaluating the performance of heuristic algorithms for
hard combinatorial problems. This is an area where the usual analytical tools often fail us,
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and the available results are unsatisfying. To be useful, a performance evaluation method
must satisfy two basic criteria. First, it must be able to explain the practical success of
popular algorithms and the differences observed between competing algorithms. Second, it
should provide insight suggesting new and better algorithms, and supply a basis for making
predictions about their success in practice. The ultimate utility of such a method depends
on how accurately it predicts the performance of algorithms in real applications.

Worst-case analysis is inadequate for evaluating the performance of heuristics for band-
width minimization, precisely because it fails to satisfy the criteria given above. As shown
in Theorems 2.1 and 2.2, even probabilistic analysis can be of little use if one is naive in
choosing the probability distribution. The key to the work reported here is in the choice
of distribution. Because ¥, (v, p) generates only graphs having bandwidth < ¢, we can
explore properties that are common to most such graphs, even though they may be rare
among unrestricted graphs. The success of heuristics like the level algorithms is due to the
fact that they exploit these properties.

The methods used in this paper at least partially satisify the criteria outlined above.
They provide the first satisfactory analytical explanation of the practical success of the level
algorithms and they provide insight leading to methods, which at least in theory are better.
If the modified level algorithms fare as well in practice as they do on paper, the utility of
these methods will have been demonstrated.
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