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Abstract

This paper describes the shoriest common matching string problem, which arises from a
data analysis problem in molecular gepetics, and shows that it is NP-complete.
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Let 83 = a;...a, and 82 = b;...b, be strings over some finite alphabet £. We say that sy is a
substring of s, if there is an integer ¢ € [0, s — r} such that a; = b, for 1 < < r. We also say in

this case that s; is a superstring of s;.

A bag b= (ay,...,6,) is an unordered collection of symbols from some alphabet T in which the
same symbol may appear more than once. (A bag is often referred to as a multi-set.) f s =5, ...5,
is a string we define {s) to be the bag {b;,...,b,). We say that a bag b matches a string s if s
contains some substring s’ such that {s') = b. We also say that s matches b or that s is a matching

string of b. For example, the string debcabf is a matching string of the bag (a,b,b,c).

An instance of the shortest common matching string problem (SCMS) is a set of bags B =
{by,...,bn} over a finite alphabet T and an integer m. The object of the problem is to deter-
mine if there is a string of length < m that matches every bag in B. Alternatively, we can view the
object as being to find a minimum length string that matches every bag in B. We let x*(B) denote

the length of a minimum length matching string for B.

EXAMPLE. If B = {(aceghi), (abfgik), (adfhki), {(defghi)}, (afghik)}, the string bfgiakhfdegiach

is a minimam length solution.

This problem has applications to molecular genetics. In particular, it arises in the analysis of
experimental data used to map restriction enzyme sites in DNA from complex organisms. This
connection is explained fully in [4]. The problem does mot appear to have been studied previously,

although a related problem, the shortest common superstring problem (SCS) has been {1,2,3].

The purpose of this paper is to introduce the shortest common matching string problem and prove

that it is NP-complete. The transformation is from the shortest common superstring problem [1]. To
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simplify the presentation, we introduce an intermediate problem and use a two step transformation

from SCMS to SCS.

Let s = a; ...a, be a string. The notation si] denotes the symbol a; if { > 0 and ap4i41 if £ < 0,

The notation s[t, ] denotes the string #]i}... s[5].
If s=a...q, is a string, we let rev(s) =a,...a;.
The number of symbols in a string s is denoted |s| and for any set of strings S, {IS|| = 2, 5 |s]-

An instance of the shortest common superstring problem is a set of strings S = {s;,...,3,} over
a finite alphabet I and an integer m. The object of the problem is to determine if there is a string
of length < m that is a superstring of every s; € S.

EXAMPLE. If § = {egiach,bfgiak, hfdegi,iakhfd, fgiakh}, the string bfgiakhfdegiach is a

minimum length solution.
The NP-completeness of SCS is proved in reference |1].

An instance of the reverstble shortest common superstring problem is also a set of strings § =
{81,...,8,} over a finite alphabet T and an integer m. The object in this case, is to determine if

there a string of length < m that for all s € S contains either s or rev(s).

EXAMPLE. If § = {hcaige, kaigfb, igedfh, iakhfd, fgiakh}, the string bfgiakhfdegiach is a

minimum length solution.
THEOREM 1. RSCS s NP-complete.

Prooj. Clearly RSCS € NP since a nondeterministic Turing machine can guess a string of length
< m and check in polynomial time that it is a superstring of either s or rev(s) for all s € S.

We now show how to transform an instance (S = {s1,...,8.},Z,m) of SCS to an instance
(S' = {s},...,8,},Z',m') of RSCS. We assume without loss of generality that no string in S is a

substring of another.

First, define ' = T U {0,1} where O and 1 are not in L. For any string 2 = a; ...a,, define
F(2) = 0a;10a31 - --0a,10. We now define 8! = f(s,) and let m' = 8m + 1.

For example, if T = {a,b,c,d}, § = {dccbds, bacbad, bdaabe, cbadee} and m = 14 then

Z' = {a,b,¢,4,0,1}, m' = 43 and

§' ={ 0410¢10¢10b10d10a10, 0b10a10c10b10210d10,

0b10d10a102a10b10c10, 0c10b10a10310c¢10c10}
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The original problem has the string bacbadccbdaabe as a solution. The corresponding solution to

the transformed problem is

Ob10a10c10bi0a10d10¢c10c10b10410a10a10b10c10

We claim that in general S has a solution of sise < m if and only if $’ has a solution of size < m’,
First, assume that o is a superstring of all s; € S and that |o] < m. Renumber the s; in order of
their first appearance in o and let x; be the smallest 7 such that s; = o7, 7 +|s;|—1]. We will assume
without loss of generality that w3 =1, w4y < m + |s;]for1<i<n—1and x, = |o] — |s4| + 1.
Now, let ¢; = x; + |8;| — m;41 for 1 £ ¢ < n—1 be the amount of overlap between consecutive strings

in o and note that for 1 <1 <n—1, sf[—(3¢; +1),—1] = 5;,[1, (3¢ + 1)]. Hence, the string
o' = s}85[8¢1 + 1, ~1s5{3¢2+ 1, —1] -+ - 5], [3¢pp—1 + 1, 1]

i= a superstring of all strings in §' and {¢'| = 3lo|+ 1 < 3m + 1 = m'. Hence, if S has a solution of

size < m, &' has a solution of size < m/'.

‘We now show that if S' has a solution of sise < m’', then S must have a solution of size < m. Let ¢/
be any string which for all s} € 5’ is a superstring of either s} or rev(s!) and let |o'| € m’. Renumber
the s; in order of the first appearance of either s; or rev(s;) in o' and let «} be the smallest 5 such
that either ] = o7, 7+|s}|— 1] or rev(s!) = 0[5, 7+|s}|—1]. We will assume without loss of generality
that 7] = 1, wl,, < of+[si|for 1< i< n—1and m, = |o'|—|sl|+ 1. Now, let ¢! = &} + |si|—m
for 1 <1 < n—1 be the amount of overlap between consecutive strings. Note that if ¢} > 1 then
either o’'{x} + 2,7} + 3] = o'[x},, + 2,7l + 8] = 10 or [}, 7w} + 1] = &'[m),,, %!, , + 1] = 01. That
is, either both s and s}, are reversed in ¢’ or neither one is. Consequently, there is a string o” of
the same length as ¢’ which is a superstring of all the strings in §’ {that is, none of the sirings is

reversed in ¢"). We will assume therefore, that each s’ € S is a substring of o'. Hence
o = a189((¥1 — 1)/3) + 1, —1as[((¥3 — 1)/3) + 1, =1]- - sn [ ((¥n-1 = 1}/3) + 1, -1

is a superstring of all strings in § and |o] = (Jo’] - 1)/3 < (m' —1)/3 = m. To complete the proof,
we note that (§', 2/, m’) can be computed deterministically in time polynomial in ||S|. O

Remark. In {1), it is shown that SCs is NP-complete, even when the alphabet is limited to two
symbols. Since the proof of Theorem 1 adds just two symbols to the alphabet, it follows that RSCS
is NP-complete when the alphabet is limited to four symbols.

THEOREM 2. SCMS is NP-complete.
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Proof. Clearly SCMS is in NP, since a nondeterministic Turing machine can guess a string of

length < m and check in polynomial time that it matches each of the bags.

We now show how to transform an instance (S = {s1,...,8,}, I, m) of RSCS to an instance
(B = {b1,...,bp},T',m'} of 8CMS, where I’ = T together with the new symbols {L,R,x;,...,x,},
‘=n{r+2)+m+|S|and r=1+4||S||. B=B,U---UB, where

B; = {{x) (L), (xR} U {{xiRsi[1,5]} [1 < 7 < |ss[}
O{{asls, —1JLxi} [1 < 5 < s}

For example, if T = {a,b, ¢, d}, § = {bcdb, dcbe, abeb} and m = 7 then I’ = {a,b, ¢, d,L, R, X1, Xz, %3},
m' =172 and B = B, U B; U B; where

B, ={ (x1°),(1xi®), (x{°R), (x{°Rb), (x{°Rbc), (x{°Rbcd), {x{"Rbedb),
(bLx}?), {abLx$®), (cdbLx?®), (bedbLx?®)}

The sets B, and By are similar. The original problesn has the siring abcbedb as a solution. The

corresponding solution to the transformed problem is
abcbLx$®RabebedRx3°Lebedblxi®Rbedb

Note that its length is 172.

We claim that in general § has a solution string of length < m if and only if B has a solution
string of length < m'. First, assume that ¢ is a superstring of either s; or rev(s;) for all s; € § and
that |o| < m. Renumber the s, in order of the first appearance of either s; or rev(s;) in o and let =;
be the smallest 7 such that either s; = o[7, 7 + |8;] — 1] or rev(s;) = o]j, 7 + |o;]| — 1]. We will assume
without loss of generality that m; = 1, w4 < m+|s;|for 1 <1 <n—1and #n, = |o| — |s5] + 1.

Define
, { 8;LxTRs; if olmi, o + Jog| — 1) = 5
8=

rev(s;)RxILrev(s;) if olm;, m; + |o;| — 1] = rev(s;)
for 1 < 1 < n and note that 5] is a matching string for all the bags in B;. Now, let ¥; = m +{s;|—mi41

for 1 £t < n—1 be the amount of overlap between consecutive strings in o and note that the string
o' = slsbitpy + 1, =1)sh[ths + 1, =1]- - 8, [¥hn—y + 1,—1]

is a matching string for all the bags in B and

n-—1
fo’| = n(r + 2) + 2||S|}| - Z Y <nfr+2)+ 28| = (IS} = m) =n(r+2)+m+|S]|=n'

i=1
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Hence, if S has a solution of length < m, then B has a solution of length < m'.

We now show that if B has a solution of length < m’ then S has a solution of length < m. Let
o' be a shortest matching string for B and assume that |0’| < m'. Let «) be the smallest 7 such
that b; = {¢'[7,7 + |b;| — 1]). Define

iy = iyl 18] = 13 0 {mf . pm + by ] — 1)
That is, ¢;; is the amount of overlap between bags b; and b, in o'
Now, note that nr < |o’'| < m’ < (n+ 1)r. Consequently for any h € [1,n] if b; = (x}) and

bj = (Lx}) then ¢{; > 1. If «}

0<s<m—m;~1land s+t=m—x;. Hence, o'[1,x] — 1]Lo’[r}, |o']] is also a matching string of

< m; — 1 then the string o'[x], x]] has the form x}Lx}, where

B and is shorter that ¢’. Since we assumed that ¢’ was a shortest matching string for B it follows
that ) > x{ — 1. Similarly, we can show that #; < ; and consequently ¥;; = r. This argument can

be extended to show that ], = r for any string b; € Bj, and b; = (x},).

The above observations imply that for all k € [1,n}, ¢’ contains a string s}, of the form sy Lx]Rs;
or rev(sy)Rx} Lrev(s;). Renumber the s in order of their first appearance in o’ and note that for
all ¢ € [1,n — 1] the overlapping portion of s} and s}, is also a valid overlap for s; and s;+;. Now,
redefine ; to be the smallest j such that o'[7,5 + |s{| — 1] € {s!, rev(s!)} for 1 < i < n, and redefine

i =« + [s}| — 7l , for 1 £1 < n— 1 and note that the string
o = syl + 1, —1fss[h + 1,—1]... snPley + 1, —1]

is a solution to the original RSCS instance and that

n=1 n
lol = IS = > ¢} < 18] - [Z isil—m'] =m —n(r+2) - || =m

=1 =1

Hence, whenever B has a solution of length < m', S has a solution of length < m. To complete the

proof, we note that (B, Z', m') can be computed deterministically in time polynomial in ||S|. O

The NP-completeness of SCMS makes it unlikely that there exists an efficient algorithm to solve
it exactly. In a separate paper [5| we address the issue of good approximation algorithme.
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