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Abstract

We describe a simple and efficient heuristic algorithm for the graph coloring
problem and show that for all k£ > 1, it finds an optimal coloring for almost
all k-colorable graphs. We also show that an algorithm proposed by Brélaz
and justified on experimental grounds optimally colors almost all k-colorable
graphs. Efficient implementations of both algorithms are given. The first one
runs in O(n + mlogk) time where n is the number of vertices and m the
number of edges. The new implementation of Brélaz’s algorithm runms in
O(mlogn) time. We observe that the popular greedy heuristic works poorly
on k-colorable graphs.

*This research supported in part by the National Science Foundation, grant rumber DCR-8409435.
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1. Introduction

Let G = (V,E) be a simple undirected graph. A k-coloring of G is a mapping
c:V — {1,2,...,k}; c is a proper coloring if c(u) # ¢(v) for all {u,v} € E. The
chromatic number of G, denoted x(G), is defined as the smallest positive integer k
for which a proper k-coloring exists. The graph coloring problem is to determine for
a given graph G and an integer k, if x(G) < k.

The graph coloring problem has a long, interesting history and arises in a va-
riety of applications. Karp [8] showed that the problem is NP-complete. Stock-
meyer [10],4] strengthened this by showing that it remains NP-complete for any
fixed k > 3. This has led many researchers to seek approximation algorithms ca-
pable of producing colorings that don’t use too many extra colors. Garey and
Johnson [5] proved that unless P = NP, no polynomial time approximation algo-
rithm can guarantee the use of fewer than 2x(@) colors. Furthermore, Johnson (7]
showed that for many popular heuristics, there are 3-colorable graphs on n vertices
for which the heuristics require ©(n) colors. Johnson also described a new algorithm
using at most O(n/logn) colors on any 3-colorable graph. This stood as the best
worst-case result for graph coloring until Wigderson [12] discovered an algorithm
that colors any 3-colorable graph using at most 3[1/n] colors and any k-colorable
graph using at most 2k l-nl‘lf (1"‘)] colors.

The disappointing nature of the worst-case results for graph coloring suggests
that probabilistic analysis may provide a more effective way of evaluating candi-
date algorithms. Grimmet and McDiarmid [6] took the first step in this direction
by showing that for almost all graphs on n vertices, x(G) = (1 —€)n/(2log, /15 ),
where p is a fixed edge probability in the usual random graph model, and ¢ is any
positive constant. (In the usual random graph model, edges are generated indepen-
dently with probability p between each pair of vertices. We say that a property
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holds for almost all random graphs if the probability of the property holding ap-
proaches one as n — 00.) They also showed that a well-known greedy heuristic uses
< (1 + €)n/logy;_p) n colors.

Grimmet and McDiarmid’s results are interesting for what they tell us about
random graphs; it’s less clear what they tell us about the merits of the greedy
heuristic. The naive conclusion one can draw is that the greedy algorithm is a good
one for graph coloring. A less obvious, but perhaps more accurate interpretation is
that these results cast doubt on the usefulness of a probabilistic analysis based on the
usual random graph model for comparing graph coloring algorithms. They suggest
that the usual model is too ‘easy’ a distribution, since it makes even the most
simple-minded algorithm look good. In order to obtain meaningful comparative
information, we should try to select a more difficult probability distribution, one
that poses some challenges for candidate algorithms to overcome. The analysis of a
backtrack search algorithm given in [13] and [2] reinforces this interpretation. These
authors show that the expected size of the backtrack search tree explored by their
algorithm is O(1), when graphs are selected using the usual random graph model,
suggesting once again that the usual model is too easy.

The set of k-colorable graphs on n vertices is the set of all n vertex graphs that
can be colored with k or fewer colors. Let Q be a predicate defined on graphs and
G be selected at random from the set of k-colorable graphs on n vertices. We say
that Q holds for almost all k-colorable graphs if lim,, o, Pr(Q(G})) = 1.

In section 2, we introduce a simple heuristic coloring algorithm and define a nat-~
ural probability distribution over the set of k-colorable graphs. We then show that
for graphs selected from this distribution, the algorithm finds an optimal coloring
with high probability. In section 3, we show that this algorithm finds an optimal
coloring for almost all k-colorable graphs. In section 4, we give similar results for
Brélaz’s algorithm. Section 5 gives efficient implementations of both algorithms.
Section 6 gives experimental results that provide more detailed information on the
performance of the two algorithms. Section 7 gives evidence that the popular greedy
heuristic performs poorly on k-colorable graphs and section 8 contains closing re-
marks.
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2. The No-Choice Algorithm

Let n,k be positive integers, 0 < p < 1 and let G = (V, E) be the graph defined by
the following experiment.

o Let V ={1,...,n}.
o For each v € V let ¢(u) be a random integer in [1, k].

e For each pair u,v € V such that ¢(u) # ¢(v), include the edge {u,v} in E with
probability p.

The probability distribution defined by this experiment is denoted X, (k,p) and the
notation G' € X,(k, p) means that G is a random graph generated in this way.

Let 0 < p < 1 be fixed and let k = k(n) be an integer function that satisfies
2 < k < n. Let @ be a predicate defined on graphs and let Pr{(Q(G)) be the
probability that Q(G) is true for G € X,,(k, p). We say that Q holds for almost all
G € Xn(k,p) if limp—o Pr{Q(G)) = 1.

In this section we present a heuristic coloring algorithm, which for constant p
and k growing slowly with n finds a k-coloring for almost all G € X,(k,p). In the
next section, we will use this result to show that the algorithm successfully colors
almost all k-colorable graphs.

Define a partial coloring of a graph G = (V, E) to be a mapping ¢ : V — [0, n].
The algorithms we will study start by constructing the partial coloring defined
by ¢(z) = 0 for all z € V and then attempt to convert this to a complete proper
coloring. Given a partial coloring ¢, we can define for each vertex z, a set avail(z) =
{{]l1 £ i< nA({z,9} € E = ¢y} # 1)}. K zis currently uncolored (c(z) = 0),
avail (z) is the set of colors that are available for coloring z. We will write avail(z)
without the subscript whenever the coloring function is clear from the context.

Our algorithm attempts to find a k-coloring of a graph G = (V, E), where k is
assumed to be an input parameter. The algorithm has two phases. In the first
phase it attempts to find a k-clique by repeating the following step k times.

Clique Finding Step. Select a vertex z adjacent to all previously selected
vertices.

If it finds a clique, it colors each of the vertices in the clique with a distinct color
in [1,%) and starts the second phase which consists of repeated applications of the
following rule.
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Coloring Rule 1. Select an uncolored vertex z for which |avail(z)N[1, k]| =
1 and let ¢(z) = min aveil(z).

We refer to this as the no-choice algorithm since it succeeds only if it can color all the
vertices without making any arbitrary choices (after coloring the initial k-clique).
The algorithm can fail to produce a k-coloring if it is unable to find a k-clique or if
at some point |avasl(z) N [1,k]| # 1 for all uncolored vertices z. We will show that
when k is not too large, the no-choice algorithm succeeds with high probability for
G € X,(k,p).

Define A,(c) = —!22, Note that A,(¢) > OwhenO0<c<1land n > 1, ¢ =

Ine”

and lim, e An(c) = oo for fixed ¢ € (0,1). We will usually write A(c) instead o
Anle).

I

h

THEOREM 2.1. Let0<e<1,0<p <1 be fized, n — 00 and 2 < k < (1—¢€)A(p).
For almost all G € X, (k,p), the no-choice algorithm finds a k-coloring.

We say that a graph is uniquely k-colorable if all proper k-colorings induce the same
partition on the vertex set. Since the no-choice algorithm makes no arbitrary deci-
sions with the exception of coloring the initial clique, the graphs it colors successfully
are uniquely k-colorable.

COROLLARY 2.1. Let 0 < e < 1,0 < p < 1 be fized, n = c0o and 2 < k <
(1—€)A(p). Almost all G € X,(k,p) are uniquely k-colorable.

To prove Theorem 2.1, we first define a class of graphs which we call eas:ly
colorable graphs and observe that the no-choice algorithm succeeds for all easily
colorable graphs. We then present a series of lemmas which together imply that
almost all G € X, (k,p) are easily colorable.

We say that a k-colorable graph G satisfies the clique property if for every r < k,
all cliques on r vertices can be extended to r + 1 vertices.

Let G be a k-colorable graph containing at least one k-clique and let {z;,...,z,}
be any k-clique in G. We define

Ai(z1, . z) = {veV[{y,z;} € Eforall j#1}
Bi(z1,...,2x) = {y €V |y is adjacent to some z; € A4;(zy,...,zx) for all 7 # ¢}
Ci(zy,...,22) = {y €V ]yis adjacent to some z; € B;{zy,...,z;) for all j # 1}

Note that z; € A;(z,,...,2x) € Bi(zy,...,2) C Ci{z1,...,2x) for all 1.



ALMOST ALL k- COLORABLE GRAPHS 5

We say that a k-colorable graph G is easily colorable if the clique property holds
and for all cliques {z;,...,z;:},

Uf=10.- (31, 800 ,.’Bk) =V,

It’s easy to see that the no-choice algorithm will succeed for any easily colorable
graph. It remains to show that almost all G € X,,(k,p) are easily colorable.

The following proposition (Angluin and Valiant [1]) is used in the proofs of
several of the lemmas which follow. Let B(n,p) denote the binomial distribution.
By definition, if z € B(n,p) then P(z =k) = (:)p"(l —p)"k,

PROPOSITION 2.1. If z € B(n,p) then for all a, 0 < & < 1,P(z £ (1 — &)np)
< e~@"?/2 gnd P(z > (1+ a)np) < e~*""#/S,

For G € X,(k,p) we define ¢ to be the randomly selected k-coloring used to
generate G and we let

K={ueV|c(u)=g} n‘=l":| m=115n‘_1-<{1kn;'

Our first lemma puts a lower bound on |V;|.

LEMMA 2.1. Let 0<e<1,0< p < 1 be fizred, n — 0o and 2 <k < (1 - ¢€)X(p).
For almost all G € X,,(k,p), n; = |V;| = n/2k for all i.

proof. Each n; is a random variable drawn from B(n,1/k). By Proposition 2.1, the
probability that a particular n; is less than n/2k is < ¢~™/®* and the probability
that any of the n; is less than n/2k is < ke=/® — 0, since k = O(logn). DO

LEMMA 2.2. Let0<e€<1,0<p<1 be fized, n — 00 and 2 < k < (1 — €)A(p).
For almost all G € X, (k,p), the cligue property holds.

prooj. By Lemma 2.1, the probability that m < n/2k vanishes for large n. Assume
then that m > n/2k. Let K, be any clique of size r < k. The probability that there
is no vertex y adjacent to all the vertices in K, is < (1 — p")™*~"), There are at
most n" ways to select K., so the probability that there is an r-clique which cannot
be extended is

k-1
<> n"(1—p")™E-") < knk(1—p*)/%* < fnkemrt/2k < exp(lnk+kInn—n/2k] - 0

r=1

since k = O(logn). O
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LEMMA 2.3. Let 0<e<1,0<p<1 be fized, n — o0 and 2 < k < (1 — €)A(p).
For almost all G € X, (k,p), if 21,...,2s i5 any k-clique with z; € V; (1 < i < k)
then [Ai(z1,...,zi)| = (1 — €)n¢/2k for alls.

proof. By Lemma 2.1, the probability that m < n/2k vanishes for large n. Assume
then that m > n/2k. From this and the bound on k, we obtain n;p*~! > n¢/2k
for all &. Let s; = |4;(2,...,%;)| for a particular choice of z;,...,z;. Using
Proposition 2.1, we obtain

P(s: < (1—€)n/2k) < P(s; < (1 — )nypb™t) < e~ni#" 7! /2 < gcin/ak

Since z,,...,2; can be chosen in at most n* ways, the probability that there is any
choice of z,,...,z; for which some s; is smaller than (1 — e)n®/2k is

< knFe ™M = expllnk + klnn — énf/4k] — 0
since k = O(logn). O

LEMMA 2.4. Let0<€<1,0<p<1 be fized, n — 00 and 2 < k < (1 — €)A(p).
For almost all G € X,(k,p), ff 21,..., 24 ¥s any k-clique with z; € V; (1 < i < k)
then |Bi(z1,...,2x)| = n; — kA(1 — p) for all 4.

proof. Suppose G satisfies the following property

(*) For every choice of Uy,...,U; where U; C V; and |U;| = r > kA(1 — p), each
U; contains a vertex y; having a neighbor in each U; (5 # 1).

If in addition, [Ai(z1,. .., Z&)| 2 kA(1—p) for all 1, then it follows that | Bi(zy, ..., z:)| >
n;—kA(1—p) for all 7. By Lemma 2.3, almost all G satisfy |A;(zy,. .., Z:)| = kA(1—p)
for all 1, so it suffices to show that (*) holds for almost all G.

Consider a particular choice of Uy,...,U; and let y € U;. The probability that
there is a 7 € [2, k] such that U; has no neighbor of y is < k(1—p)". The probability
that U) contains no vertex with neighbors in each of Us,...,U; is < (k(1 — p)7)".
Hence, the probability that G does not satisfy (*) is

%Y k(1 — p)V < K 5?.)‘" _ r=<(2 _ r/k)"'< br
<k(p) o=y < ()7 (- < (Ll =) < e/ 0
since r = f)(logn). O
LEMMA 2.5. Let0<e<1,0<p<1be fized, n — 00 and 2 < k < (1 — €)A(p)-

For almost all G € X, (k,p), tf Z1,...,%; 18 any k-clique with z; € V; (1 < ¢ < k)
then UX_Ci(z1,...,2:) = V.
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proof. Suppose G satisfies the following property.
(**) v € Vi Aj#4 = u has at least (1 — €)np/2k neighbors in V;.

If in addition, |Bi(zy,...,2:)| > ni — (1 — €)np/2k for all i, then it follows that
Ci{z1,...,2x) = V; for all i. By Lemma 2.4, almost all G satisfy |B;(zy,...,z)| >
n; — (1 — €)np/2k for all 1, so it suffices to show that (**) holds for almost all G.

By Lemma 2.1, the probability that m < n/2k vanishes for large n. Assume then
that m > n/2k. Let di(z) be the number of neighbors vertex z has in V;. Clearly,
di(z) € B(ni,p) for z & V;. By Proposition 2.1,

P(di(z) < (1 - €)np/2k) < P(di(z) € (1 — €)nip) < e~ <™PI2 < g~ <"np/4k

So the probability that G does not satisfy (**) is < kne~<*"?/4k _, 0, O
This completes the proof of Theorem 2.1.

3. Most k-Colorable Graphs are Easily Colorable

In this section we show that almost all k-colorable graphs are easily colorable. The
proof is indirect and depends on a careful examination of the process by which
graphs G € X,(k,1/2) are generated. We view this process as a random walk in a
certain graph which we now define.

Let ©F be the set of all k-colorings for n vertex graphs. Let ®F be the set of all
k-colorable graphs on n vertices. We define T¥ = (W, F) to be a directed graph in
which

W = {u}uefusk
F = {[u,c]|ce®f}u{lc,G]|c € ©k A G € & A ¢ is a proper k-coloring for G}

The structure of T is illustrated in Figure 1. The process by which graphs in
Xn(k,1/2) are generated can be viewed as a two step random walk in T starting
at vertex u. We first select a coloring, giving each one equal probability of selec-
tion. We then select a graph for which the selected coloring is proper, giving equal
probability to each such graph.

Let § C ©f contain all colorings that assign each color to at least n/2k vertices.
We refer to these as balanced colorings. Let ¢ C ®* contain all easily colorable
graphs that can be colored using a balanced coloring. Also, let § = ©* — ¢ and
é = &% — ¢. With these definitions we can give a more detailed picture of T* as
shown in Figure 2. Note that all edges leaving # terminate in ¢.
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- Figure 1: Structure of T*

We claim that [¢|/|¢] — 0 as n — co. By Corollary 2.1 each G € ¢ has exactly k!
incoming edges. Also, note that each G € ¢ has at least k! incoming edges. Hence,
we can prove our claim by showing that the ratio of the number edges entering ¢
to the number of edges entering ¢ vanishes.

Let d(84) be the number of edges joining 6 and ¢. Define d(64) and d(64)
similarly. We will prove our claim by showing that

d(99) +d(F9) _
d(f¢)

First, note that Lemmas 2.1-2.5 together imply that given any balanced coloring,
almost all graphs for which that coloring is proper are easily colorable. Hence,
d(6¢)/d(6¢) vanishes. It remains to show that d{(# @)/d(d¢) vanishes. We can do
this by establishing the following sub-claims.

0

« [31/16] - 0

o The expected out-degree of a randomly selected vertex in @ is less than the
expected out-degree of a randomly selected vertex from 6.

The first sub-claim follows immediately from Lemma 2.1. We now prove the second.
Let ¢ be an arbitrary coloring and let n; be the number of vertices assigned color ¢
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Figure 2: Detailed Structure of T*

by ¢ (1 < ¢ < k). The out-degree of ¢ in T is exactly
2(;)-2:;1 ("2.)

Note that as f=1 (';') increases, the out-degree decreases. So we can prove our

second sub-claim by showing that the expected value of § = PN (';) is smaller for

balanced colorings than for unbalanced colorings. We do this by showing that
E(S) is larger for an unbalanced coloring than for an arbitrary coloring.

For an arbitrary coloring,
1¢& 2
E(§) = 5 2_(E(n]) - E(n))
i=1
Since in this case, E(n;) = n/k and E(n}) = (n/k) + n(n — 1)/k?, it follows that

w1}

Let r = n/2k. For an unbalanced coloring,

£ = (rema( )

=1
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= r(r—1)+(n—r)(k C - 1)]
[n? — 2nr
T2 k-1 "TEC 1]

nTc'_("k:_I"';) +k—1"]
- 1(3) 35
e

The expression in brackets is > 0 when n > 4(k — 1)2. Consequently, the expected
value of S is smaller for balanced colorings than for unbalanced colorings when n >

4(k—1)? implying that the expected out-degree for a coloring in @ is at least as large
as that of a coloring in 8. This completes the proof that (d(69) +d(84))/ d(6¢) — 0
and yields the following theorem.

|- = N tolp-

THEOREM 3.1. Let 0 < € < 1 be fized, n — 00 and 2 < k < (1 — €) log, n. Almost
all k-colorable graphs are eastly colorable.

COROLLARY 3.1. Let 0 < ¢ < 1 be fized, n — 00 and 2 < k < (1 —¢€) log, n. For
almost k-colorable graphs the no-choice algorithm produces a k-coloring.

4. Brélaz’s Algorithm

The no-choice algorithm is similar to one proposed by Brélaz [3] and justified on
experimental grounds. Brélaz’s algorithm can be described as a repeated application
of the following rule.

Coloring Rule 2. Select an uncolored vertex z that minimizes |avail(z)|
and let ¢(z) = minavail(z). If there are several vertices available for
selection, select one with maximum degree in the uncolored subgraph.

Consider the behavior of Brélaz’s algorithm on a k-colorable graph G on n vertices
that is easily colorable. Because G satisfies the clique property, the first k& vertices
colored will form a k-clique. Once the first k vertices have been colored, the al-
gorithm repeatedly selects a vertex z for which |avail(z)| = n — k + 1; that is, it
mimics the no-choice algorithm. These observations yield the following theorem.
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THEOREM 4.1. Let 0< € <1,0< p < 1 be fized, n — o0 and k < (1 —€)A(p).
For almost all G € X, (k,p), Brélaz’s algorithm produces a k-coloring.

COROLLARY 4.1. Let0 < e< 1 be fized, n — 00 and 2 < k < (1 —¢)log,n. For
almost k-colorable graphs Brélaz’s algorithm produces a k-coloring.

5. Efficient Implementations of Algorithms

A program implementing the no-choice algorithm is shown in Figure 3. (The algo-
rithmic notation is adapted from Tarjan [11].) Vertices are represented by integers
in [1,n] and the graph is represented by an array of vertex sets called neighbors. For
each vertex z, neighbors(z) is a list containing all vertices adjacent to z in increasing
order. Vertices that are ready to be colored are placed in a queve. Each iteration of
the algorithm’s main loop removes a vertex from the queue, colors it, then examines
its neighbors, adding them to the queue if possible. Initially each vertex is assigned
a color of —1. When a vertex is added to the queue, its color is changed to 0. The
subroutine shown in Figure 4 is used to find a clique. The cligue program can be
implemented to run in linear time, if the set S is represented as a bit vector and
2 supplementary list of vertices ordered by degree is used to determine z on each
iteration. (This supplementary list can be sorted in linear time using a radix sort.)
The key to efficient implementation of the main program is the data structure used
to represent the sets avail{z). The simplest approach is to use a bit vector for each
set. This leads to an O(kn + m) running time for a graph with n vertices and
m edges. We can improve on this by using a special variety of binary search tree
described below. (Note that a standard search tree won’t help here since initializing
n search trees to represent the set {1,...,k} takes 0{knlogk) time.)

We define a shrinking set to be an abstract data type representing a set of positive
integers on which the following operations can be performed.

makeset(lo, hi) Return 2 new set consisting of the integers in the interval [lo, hi].
select(s) Return an arbitrary element from s.
selectmin(s) Return the smallest element in s.

delete(z, s) Delete the integer z from s.

The operations on shrinking sets are defined in terms of another abstract data
structure, which we call an snterva! set. An interval set represents a set of disjoint
intervals on the positive integers on which the following operations are defined.
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function bit nochoice(integer k,n, graph neighbors, modifies array c);
integer 1, nc; vertex z,y; list Q; set X;
array[l..n| of set avail;
for z € [1..n] — ¢(z) — —1; avail(z) — {1,...,k}; rof;
X « clique(k, n,neighbors);
if | X| # k — return false fi;
t—1iforze X — ¢(z) + i;{ «~ i + 1; rof;
Q « [I;
forze X —
for y € neighbors(z) —
avail(y) — avail{y) — ¢(z);
if ¢(y) = —1 and |avail(y)| = 1 —
Q — Q&[y]; c(y) < O;
fi;
rof;
rof;
nec «+— k;
doQ#[] -
z— Q[1]; @ «~ Q[2..);
if javail(z)| # 1 — return false fi;
¢(z) «+ min avasl(z); nc — nc + 1;
for y € neighbors(z) —
avail(y) — avail(y) — ¢(z);
if e(y) = —1 and javail(y)| =1 —
Q — Q&ly; e(y) < 0;
fi;
rof;
od;
return nc = n;
end;

Figure 3: Program Implementing the No Choice Algorithm
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set function clique(integer k,n; graph neighbors);
set S, K;
S« {L,...,n};
K « @
do S 7’-‘ f—
Select £ € S of maximum degree.
K «— K U {z};
S + § N neighbors(z);
od;
return K;
end;

Figure 4: Subroutine for Finding a Clique

makeintervalset (i) Return a new set consisting of the interval 1.

member (z, s) Return the interval in s that contains the integer z. If there is no
such interval, return [].

select(s) Return an arbitrary integer contained in some interval in s.
selectmin(s) Return the smallest integer contained in some interval in s.

insertinterval (i, s) Insert the interval ¢ in s (i must be disjoint from intervals already
in s).

deleteinterval(z,s) Delete the interval ¢ from s.

An interval set can be implemented efficiently using any standard balanced search
tree structure. Each node of the search tree represents an interval. This yields
an O(logn) running time per operation, where n is the number of intervals in the
set. The operation makeset(lo,hi) on a shrinking set is implemented simply as
makeintervalset([lo, hi]) on the underlying interval set. The select and selectmin
operations on a shrinking set are implemented as the corresponding interval set
operations. Finally, the operation delete(z,s) on a shrinking set is implemented by
the program fragment in Figure 5. Thus, all the operations on a shrinking set can
be implemented to run in O(logk) time, where k is the size of the set when it is
initialized. These observations yield the following theorem.

THEOREM 5.1. The no-choice algorithm can be implemented to run in O(n +
mlog k) time on graphs with n vertices and m edges.
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¢ < member(z, s};
if 5[] —
deleteinterval(z, s);
if t.lo < z — insertinterval([i.lo, z — 1],s) fi;
if ¢.hf > = — insertinterval([z + 1,4.hi], s) fi;
fi;

Figure 5: Program Fragment Implementing the Delete Operation

In [3] Brélaz claims an O(n?) time bound for his algorithm, which is easily proved.
In fact, Brélaz’s algorithm can be implemented to run in time O(m log n) for a graph
with n vertices and m edges. The program in Figure 6 illustrates this. The heap
contains the uncolored vertices. For the purposes of the heap operations, vertex
z is smaller than vertex y if |avail(z)| < |avasl(y)| or |avail(z)| = |avail(y)] and
deg(z) > deg(y). The siftup operation restores the order of items in the heap after
the changes to avadl(y) and deg(y). See [11] for details. As in the program for the
no-choice algorithm, the key to an efficient implementation is the data structure used
to implement the sets avasl(z). If a bit vector is used, the running time is O(n?).
However, using the shrinking set data structure each initialization operation can be
done constant time, the selection of a minimum can be done in Oflogn) time as
can the deletion operation. These observations yield,

THEOREM 5.2. Brélaz’s algorithm can be implemented to run in O(mlogn) time
on graphs with n vertices and m edges.

6. Experimental Results

A series of experiments were run to provide more detailed information on the per-
formance of the no-choice algorithm. One hundred random graphs in X, (k, .5) were
generated for each of several values of n and k. The no-choice algorithm was then
run on each graph. The results are summarized in Figure 7. For each value of n and
k the figure shows the number of graphs for which a k-coloring was constructed.
The figure shows that the algorithm works well when k is small, but as k gets larger
its performance deteriorates abruptly. This is consistent with the analysis given in
section 2. As n increases, the breakdown point also increases. Let S,.(p) be the
smallest k for which the probability of success on graphs in X, (k,p) is less than
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procedure brelaz(integer k,n, graph neighbors, modifies array c);
vertex z,y; heap h;
array|l..n] of set avail;
array(l..n| of integer deg;
forze[l..n] —

¢(z) + 0;
avail(z) + {1,...,n};
deg(z) « |neighbors(z)};
rof;
h «— makeheap({1,...,n});
doh # —
z + deletemin(h);
¢(z) — min avail(s);
for y € neighbors(z) —
if c(y) =0
avail (y) — avail(y) — c(x);
deg(y) « deg(y) — 1;
siftup(y, k);
fi;
rof;
od;
end;

Figure 6: Program Implementing Brélaz’s Algorithm

1/2. We can estimate B,(p) by observing where the curves in Figure 7 cross the
dashed line. The data suggest that B2s(.5) = 6, Base(.5) = T, Bs12(.5) = 8, and
B1024(-5) = 9. This is consistent with Theorem 2.1, which suggests that 8,(p) grows
in proportion to logn.

Figure 8 shows the results of a series of experiments, which provide more detailed
information on the performance of Brélaz’s algorithm. One hundred random graphs
in X,(k,.5) were generated for each of several values of n and k, and Brélaz’s
algorithm was run on each graph. The plot shows the ratio of the average number
of colors used to k. As with the no-choice algorithm, the performance is quite
good for small k, but deteriorates abruptly as k gets large. The point at which the
breakdown occurs appears to increase logarithmically with n as one would expect
from Theorem 4.1.



16 JONATHAN S§. TURNER

100 o
80
B 1024
60
40 -
2
| 1 i | ! ]
4 5 6 7 8 0o

Figure 7: Success Rate of No Choice Algorithm for Graphs in X,(k,.5)

7. The Greedy Algorithm

The greedy algorithm for graph coloring is a simple and popular heuristic. It can
be described as follows.

For each z € [1,n], let ¢(z) = min avail(z).

Grimmet and McDiarmid [6] have shown that for almost all random graphs (in
the usual model), the greedy algorithm uses no more than about twice the optimal
number of colors. In this section, we study the performance of the greedy algorithm
for graphs in X, (k,p) and conclude that it performs poorly unless k is quite small.

Let G = (V, E) € X, (k,p). Let ¢ be the coloring used to generate G and let ¢' be
the coloring computed by the greedy algorithm. We are interested in the probability
that ¢’ is a k-coloring. Since almost all G are uniquely k-colorable, this probability
is approximately k! times the probability that ¢' = ¢, for large enough n.

Let Si(r)={1<2<r|c(z) =c'(z) =1} for 1 £ i < k and let P(ny,na,...,n)
be the probability that |S;(r)] = n; for all i € [1,k], where r = X, n;. P satisfies
the following recurrence.

P(0,...,0) = 1

P(nyy...,n) = if any n; <0

0]
1 F h—1 -
Png,...,n) = e ST P(ng, ooy nac1, e — L mpgay ooy k) I a(n;) otherwise
h=1 §=1
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Figure 8: Average Performance Ratio of Brélaz’s Algorithm for Graphs in X, (k,.5)

where a(z) = 1 — (1 — p)*. (We adopt the convention that an empty product is
equal to 1.) Now, let @(r) be the probability that ¢(z) = ¢/(2) for 1 < z < r and

c(r) #d'(r).
Q(f+1)= z: P(nl,...,nk) [1—%2 ﬁa(ni)]

Nyyeeiany >0 h=1j=1
Nyt +n =r

Now, the probability that ¢’ # ¢ is =7, @(r). This yields the following theorem.

THEOREM 7.1. Let 0 < p < 1, k > 1 be fized and let G € X, (k,p). Asn —
0o, the probability that the greedy algorithm produces a k-coloring of G approaches

k! (1 - 2?:1 (1’)).

The terms in 37, Q(r) decline rapidly, so for small k, we can use Theorem 7.1
to estimate the probability that the greedy algorithm produces a k-coloring. We
illustrate the procedure for the case, k = 2. The general equations reduce to

P(ny,n;) = % [P(ny — 1,n2) + P(ny,ne — 1) (1 — (1 — p)™)]

Q(r+1) = —;—iP(nl,r—nl)(l—p)“l

n1=0
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Figure 9: Average Number of Colors Used by Greedy Algorithm for Graphs in
Xn(k,.5)

Using these equations and Theorem 7.1 we estimate that for large n, the probability
of the greedy algorithm successfully 2-coloring a graph in X,(2,.5) is approximately
.42. In the same way, we estimate that the probability of the greedy algorithm suc-
cessfully 3-coloring a graph in X,(3,.5) is approximately .091, and the probability
of it successfully 4-coloring a graph in X, (4, .5} is approximately .044. We conclude
that unless k is quite small, we cannot expect the greedy algorithm to find optimal
colorings for random k-colorable graphs.

Of course, the above results don’t rule out the possibility of the greedy algorithm
producing good but sub-optimal colorings. Experimental methods were used to
address this issue. One hundred random graphs in X,(k,.5) were generated for
each of several values of n and k. Figure 9 shows the average number of colors
used by the greedy algorithm in these experiments. For any given k, the number of
colors used increases with n. The rate of growth is moderate when k is small, but
fairly large for £k = 6. For £k = 6 and n = 100, the greedy algorithm uses almost
three times the optimal number of colors. The data indicate that except for very
small k, the greedy algorithm can be expected to produce colorings that differ from
optimal by an arbitrarily large factor.
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8. Closing Remarks

In this paper, we have shown that when k is not too large relative to n, almost all
k-colorable graphs are easily colorable. For larger values of k, all the algorithms
discussed here perform poorly. One open problem is to find algorithms that work
well when & is as large as say, nl/2.

Theorem 3.1 implies that the complexity of recognizing k-colorable graphs is
caused by a relatively small number of “pathological cases.” Similar results may
hold for other NP-complete problems. Indeed it may be possible to classify NP-
complete sets as hard or easy based on whether or not they contain large subsets
whose members can be efficiently identified. The current work represents a first
step in such a classification.
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