ADVANCED
COMMUNICATIONS
SYSTEMS

Jonathan S. Turner (PI)
September 1, 1986 — August 31, 1987

WUCs-87-22

Mark A. Franklin

Pierre Costa
Riccardo Melen

Shahid Akhtar
Neil Barrett
Victor Griswold
Mark Hunter
Shabbir Khakoo
George Robbert
James Sterbenz
Bernard Waxman
Einir Valdimarssen

David Wexelblat

Copy to:

Shahid Akhtar

Akira Arutaki

Neil Barrett

Pierre Costa

Jerome R. Cox, Jr.
Maurizio Décina — Italtel
Mark A. Franklin

Victor Griswold

Neil Haller* — Bellcore
Joe Hui — Bellcore

Mark Hunter

Akihiro Kitamura* — NEC
Shabbir Khakoo

Tony Lee — Bellcore
Riccardo Melen

Eric Nussbaum — Bellcore
George Robbert

Anna Robrock* - Italtel
J. Shimuzu - NEC

Dave Sincoskie — Bellcore
Barry Spielman

James Sterbenz

N. Suzuki - NEC
Giuseppe Valbonesi — Italtel
Einir Valdimarssen
Bernard Waxman

Ken Wong

Liang Wu — Bellcore

T. Yamaguchi — NEC

Research Objectives

The Advanced Communications Systems Project is concerned with new com-
munications technologies that can support a wide range of different communica-
tions applications in the context of of large public networks. Communications
networks in common use today have been tailored to specific applications and
while they perform their assigned functions well, they are difficult to adapt to new
uses. There currently are no general purpose networks, rather there are telephone
networks, low-speed data networks and cable television networks. As new commu-
nications applications proliferate, it becomes clear that in the long term, a more
flexible communications infrastructure will be needed. The Integrated Services
Digital Network concept provides a first step in that direction. We are concerned
with the next generation of systems that will ultimately succeed ISDN.

The main focus of the effort in the ACS project is a particular switching tech-
nology we call broadcast packet switching. The key attributes of this technology
are (1) the ability to support connections of any data rate from a few bits per sec-
ond to over 100 Mb/s, (2) the ability to support flexible multi-point connections
suitable for entertainment video, LAN interconnection and voice/video teleconfer-
encing, (3) the ability to efficiently support bursty information sources, (4) the
ability to upgrade network performance incrementally as technology improves and
(5) the separation of information transport functions from application-dependent
functions so as to provide maximum flexibility for future services.

Acknowledgements

The Advanced Communications Systems Project operates within the Computer
and Communications Research Center, an inter-departmental research laboratory
in the School of Engineering and Applied Science at Washington University. The
ACS project began on January 1, 1986 with support from Bell Communications
Research and Italtel SIT. Additional funding is now provided by NEC and the
National Science Foundation through grant DCI 8600947.

The Center’s research program seeks an appropriate balance between theo-
retical and practical issues and has attracted considerable interest world-wide.
Program sponsors interact with the Center through exchange of information and
personnel. Our current sponsors are

National Science Foundation
Bell Communications Research
Italtel SIT

Nippon Electric Corporation

We thank all our sponsors for their collaboration and support. Special thanks go
to Gil Devey and Steve Wolf at NSF, Eric Nussbaum and Neil Haller of Bell Com-
munications Research, Maurizio Décina and Anna Robrock of Italtel and Akihiro
Kitamura and Takehiko Yamaguchi of NEC. We also thank Washington University
for providing an excellent environment in which to carry out this work, in particular
Dean James McKelvey and Jerry Cox for all their support and encouragement.

Contents

1 Summary of Progress

2 Switch Architecture Studies

2.1 Comparison of Alternative Switch Fabrics
2.2 Refinements to the BPN Switch Fabric
2.3 Design of Large Systems

3 Performance Studies

3.1 Fluid Flow Loading Analysis
3.2 Generalized Non-Blocking Networks
3.3 Packet Misordering

4 Prototype Hardware Design

41 Packet Formats
42 Timing o e e e e e e e
4.3 DPacket Switch Element
44 Packet Processor
4.5 Broadcast Translation Circuit

5 Tools for Design of Communication Circuits

5.1 Synchronous Streams Processors
5.2 Implementationof SSPs
5.3 Tools for Constructing Memories

54 Other Tools

111

13
13
22
24

27
27
35
39

41
42
46
47
54
60

6 Connection Management

6.1 Specification of Multipoint Connections

6.2 Multipoint Control Protocols

....................

6.3 Prototype Connection Management Software

7 Multipoint Routing

7.1 Approximation Algorithms
7.2 The Dynamic Steiner Tree Problem
7.3 Random Graphs and Probable Performance

7.4 Distributed Routing Algorithms

....................

8 Bandwidth and Buffer Management

8.1 Queueing Behavior of Bursty Sources
8.2 Bandwidth Allocation
8.3 Bandwidth Specification and Enforcement

8.4 Multipoint Congestion Control

....................

8.5 Access Arbitration in Multipoint Channels

9 Packet Video

v

71
71
75
81

83
83
87
90
90

93
94
96
98
99
103

107

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

Publications and Related Activities 2
Technical Reports 3
Graduvate Student Staff L L L. 11
Broadcast Packet Switch Fabric 14
Starlite Switch Fabric. 16
Alternative Starlite-Type Switch Fabric 18
Prelude Switch Fabric 20
Local Switch Design 25
Composition Operation 29
Recursive Construction of Delta Network 30
Construction of Delta Network with Distribution Stages. 32
Construction of Alternate Routing Network 33
Worst-Case Configuration for Copy Network 34
Distribution of Delay and Misordering Probabilities 39
Prototype Switch Module 42
Packet Formats 44
Local and Global Timing Relationships 47
External Interface for Packet Switch Element Chip 48
Block Diagram of Packet Switch Element Chip 51
Input Circuwit L L 53

4.7 Input Control Circuit 55

4.8 External Interface for Packet Processor 56
4.9 Packet Processor Circuit 57
4.10 External InterfaceforBTC 60
4.11 Block Diagram of Broadcast Translation Chip 62
5.1 Generic Synchronous Stream Processor 64
5.2 Target ssP Architecture 66
5.3 Structure of A Silicon Compiler 67
54 PacketBuffer 68
55 Lookup Table, 69
6.1 Oneto-Many Connection, 72
6.2 Connection for Video Lecture 74
6.3 Connection Management Architecture. 81
7.1 An Example of the Applicationof MST 84
7.2 [Experimental Performance of MSTand RS 85
7.3 Dynamic Greedy Algorithm with Sequence: a,b,dfe, f,d 88
7.4 Experimental Results for the Greedy Algorithm 89
8.1 Markov Chain Model, 95
82 PacketLossRates. 96
8.3 Effective Bandwidth 97
8.4 Simple Bandwidth Enforcement Mechanism 98
8.5 Buffer Management Mechanism 101
8.6 Buffer Implementation 102
9.1 Hybrid VideoCodec 108
9.2 Fixed vs. Variable Rate Channels 109

vl

1. Summary of Progress

The research program of the ACS project can be divided into four major areas:
(1) switching system architecture, (2) cornection management, (3) network control
problems, such as routing and congestion control and (4) design of communications
applications in the context of broadcast packet networks. The primary focus of
our effort in the last year has been switching system architecture, including the
design of a prototype broadcast packet switch. In support of this prototyping effort
we have also been developing tools to aid in the design of the custom integrated
circuits to be used in the prototype. We have also made substantial progress on
connection management, including the design and implementation of preliminary
software, and we are continuing to make steady progress in the area of network
control. Our work on application design is currently limited to an initial study
of the issues associated with packetized video, focussing especially on the effect of
packet transport on the design of video coding methods.

We have been active in publishing our results on broadcast packet switching.
Papers have been presented at several conferences and revised versions have ap-
peared or are scheduled to appear in leading journals. Patent applications have
been filed on broadcast packet switching and invited lectures have been given at
many industrial and academic laboratories. (See Figures 1.1,1.2 for details.) Our
work has generated a great deal of interest throughout the world, and appears to
be having an influence on the research programs at several major industrial labo-
ratories. We find this impact of our work particularly gratifying and expect to see
it continue as our research program develops.

The following subsections summarize the progress we have made in several
specific areas during the past year and outline our plans for the coming year.
More detailed accounts of each of these topics appear in later sections.

Switch Architecture and Hardware Design

The most novel aspect of our research program is its focus on networks supporting
flexible multi-point communication. Any switching system supporting multi-point

1

2 ACS Progress Report (9/1/86 — 8/31/87)

Published Papers

“Design of a Broadcast Packet Switching Network,” by Jonathan S. Turner, Pro-
ceedings of Infocom 86, pp. 667-675, 4/86. Also, to appear in IEEE Transactions
on Communications,

“New Directions in Communications,” by Jonathan S. Turner, JEEE Communi-
cations Society Magazine, 10/86.

“Design of an Integrated Services Packet Network,” by Jonathan S. Turner, JEEE
Journal on Selected Areas in Communications, 11/86.

“Performance of a Broadcast Packet Switch,” by Richard Bubenik and Jonathan
Turner. Proceedings of ICC 87, pp. 1118-1122, 3/86. Also, to appear in IEEE
Transactions on Communications.

“The Challenge of Multipoint Communication,” by Jonathan S. Turner, Proceed-
ings of the ITC Seminar on Traffic Engineering for ISDN Design and Planning,
5/87.

Invited Lectures

Telenet Inc., Reston, VA (8/87)

Southwestern Bell Telephone, St. Louis, MO (8/87)

Bell Atlantic, Great Gorge, NJ (2/87)

Midwest Workshop on Communications Systems, St. Louis, MO (11/86)
Computer Communications Workshop, Warner Springs, CA (9/86)

ITT Advanced Technology Center, Shelton, CT (9/86)

Tutorial on “Integrated Networks for Diverse Applications,” at Infocom 87.

Program committee for ISS 87, ICC 87, Midwest Workshop on Communications Systems.
Guest editor for special issue of IEEE Journal on Selected Areas in Communications

Course on switching systems (CS 577).

Figure 1.1: Publications and Related Activities

communication must be able to connect any subset of its incoming channels to
any subset of its outgoing channels. This is in contrast to point-to-point switching
systems which need only connect input-output pairs.

Our work is based on a particular switching system architecture for multipoint
communication. During the past year we have also been studying some compet-
ing architectures, in particular the Starlite architecture based on Batcher’s bitonic
sorting network which is being developed at Bell Communications Research, and
the Prelude system which is based on an extension of the classical time-slot inter-
changer design and is under development at CNET in France. Each architecture

1. Summary of Progress 3

“Performance of a Broadcast Packet Switch,” by Richard Bubenik and Jonathan Turner,
WUCS-86-10.

“An Architecture for Connection Management in a Broadcast Packet Network,” by Kurt
Haserodt and Jonathan Turner, WUCS-87-3.

“System Testing of a Broadcast Packet Switch,” by Shabbir Khakoo and Jonathan
Turner, WUCS-87-4.

“Specification of Integrated Circuits for a Broadcast Packet Network,” by Jonathan
Turner, WUCS-87-5.

“The Challenge of Multipoint Communication,” by Jonathan Turner, WUCS-87-6.
“Design of a Broadcast Translation Chip,” by George Robbert, WUCS-87-9.

“Thesis Proposal: Routing of Multipoint Connections,” by Bernard Waxman, WUCS-
87-10.

“Fluid Flow Loading Analysis of Packet Switching Networks,” by Jonathan Turner,
WUCS-87-16.

“Distributed Protocols for Access Arbitration in Tree Structured Communication Chan-
nels,” by Riccardo Melen and Jonathan Turner, WUCS-87-17.

Figure 1.2: Technical Reports

has its respective advantages and disadvantages and none clearly dominates the
others. Prelude and Starlite have two properties not shared by our architecture;
they preserve packet sequence and they allow a single shared buffer. The ability
to preserve packet sequence is potentially important for certain high speed ap-
plications. Shared buffering can provide substantially lower packet loss rates in
the presence of highly bursty traffic. Some initial studies of these issues have al-
ready been made and they will be explored in detail in the coming year, first to
assess their real importance, and second to identify extensions of the basic switch
architecture that can address them.

Work on a laboratory prototype of our switching system was started about
sixteen months ago, when we began design work on two integrated circuit chips.
The first of the two chips is the packet switch element that makes up the copy,
distribution and routing networks. This is a multi-function switch element that
can be configured for any of the three networks, with two input and output ports
per switch element. The second chip is the broadcast translation circuit which
performs the translation for multi-point packets. It contains two random access
memories implementing a pair of lookup tables controlling the translation process,
plus associated control circuitry. The chips are being designed in a scalable CMOS

4 ACS Progress Report (9/1/86 - 8/31/87)

process with two layers of metal.

These preliminary designs have just recently been completed and submitted for
fabrication. We are using our experience with these preliminary designs to guide
us in the specification and design of the next set of chips that we will incorporate
in our laboratory prototype. We also plan to design a two chip implementation of
a packet processor and possibly a datagram router. These are being tackled in a
broader context. We have found that several of the chips we need contain similar
parts which are profitably viewed as special cases of a more general synchronous
streams processor. We are developing a special-purpose silicon compiler that will
take as input a specification of a streams processor and produce a description of
a circuit implementing that specification. Substantial progress has been made on
this program in the past year; the program is currently capable of producing simple
circuits and we are confident that its use will significantly reduce the effort required
for the design of several of the chips we require. It will also provide a powerful tool
for the design of other similar chips. We have also recently begun related efforts
which seek to automate certain portions of the design process for our prototype
system.

Performance of Packet Switching Fabrics

During the past year we have sought to extend our understanding of the perfor-
mance of packet switching fabrics in general, with of course a special focus on
the broadcast packet switch. One important result has been the development of
a systematic method for analyzing the effect of different traffic patterns on the
loading of internal links within a packet switching fabric. This method allows us
to make statements about the worst-case loading of a variety of different switch
fabrics. This has led to several new results quantifying the effect of distribution
stages on switch fabric performance. One result shows that a k stage routing net-
work requires an additional k — 1 distribution stages in order to avoid overloading
of internal links. Another shows that just two distribution stages dramatically
improve the worst-case performance of copy networks. Other results concern the
effect of the number of ports per node on worst-case loading. Of special interest is
the observation that the worst-case performance of copy networks deteriorates as
the number of ports per node increases.

We have recently been seeking to generalize the classical theory of non-blocking
networks to networks in which internal links can multiplex multiple connections,
with each connection consuming an arbitrary fraction of the link’s capacity (sabject
of course to the constraint that the sum of the connection loads is no more than
the link’s capacity). This is relevant to the design of large switching systems
constructed from multiple switch modules. It is also important for switch fabrics

1. Summary of Progress 5

which route all packets of a given connection along the same path, such as the
systems under development at CSELT and Bell Telephone Manufacturing. Our
initial results include an analysis of the amount of expansion required to make
Clos and Cantor networks strictly non-blocking. We are also investigating the
amount of expansion needed to obtain a rearrangeably non-blocking system and
studying methods of analyzing blocking probability in such networks.

We have also made some initial simulation studies quantifying the likelihood of
packets getting out of sequence when passing through a broadcast packet switch
fabric. The results from these and planned further studies will be used to help in
the design of mechanisms to recover proper sequencing.

Connection Management

Connection management refers to the collection of algorithms used to create and
maintain multi-point connections in a broadcast packet network. A multi-point
connection is intended to be a flexible mechanism that can support a wide variety
of different applications. To achieve this flexibility, it must be possible to configure
a multi-point connection for different uses. One of the first challenges in creating
a useful and practical connection management system is deciding exactly what set
of primitive capabilities the network should provide to enable users to configure
connections. The subsequent challenge is to design the mechanisms needed to
implement these capabilities.

We have identified and refined a method of configuring connections based on the
concepts of sub-channels within a connection and permissions. Sub-channels allow
a connection to be broken down into several distinct information flows, which can
be configured differently but because of their close relationships are controlled by
the network in a unified way. Permissions give the user a mechanism for controlling
access to sub-channels and assist the network in managing its resources (primarily
trunk bandwidth).

Based on these ideas, we have developed a specification of a simple connection
management architecture and a series of scenarios showing how it can be used to
support a variety of applications including broadcast video and multi-media con-
ferencing. The connection management architecture has been designed at several
levels of abstraction, with explicit interfaces at each level. The primary abstrac-
tion level, from the user’s perspective, is the one that defines the interface between
the network and the user’s termination controller. At this level, the network is
viewed as a single entity which modifies connections in response to control mes-
sages. The next level of abstraction below this defines the interfaces between
switching systems in the network and it is at this point that explicit reference

6 ACS Progress Report (9/1/86 — 8/31/87)

must be made to the distributed algorithms and data structures that implement
the higher level abstractions. We have also been considering a higher level of ab-
straction corresponding to the interface between termination controllers. At this
level application-dependent issues appear. Termination controllers cooperatively
determine how connections should be configured to suit the client applications,
and direct the network to configure them via control messages.

In the past year, we have developed an initial set of protocols supporting multi-
point connections and implemented those protocols in the form of a software sim-
ulation that allows us to configure an arbitrary network, then set up and mod-
ify multi-point connections in that network. Our implementation of multi-point
connections includes a general transaction mechanism for sequencing concurrent
changes to a connection. We plan to use our current simulation to obtain a better
understanding of the strengths and limitations of our current collection of proto-
cols, including the transaction mechanisms on which they are based.

Routing

The objective of the routing problem is to determine a set of network resources
(primarily trunk bandwidth) sufficient to support communication among a speci-
fied set of users. In conventional circuit switched networks, all connections require
the same amount of bandwidth and (almost all) have exactly two endpoints. Such
a network can be described formally as a graph in which each edge has both a ca-
pacity and a length. A set of connections for such a network is simply a collection
of vertex pairs. A feasible route assignment is an assignment of each connection to
a path joining the connection’s endpoints that doesn’t exceed the capacity of any
edge. An optimum routing algorithm is one that can find a feasible assignment
whenever one exists.

Of course, this version of the problem is a static one. In a real communications
network, the set of connections changes with time and the network must implement
a routing policy that manages the changing set of connections in a way that makes
it unlikely that a new connection will be blocked. In the interests of efficiency, it is
generally assumed that once a connection has been assigned a route, that assign-
ment will remain fixed as long as the connection is present. These considerations
lead to a routing policy based on the heuristic strategy of routing connections by
the shortest path available at the time the connection is established.

If connections can have an arbitrary bandwidth associated with them, the rout-
ing problem becomes a bit more complicated. One must now consider the network
to be a graph in which vertices can be joined by multiple edges. To prevent block-
ing of connections with large bandwidth requirements, new connections should be

1. Summary of Progress 7

assigned to the fullest edges with sufficient capacity along the assigned route. This
strategy preserves large blocks of bandwidth for use by high speed connections.

In broadcast networks, a connection can involve an arbitrary number of end-
points. A feasible route assignment for a set of connections is an assignment of each
connection to a subtree connecting its endpoints, in a way that does not exceed
the capacity of any edge. As in the case of point-to-point networks, connections
come and go over time, and so the appropriate routing policy is to assign each
connection to the subtree with shortest total length available at the time the con-
nection is established. This can be viewed as a generalization of the Steiner tree
problem in graphs. This problem is known to be NP-complete, meaning that there
is unlikely to be an efficient algorithm that can always find an optimal solution.
On the other hand, there are several efficient algorithms that yield solutions that
are close to optimal. The best known one is called the minimum spanning tree
heuristic (MST).

Connections in broadcast networks are dynamic in another way. They grow and
shrink with time as individual endpoints come and go. The challenge here, is to
maintain a good connection topology without doing a great deal of recomputation
each time an endpoint is added or dropped. Practical algorithms must be suitable
for distributed implementation, with each node making decisions based on local
information. The simplest algorithm is a greedy strategy that adds new endpoints
by joining them to the connection by the shortest available path and dropping
branches of the connection tree when endpoints drop out.

Our research objective is to develop practical and efficient algorithms that can
be used in actual multi-point communication networks. To this end, we have been
studying the performance of several approximation algorithms, including the MST
and greedy algorithms, from both a worst-case and average case point of view.
A prerequisite for our evaluation of the average case performance, has been the
development of a simple probability model that can yield data relevant to real
networks. We have developed such a model and have begun using it to evaluate
the MST, greedy algorithms and others. We have shown experimentally, that the
average case performance of the MST algorithm is excellent, usually within 5% of
" optimum. While this algorithm is probably impractical for application in a real
network, our results show that it can serve as a useful standard of comparison
against which other algorithms may be measured. In particular, we have used it
to study the performance of the greedy algorithm in dynamically changing con-
nections. Our results show that the solutions produced are generally within 20%
of the value obtained for the MST algorithm. The performance deteriorates dur-
ing long sequences of deletions, because the algorithm simply prunes rather than
re-routing during such sequences. This sort of degradation is not unique to the
greedy algorithm, but is intrinsic to any algorithm that makes only incremental

8 ACS Progress Report (9/1/86 — 8/31/87)

changes and does not re-route.

Our research plans include continued experimental evaluation of these algo-
rithms and others. We have also begun to study the average case performance
of these algorithms analytically, in order to obtain greater insight into the factors
limiting their performance. We also plan to design and implement distributed
versions of these algorithms.

Congestion Control

A principal advantage of packet switched networks is their ability to dynamically
allocate bandwidth to the users who need it at a particular instant. Since networks
are subject to rapid statistical variations in demand, care must be taken to ensure
acceptable performance under conditions of peak loading. Congestion control refers
to the collection of methods used to ensure each user acceptable performance under
a variety of load conditions. The high speed and multi-point connection capability
of broadcast packet networks place new demands on congestion control methods.

A prerequisite to the development of an effective congestion control method
is an understanding of the impact that bursty sources have on queueing in the
network. The popular M/M/1 queueing model, while theoretically tractable and
widely applicable, is insufficient to model the behavior of a small number of high
speed and very bursty sources. A key part of our work in congestion control has
therefore been to obtain an understanding of such sources. We are focussing on a
simple model that treats each source as a two state Markov chain. The source is
active in one state and idle in the other. Parameters of the model include average
holding times in each state and the rate of packet transmission while active. This
model can be used for a wide variety of bursty sources, including coded video.
Our results to date indicate that such sources can lead to serious performance
degradation if not handled carefully.

The basic congestion control mechanism under consideration involves user spec-
ification of several parameters defining peak and average bandwidth requirements,
plus a measure of burstiness. The network uses these parameters to calculate an
effective bandwidth, which is used for allocating link bandwidth. In the past six
months we have developed a candidate method for computing effective bandwidths.
This is based on the Markov chain analysis mentioned above, along with an in-
terpolation scheme to permit rapid calculation in a realistic network context. We
have found that for sources with peak and average bandwidths of more than a few
percent of link bandwidth, the effective bandwidth is quite sensitive to how bursty
the connection is, but for lower values, it is fairly insensitive. One implication of
these studies is that to achieve effective bandwidths substantially lower than peak

1. Summary of Progress 9

for bursty, high speed sources we must either increase link speeds, buffer sizes or

both.

The network also ensures that individual users don’t exceed their specified rate,
using a simple traffic valve at the edge of the network. One simple implementation
of a traffic valve can be viewed as a pseudo-buffer for which the user specifies the
peak arrival rate, the serving rate and the buffer size. Whenever the user sends a
real packet, the network adds a pseudo-packet to the pseudo-buffer. If this does
not cause the pseudo-buffer to overflow, the real packet is immediately accepted
by the network. Otherwise it is discarded. (Note that only pseudo-packets go into
the pseudo-buffer.) This mechanism is simple enough to be implemented within
packet processor chips at the boundary of the network.

For multi-point connections with several transmitters, additional complications
arise, since the control of entering traffic provided by the traffic valves at the edge
of the network allows excess traffic on internal links of multi-point connections.
We have designed a mechanism to control this kind of overload, which in effect
allocates link buffer space in direct proportion to bandwidth allocations, and dis-
cards packets belonging to connections that exceed their share. This mechanism,
in combination with others we have developed, allows a general solution to the
problem of multi-point congestion control.

We have also considered a different approach to multi-point congestion control,
in which the network actively controls the number of simultaneous transmitters in a
multi-point connection, rather than limiting itself to the protection of its internal
resources. This kind of access arbitration could be more attractive to users, as
it regulates the flow of traffic on a channel in a more consistent fashion. We
have developed two general approaches to access arbitration, and several specific
algorithms.

Packet Video

Packetized transport of video signals raises a variety of important issues that we
are beginning to explore. One major effect of packet transport on video coding is
to eliminate the constraint of a constant bandwidth channel that currently drives
most work in video coding. A variety of techniques including transform coding,
motion compensation, differential coding and adaptive quantization are currently
used to reduce the required bandwidth for video signals. Existing systems use
buffering and variable rate coding, with the objective of achieving minimum image
distortion for a given, fixed channel bandwidth. In the context of packet transport,
we can exchange the objective function we seek to optimize with the constraint.
That is, we code to achieve minimum bandwidth subject to a given constraint

10 ACS Progress Report (9/1/86 — 8/31/87)

on distortion. This approach allows the bandwidth to vary across a wide range,
achieving low average bandwidths and high picture quality.

Packetized transport also raises the issue of picture quality in the presence of
packet loss. Commeon video coding methods rely heavily on state information that
can become inconsistent when data is lost. The impact of lost packets can be
reduced by interpolation schemes, in which a given block of information is split
across multiple packets, allowing partial recovery of lost information. We expect
that the use of such methods in combination with low rate transmission of complete
state information can maintain high picture quality in the face of substantial packet
loss rates and we are studying such methods to assess their potential.

Historically, video coding methods have been used primarily to produce mod-
erate quality video for conference applications. With high speed packet networks
it may also be advantageous to apply video coding methods to very high resolu-
tion signals; the objective becomes not bandwidth reduction but higher resolution.
This raises some interesting issues in codec design. Current codecs can be built
with limited parallelism because of the low resolutions and data rates that they
must cope with. Codecs for high resolution video will require greater parallelism
and greater reliance on custom integrated circuits.

Administrivia

In the past year, we have grown from a small base to a research team that now
includes two faculty members, one full-time staff person, one visiting research
associate and nine graduate students. Additional faculty are also being recruited
in both the Computer Science and Electrical Engineering departments, and this
will have an important impact on the project. One recent addition to the Computer
Science faculty is Gurudatta Parulkar who has just graduated from the University
of Delaware. Dr. Parulkar’s thesis research focussed on the design and analysis
highly reliable local area networks based on flooding protocols. We expect him to
be an important collaborator for the ACS project.

Our funding picture is fairly healthy. In addition to the support we receive from
our three corporate sponsors, we have a major grant from the National Science
Foundation that currently provides about 60% of our funding. In addition to
the direct grant support, NSF provides access to MOSIS, their silicon fabrication
service which we are using heavily in our prototyping effort. We have recently
benefitted from a change in the policy of the Washington University School of
Engineering and Applied Science; the school now pays the tuition of graduate
students on research assistantships rather than requiring the research grant to pay
that portion. This change has allowed us to increase our graduate student stipends

1. Summary of Progress 11

Name Degree (exp. graduation date) Research Area

Shahid Akhtar MS (10/87) congestion control

Neil Barrett MS (5/89) communication circuit design
Victor Griswold DSc (1/90) connection management
Mark Hunter MS (5/88) connection management
Shabbir Khakoo MS (5/88) packet video

George Robbert MS (5/88) CAD tools

James Sterbenz DSc (1/90) communication circuit design
Bernard Waxman DSc (1/89) routing

Einir Valdimarssen MS (5/89) communication circuit design

Figure 1.3: Graduate Student Staff

which have been low with respect to other schools with which we compete. We
have also used some of the funds made available by this change to improve our
base of computing equipment.

While the project’s funding situation is in fairly good shape at the moment,
we anticipate that additional funding will be required if we are to achieve all
our major goals. The most likely source of new funding in the short term is
through expansion of the Consortium to five or six members. We are currently
exploring the possibility of consortium membership with three new companies.
Such expansion could provide adequate funding through September 1989. After
that time, substantial new funding may be required. We are beginning to explore
possible sources of that funding including an NSF Engineering Research Center
grant.

The project currently supports professors Jonathan S. Turner and Mark Franklin
(part-time) plus eight graduate research assistants (see Figure 1.3). We have one
additional student (Akira Arutaki) who is supported by NEC. We expect to add
between one and three additional graduate students in the coming year. In addi-
tion, we have one professional staff member (Pierre Costa) and one visiting research
associate (Riccardo Melen).

For administrative purposes, the ACS Project operates within the Computer
and Communications Research Center directed by Professor Mark Franklin. The
Center has a central office suite housing professors Franklin and Turner, plus eight
graduate students, on the third floor of Bryan Hall, across from our main laboratory
facility. This laboratory houses our main computers, and a cluster of terminals and
workstations for graduate student use and also serves as an informal meeting room.

12 ACS Progress Report (9/1/86 — 8/31/87)

We have a second laboratory on the fifth floor of Bryan which is devoted to our
hardware prototyping efforts. Over the summer, we acquired additional space on
the fifth floor of Bryan adjacent to the laboratory, which has been converted to
office space.

The Center’s base of equipment includes a VAX 750, a MicroVax II/GPX and
a Sun 3/280, all running Unix. The MicroVax is used primarily to support VLSI
design work. The Sun is a recent addition and is used primarily as a file server
for five Sun 3/50 workstations we have also just acquired. We have about fifteen
conventional terminals, a second VLSI design station, and assorted printers. We
also have assorted lab equipment including a Tektronix logic analyzer and IC tester.

We have been generally successful in expanding the Center’s space and facilities
to meet our needs. As we are not planning substantial additional growth in the
immediate future, we feel reasonably comfortable with the current situation. On
the other hand, space shortages may develop in the next year as the Computer
Science and Electrical Engineering departments continue to expand their faculties.
While the Engineering School is planning a new building which will relieve the
space shortage in the long terms, temporary steps will undoubtedly be required in
the interim.

2. Switch Architecture Studies

Faculty Mark Franklin
Jonathan Turner

Research Associate Riccardo Melen

Graduate Student James Sterbenz

The architecture of high speed packet switching fabrics is of course central to
the work of this project. While we are concentrating our efforts on a particu-
lar design [59], we continue to evaluate alternatives, in order to identify possible
improvements. In the past year, we have made a close study of two alternative
architectures for fast packet switching that are being developed by other research
groups. Our objective in this study has been to understand the similarities and
differences among the different fabrics and make a preliminary assessment of rela-
tive strengths and weaknesses. We hope to use the insights gained in this way to
obtain better designs.

This chapter has three main sections. The first summarizes our comparisons
of the broadcast packet switching fabric [59] with the Starlite [26,27,28] and Pre-
lude [7,14,22] switch fabrics. The second outlines some possible improvements to
the broadcast packet switch fabric that were suggested by our comparative stud-
ies. The third outlines some of the issues associated with constructing very large
switching systems from modules of moderate size. We close with a summary and
brief discussion of our research plans.

2.1. Comparison of Alternative Switch Fabrics

The switch fabric for the Broadcast Packet Network (BPN), described in [59] is
based on buffered binary routing networks. It is topologically simple and well-
suited to VLSI implementation. The overall structure is shown in Figure 2.1. The
system consists of a set of Packet Processors which interface to the external links
and provide all per packet protocol processing, a Connection Processor which sets

13

14 ACS Progress Report (9/1/86 - 8/31/87)

CP
CN BGTs DN RN
PPs Lyl - ~11 PPs

== - = =

— 5= | . B e BN

-~ U= . r—L

—{] -

= - Oy, ==

— I i C -

e M San g =

-] | i e S

—{= = M o=)

Figure 2.1: Broadcast Packet Switch Fabric

up and maintains multipoint connections, and a switch fabric consisting of a Copy
Network, a set of Broadcast and Group Translators, a Distribution Network and a
Routing Network.

Packets enter one of the Packet Processors at left, where an address translation
is performed. For point-to-point packets this yields an outgoing link number and
an outgoing channel number. These are placed in the header of the packet, which
then passes through the CN, one of the BGTs and the DN, following some arbitrary
path. When the packet reaches the RN, it is routed using the outgoing link number.
The RN is a conventional binary routing network with sufficient storage at each
node to store a small number of complete packets. When the packet reaches the
outgoing PP, the extra header information added at the incoming PP is stripped
off and the packet is transmitted on the outgoing link. The role of the DN is to
randomly distribute packets it receives across its outputs. This prevents congestion
that can otherwise occur in the RN when subjected to traffic patterns with strong
“communities-of-interest.”

When a packet belonging to a multipoint connection is received at an incoming
PP, it undergoes a similar translation process, but the information added to the
packet header is different. It consists of two fields, a Fanout field which specifies the
number of outgoing links which are to receive copies of the packet, and a Broadcast
Channel Number, used by the BGTs. The CN replicates multipoint packets using
the fanout field to guide its decisions. At each switch element where replication is
performed, the fanout fields of the two copies are modified (essentially by halving
the original fanout), so that a short time after the original packet enters the cN,

2. Switch Architecture Studies 15

the appropriate number of copies appears at its outputs. The BGTs then perform
a translation similar to that done in the PPs, using the broadcast channel number
in the copies to index a table, yielding a set of outgoing link and logical channel
numbers. These are added to the packet header and used to guide the copies to
the proper outgoing links,

This design is well-suited to implementation in a medium speed, high density
technology like CMOS. While the per node buffering makes the individual switch
elements moderately complex, the topological complexity is very low. The only
large memories are in the PPs and BGTs, and these need be accessed only once
per packet cycle, permitting the use of high density memories with relatively long
cycle times.

In the last five or six years, several experimental switching system designs
have been proposed that can support multirate and multipoint communication in
a flexible fashion. In addition to the BPN fabric being designed at Washington
University, there is the Starlite system originally developed by Alan Huang and
Scott Knauer at AT&T Bell Labs and currently being developed further by a
group at Bell Communications Research, and the switching matrix for the Prelude
experimental wide band switching system, developed by Coudreuse et. al. at
CNET in France. Starlite and Prelude are described below.

Starlite

Starlite is the name given to an experimental switching system developed by Alan
Huang and Scott Knauer at AT&T Bell Labs [26,27,28]. The Starlite architecture
was motivated by the observation that sorting networks, can be used to construct
rearrangeably non-blocking switching fabrics with distributed control. This obser-
vation was first put forward by Batcher [2] in 1968 in his seminal paper describing
his bitonic sorter that sorts a set of n numbers using a network of approximately
(n/4)(log n)? simple comparison elements. For circuit switching applications, this
observation leads to switching networks that are non-blocking, operationally very
simple and eminently suited to VLSI implementation. To accommodate packet
switching, mechanisms are needed to resolve contention between packets that arrive
concurrently and are destined for the same output port. Multipoint communication
requires additional mechanisms for packet replication. Huang and Knauer’s con-
tribution was the development of inexpensive VLSI implementations of Batcher’s
sorting network and the invention of a variety of supplementary networks which
support packet switching and multipoint communication when used in concert with
the sorting network. More recently, a group at Bell Communications Research has
adopted Starlite as the basis of a major applied research effort in high speed packet
switching and have devised a number of improvements. In this section, we first

16 ACS Progress Report (9/1/86 — 8/31/87)

~[PP [~ N . a|_‘_]-. .

Sort Copy Route

PP -t I

Sort Merge

Delay

- 3

Figure 2.2: Starlite Switch Fabric

describe some of the original work on Starlite done at Bell Labs. We will then
review some of the more recent improvements.

While Huang and Knauer made no serious attempt to develop complete sys-
tems, they did develop a variety of useful tools that can be used for the construction
of such systems and suggested ways in which they could be used. Figure 2.2 shows
one possible implementation of a packet switch supporting multipoint communi-
cation. Packets arriving on external links enter a set of Packet Processors at left,
which perform some address translation. For point-to-point packets this results in
a destination PP number being placed in the packet header. This is used to guide
the packet to the appropriate outgoing link.

For the moment, we will ignore the initial sort and copy networks at the top
left and concentrate on what happens to packets when they enter the main sorting
network at the middle of the figure. This network sorts packets in increasing order
of their destination addresses, meaning that when the packets exit the sorting
network, all packets with same destination address occupy a contiguous set of
output links. The filters at the exit of the sorting network mark all but one
packet destined for a particular address, by comparing the destination addresses

2. Switch Architecture Studies 17

of packets on adjacent links; if a packet has the same destination address as the
packet on the next lower link, its wait bit is set. Packets for which the wait bit
i3 zero are forwarded to the routing network at right which routes them to the
proper outgoing links. Packets with the wait bit set are sent to one of a set of
delay elements, which delays them for approximately one packet time, after which
they are recirculated through the sorting network. It’s useful to extend this basic
scheme by adding a second field to each packet which records the number of times
a packet has recirculated. By having the main sorting network use this field as a
secondary sort key, we can also order packets by their age, giving older packets
priority over newer ones. This ensures that packets are transmitted in the same
order in which they were received. If the network supports n external links and
the main sort and merge networks have m input and output ports, up tom —n
packets may be recirculating at any time. Packets may be lost if during a cycle,
more than m —n packets have their delay bits set. The value of m is selected based
on statistical considerations, to yield an acceptably low probability of packet loss.

We now turn to the issue of packet replication. The network is designed around
the notion of a coordinated copy between source and destinations. That is, the
source and the destinations must synchronize when a packet is to be copied. When
the source PP sends a packet into the network, the destination PPs simultaneously
send blank packets containing their address plus the address of the source in the
headers. The initial sorting network sorts these packets on the source addresses,
which places the original packet and associated blank packets on a contiguous
set of links, upon exit from the sorting network. The copy network then copies
the information from the source packets to each of the blank packets, a relatively
straightforward process, given the sorted arrangement. When these packets enter
the main sorting network, they are routed using destination addresses in the same
way as point-to-point packets.

The Starlite system has some very attractive properties. The basic switch
elements making up the various networks are simple and have a regular intercon-
nection pattern, which makes the design of high speed VLSI implementations quite
straightforward. The network is non-blocking and has a latency of only one bit
time per stage of switching. It maintains packet sequencing, so that packets are
received in the same order in which they are transmitted. The sharing of buffering
across the switch fabric, rather than dedicated it to individual links provides more
predictable performance in the face of statistical fluctuations in traffic.

The synchronization required for copying is a drawback of this approach, when
used in a general packet switching environment. Some form of arbitration is re-
quired at the front end to schedule packets that must be copied, and while such a
mechanism is probably feasible, no detailed proposal has been put forward. Also,
while the switch elements are very simple, their interconnection is topologically

18 ACS Progress Report (9/1/86 - 8/31/87)

PP — — —BTC—

CONC ADDER COPY SORT ROUTE

PP [+ — — —{BTC}—+ s

Figure 2.3: Alternative Starlite-Type Switch Fabric

complex relative to competing proposals. Finally, the dimensioning of the main
sort and merge networks is problematical; it appears likely that to achieve sat-
isfactory performance in a general packet switching environment, these networks
must have at least four to eight times as many inputs as there are external links.
Nevertheless, the Starlite approach is a very promising one, and is a convincing
demonstration of the power of a few simple ideas.

The many attractive features of Starlite have led a group of researchers at
Bell Communications Research to use it as the basis for their work on high speed
packet switching. This group has substantially extended the work of Huang and
Knauer in a number of ways and have developed better or more complete solutions
to the problems of output contention and packet replication. We briefly describe
one possible system configuration based on their work. The reader is referred to
references [9,38] for further details.

Figure 2.3 shows a switching fabric with several components. Packets are re-
ceived at the Packet Processors (PP) on the left where they are assigned a fanout
and broadcast channel number, as in the BPN fabric. The packets then pass through
a concentrator network (consisting of n log, n simple switch elements), which places
the packets on consecutive outputs so as to ensure non-blocking operation of sub-
sequent networks. Next, the packets pass through a running adder network, which
for the packet on output port i computes the sum of the fanouts of all packets
entering on ports 0 through ¢ — 1 and places this sum in a field of the packet
(this is done for all output ports, using a network with nlog, n simple processing
elements). Following the adder, the packets pass through a copy network which
uses the fanout and the sums generated by the concentrator to generate the proper
number of copies. Note that during any one cycle, the packets entering may have

2. Switch Architecture Studies 19

a total fanout larger than n. The system accommodates as many packets as are
feasible and the PPs resubmit ‘losing packets’ on the next cycle. Note that there is
no internal buffering in the fabric. The specific mechanisms employed ensure that
blocking cannot occur due to contention for internal paths within the fabric.

After the packets emerge from the copy network, they are processed by a set of
broadcast translation circuits, which assign outgoing link numbers to each packet,
as in the BPN system. Unlike the BPN system, each broadcast translation circuit
here must be able to route any one of the copies of a broadcast packet, implying
a substantial expansion in the memory requirements.

The packets then enter a set of queues, followed by a sorting and routing net-
work. The sorting network routes packets on destination address and the routing
network then routes them to the proper output once they are in sorted order. The
queues are interconnected by a control ring which arbitrates access to switch fabric
output ports. The control ring has a bit for each output port and a queue which
has a packet to send to a particular output port signals its intention by setting the
bit corresponding to that port. Since the control ring circulates through the queues
sequentially, only one queue is permitted to send a packet to a particular output
port during a cycle. The use of the control ring eliminates output contention and
consequently, the potential for internal congestion in the routing network.

This configuration offers a complete solution to the problem of multipoint
packet switching. The most complex single element is the sorting network; the
other components together are roughly equal to the sorting network in complexity
for networks with 1024 input and output ports. While substantially less complex
then the first architecture described, it lacks the advantage of shared buffering.
It also introduces the potential for packets to be misordered, since consecutive
packets in a connection may be placed in different queues following the BTCs.

Prelude

The Prelude project began at CNET in France in the early eighties, with the ob-
jective of creating a flexible switching system that could provide point-to-point
and multipoint communication at speeds up to a few hundred megabits per sec-
ond {7,14,22]). Tt is based on a particularly simple form of fast packet switching
referred to as asynchronous time division multiplezing, and uses a novel high speed
switch fabric.

The basic structure of the Prelude switch fabric is shown in Figure 2.4. Packets
enter at the transmission interfaces at left, which perform framing and synchro-
nization functions. The packets are then passed through a rotative switch which
transforms each packet to a so-called parallel-diagonal format (paragonal) in which

20 ACS Progress Report (9/1/86 - 8/31/87)

I-Link—
Addr. Output
Trans. Control

mwr

Paragonal Paragonal
Trans. s Trans.

Figure 2.4: Prelude Switch Fabric

each packet is distributed across the outputs of the rotative switch, with the first
byte of each packet on the first output, the second byte on the second output,
and so forth. This transformation places the headers of all packets on the first
output of the switch, where they can all be processed by a centralized address
translator. The address translator modifies the channel number in the header of
the packet and then the modified packet is stored in a central buffer memory, still
in the paragonal format. At the same time, the address translator passes to the
output control circuit, a bit vector defining which outputs are to receive copies of
the packet. The output circuit stores the address at which the packet header was
written, in queues associated with the selected outputs. This information is used
later to retrieve the packet from the central buffer. There is an output process
that examines these queues in a cyclic fashion, initiating a new packet retrieval on
each clock cycle. Broadcast is accomplished simply by reading the packet from the
buffer once for each output that requires a copy. Note that these reads need not
all take place during one packet cycle. Finally, a second rotative switch transforms
the packets from the paragonal format back to the normal format so that they can
be output on their respective links.

This design has several attractive features. The basic elements are simple; the
rotative switches can be implemented as barrel shifters, requiring about nlogn
gates, the address translator and buffer are essentially just random access memories
with a modest amount of control circuitry, and the output control consists of a
fairly simple and regular collection of queues and address registers. As with Starlite
it maintains packet sequencing and provides a single shared buffer rather than

2. Switch Architecture Studies 21

per line buffers. It is, on the whole simpler than the Starlite fabric and handles
multipoint communication in a more satisfactory way.

The main drawback of this approach is its dependence on high speed memories,
particularly in the central buffer. It must be possible to access this memory twice
per clock time, once for reading and once for writing. There does not appear to
be any architectural way to reduce the required memory cycle time for individual
memory chips since the memory read-out process can access the memory chips
in random order. Another drawback is that since channel translation takes place
before packets are replicated, all the downstream copies of a multipoint packet
carry the same channel number. This places operational restrictions on the assign-
ment of channel numbers, that may be problematical, depending on the number of
channels and multipoint connections. It is most troubling for general multipoint
connections in which there are several transmitters. It appears that either all the
links involved in such a connection must use the same channel number, or there
must be a different channel number for every incoming port that can be the source
of the packet. The latter solution requires that the downstream switches treat all
those channel numbers similarly.

Remarks

One major difference between the BPN approach and Starlite and Prelude, is the
use of buffering within the switch fabric. While this leads to more complex switch
elements, the added complexity has little impact on cost or performance. The
reason is simply that cost is determined primarily by component count, which
because of pin limitations is determined primarily by topological complexity, not
circuit complexity. While simple switch elements are better suited to low density
technologies such as ECL, they have little advantage in the context of a high
density technology like CMOS. Furthermore, the packet processors required in all
three systems, have inherently high circuit complexities and must be implemented
in high density technologies to be economical.

Starlite and Prelude do have two potentially significant advantages over the
BPN approach. First, they can both implement shared buffering, leading to more
predictable performance in the presence of highly bursty traffic. While the addition
of some shared buffering to the BPN fabric is feasible, no detailed study of such an
arrangement has yet been made.

Starlite and Prelude also guarantee that packets are transmitted in the same
order as they are received. While it is possible to modify the BPN design to provide
a similar guarantee, the required changes may impose operational constraints and
degrade performance.

22 ACS Progress Report (9/1/86 — 8/31/87)

This brief review leads to three conclusions. First all three of the switch fabrics
reviewed are viable architectures; they can all be used to support high speed packet
networks and multipoint communication in an effective way. Second, none clearly
dominates the others; each has a different set of advantages and drawbacks. Third
and perhaps most important, each offers some useful lessons to architects of future
systems. In the next section, we consider some of the ways in which these lessons
might be applied.

2.2. Refinements to the BPIN Switch Fabric

We now briefly consider several key architectural issues that will be addressed in
the coming year. The first is the problem of resequencing packets; second is the
issue of shared buffering; third, a potential application of partial sorting to the
BPN fabric; and fourth, some issues that arise in the design of very large systems.

Resequencing

The design of the BPN switch fabric allows packets belonging to a particular logical
channel to exit the fabric in a different order from the order in which they are
received. We briefly consider several alternative methods for dealing with this
problem.

The first method is not to allow packets to get out of order in the first place.
This is the approach taken by Starlite and Prelude and can be adopted with the
BPN fabric. The key is to distribute traffic in the CN and DN on a per channel
basis rather than a per packet basis. This complicates the hardware slightly and
the control software substantially. It also introduces the possibility of a connection
blocking when a path with sufficient capacity cannot be found. This approach is
being taken by a group at CSELT in their fast packet switching research project.

A second method is to allow resequencing to be done on an end-to-end and
application-dependent basis. Preliminary performance data indicate that the prob-
ability of packets arriving out of order is extremely unlikely for applications with
peak data rates of less than 20% of the FOL data rates. The reason is simply
that the time between arrivals of successive packets at a switch is larger than the
time it takes a packet to propagate through the switch fabric. Only applications
with very high peak data rates are expected to experience a significant rate of
packet misordering. This implies that the majority of applications can ignore the
resequencing problem and suggests that the provision of a general mechanism for
handling it may be unwarranted. Applications such as video or file transfer can

2. Switch Architecture Studies 23

handle the resequencing problem in a simple and straightforward way (for video,
for example one merely places received packets in the proper position in the frame
buffer based on a sequence number).

Resequencing can also be done on an end-to-end, application-independent ba-
sis. The most general solution requires buffering and a retransmission protocol. A
simpler method is possible if one is willing to tolerate a small but non-zero prob-
ability of misordered packets (e.g 10~¢). To provide such a guarantee, one adds
sequence numbers to packets as they enter the network and uses the sequence
numbers to resequence packets on exit. The resequencing device buffers packets
as necessary, but never holds a packet longer than a specified time. The amount
of buffering required and the timeout value depend on the misordering probability
of the network and on the target residual misordering probability. Resequencing
can also be done on a per switch basis. The method is similar to the end-to-end,
application-independent method but is somewhat simpler to implement.

Detailed evaluation of these options has not yet been attempted. The circuit
complexity and performance of end-to-end and per-switch resequencing in partic-
ular, requires closer study.

Shared Buffering

While the FOL switch fabric contains buffers, which can in some sense be viewed
as shared, most of the buffering actually occurs in the outgoing packet processors.
For traffic with Poisson arrival statistics, per-link buffers with 64 buffer slots are
sufficient to achieve packet loss rates (due to buffer overflow) of well under 10~
at link occupancies of 80%. Unfortunately, many real applications have arrival
statistics that are highly non-Poisson. For these bursty applications, larger buffers
or lower link occupancies are required for satisfactory packet loss rates.

One way to achieve the effect of larger buffers is to provide the buffering on a
shared basis as done in Prelude and Starlite. For the BPN fabric, a set of shared
buffers can be placed between the distribution and routing networks, with a hard-
ware mechanism used to control the flow of packets from the shared buffer. A
simple way of implementing this control is to provide a simple TDM control ring,
that carries one bit of flow control information from each PP to each of the shared
buffers. This is similar to the use of the control ring in the alternative version of
the Starlite fabric described above.

While shared buffering appears to be worthwhile, the situation is really less
clear than it might seem. One of the advantages of per-link buffering is that it
puts an upper bound on the queueing delay at each switch. In a high speed packet
switching system, it appears desirable to have a maximum per-switch delay in the

24 ACS Progress Report (9/1/86 — 8/31/87)

neighborhood of a few milliseconds. This means that the amount of buffering per
link is a few hundred kilobits (assuming 100 Mb /s link speeds), not an unreasonable
amount to provide on a per-link basis. A detailed evaluation of the cost and
advantages of shared buffering remains to be done.

Partial Sorting

The Starlite system suggests a possible improvement to the BPN fabric design.
The routing network used in the Starlite design is a form of binary routing network
(specifically, a banyan network) that will pass a sorted sequence of packets without
conflict. It will also pass without conflict, a set of input packets that arrive on an
input port with the same port number as their destination.

Suppose we replace the distribution network in the BPN fabric with a network
that routes packets whenever it can do so without delaying them, and distributes
packets otherwise. Intuitively, such a network appears likely to present the rout-
ing network with a better traffic pattern than is obtained by simply randomizing
the traffic; this could lead to substantially higher throughputs. We plan to ex-
amine such a strategy in detail in the next few months and quantify the resulting
performance advantage.

2.3. Design of Large Systems

The BPN switch module has been designed as a component that can be used to
construct the large switching systems required for supporting ubiquitous public
networks. We have formulated a possible design for a local switching system, in
order to obtain a better idea of the scale of the system and the associated control
issues.

The proposed design supports up to 65,000 access lines and 4096 trunks, and
is based on a hypothetical traffic mix! including 200 entertainment video sources,
video telephones with an effective bandwidth of 8 Mb/s and busy 20% of the time,
plus other traffic that is equivalent to the video telephone traffic in total resource
requirements. For the broadcast video, it is assumed that a 90:10 rule applies; that
is, in any group of users, 90% will be accessing 10% of the available channels. This,
along with the assumptions on video phone traffic were used to select concentration
ratios.

It should be noted, that this is purely hypothetical and not supported by any detailed traffic
projections. The purpose is just to present a rough picture of a possible traffic mix, and how one
might configure a system to suppott it.

2. Switch Architecture Studies 25

o ¢ » o = 2.7
2. -
42
[O * e » @ * e o a ‘S'*
‘s
+3
16
64
327
3
kl IS

Figure 2.5: Local Switch Design

A block diagram of the system appears in Figure 2.5. The lines terminate at
the bottom of the figure, trunks connect at the top. It is constructed from two
types of switch modules, one with 64 links and the other with 80, and providing
4:1 concentration. The system has 128 back-end switch modules that connect to
4096 trunks and provide access to 16 major groups, which terminate 4096 lines
each. The major groups each contain 16 back-end switch modules and 8 minor
groups, terminating 512 lines each. The minor groups each contain 8 back-end
switch modules and 16 front-end switch modules.

The hardware complexity of this system can be estimated based on the assump-
tion that one unduplicated switch module can be implemented on 8-12 printed cir-
cuit boards. If the front-end switch modules in the minor groups are unduplicated
and everything else is duplicated, a minor group requires two equipment frames, a
major group requires 18 frames and the complete switch requires 304 frames. This

26 ACS Progress Report (9/1/86 - 8/31/87)

is roughly comparable in complexity to a telephone central office supporting the
same number of lines.

This design raises several questions. First, one might ask, why structure the
system in this way in the first place? Why not instead, simply scale the switch
module to a much larger size? This turns out to be impractical for a variety of
reasons, including expandability, timing, reliability and control partitioning. A
large system of this sort must be broken down into a large number of fairly small,
independent modules. This raises an interesting point with respect to the Starlite
and Prelude switch fabrics. Those fabrics, like the BPN fabric, are useful mainly
for constructing switch modules of moderate size; to build very large systems they
must be configured together into a larger structure. In that context, many of the
apparent distinctions among the different approaches become less significant.

Another question that arises is how connection management is handled in a
large system. The simplest method conceptually is to allow the connection proces-
sors in each switch module to operate independently. While this can be workable,
it requires more effort and more delay in the connection establishment process than
is strictly necessary. It is possible to speed up the process considerably by using
datagram routing within the switch, limiting the logical channel-based routing to
the external lines and trunks. The regularity of the interconnection topology makes
the implementation of datagram routing straight-forward for point-to-point con-
nections. It remains unclear whether such an approach is practical for multipoint
connections as well.

Using datagram routing on the inter-module links eliminates the need for most
internal resource allocation, but still leaves the problem of resource allocation on
the external links. To manage this, a database is required that tracks the status
of the external links. We plan to explore the issue of how such a database should
be organized to provide rapid access by the connection processors, that must use
the information in the database to make routing decisions.

Summary

Studies of switching architectures have and will continue to play an important role
in our work on high speed packet switching. In the last year we have made some
comparative studies of switch architectures and attempted to apply the lessons
learned from these studies to improve the broadcast packet switch design. In the
coming year, we expect to broaden this kind of study, to consider a wider range
of alternative architectures. We also want to develop quantitative comparisons, as
opposed to the qualitative comparisons made here.

3. Performance Studies

Faculty Jonathan Turner
Research Associate Riccardo Melen

The evaluation of any switching system architecture is determined in large part
by performance issues. We have addressed performance issues in several different
ways. Previous progress reports have reported on extensive simulation studies
examining several aspects of the performance of the proposed Broadcast Packet
Switch fabric. In this report, we examine two broader performance issues. First,
we consider a general method of evaluating the loading characteristics of packet
switching fabrics that dynamically distribute their load across all available paths.
As we shall see, such fabrics can be made robust in the face of arbitrary traffic
patterns with minimum complexity. We refer to the analysis method as fluid flow
loading analysis, and using it, we derive several fundamental results for both point-
to-point and multipoint packet switching fabrics. In section 3.2, we consider a class
of fabrics in which all packets belonging to a particular connection are constrained
to follow the same path. The prime motivation for making such a constraint is to
eliminate the possibility of packet mis-ordering. As we shall see, this consideration
leads to a natural generalization of the classical theory of non-blocking networks;
in this report we define that generalization, outline the important problems and
present a few fundamental results. We close this chapter with a brief description
of simulation results which quantify the potential for packet misordering in the
proposed broadcast packet switch design. These results are intended to to be used
to help design a mechanism to resequence misordered packets on a switch module
basis.

3.1. Fluid Flow Loading Analysis

In this section we introduce a systematic method of analyzing the effects of a
given traffic configuration on packet switching fabrics that dynamically distribute

27

28 ACS Progress Report (9/1/86 — 8/31/87)

load across all available paths, and apply it to the analysis of several proposed
architectures. Our method allows us to prove theorems characterizing the worst-
case loading for various switching fabrics. The section gives several such theorems,
both as illustrations of our method and for their inherent interest. Proofs are
omitted for brevity; readers are referred to 7?7 for further details.

We note that the method is fairly easy to apply and leads to useful insights that
can guide the switching system architect to better designs. It is not a complete
characterization, as it ignores queueing and contention, but when used in conjunc-
tion with queveing and simulation models based on uniform random traffic, it can
provide the designer and performance analyst with a more complete understanding
of system performance.

Networks for Point-to-Point Communication

We define a packet switching network (or simply network) as a directed graph
G = (N, L) consisting of a set of nodes N and a set of directed arcs or links L. In
addition, G contains a set of distinguished input nodes I and a set of distinguished
output nodes O. Input and output nodes are also referred to as ports. Each input
port has a single outgoing link and no incoming links, while each output port
contains a single incoming link and no outgoing links,

We limit ourselves to networks in which the number of input nodes equals the
number of output nodes. When we refer to an n port network, we mean a network
with n input nodes and n output nodes, numbered from 0 to n — 1. We also limit
ourselves to networks, which can be divided into a sequence of stages. We say
that input ports are in stage 0 and for ¢ > 0, a node v is in stage ¢ if for all links
(u,v), w is in stage ¢ — 1. A link (u,v) is said to be in stage ¢ if u is in stage i. In
the networks we consider, all output ports are in a separate stage by themselves.
When we refer to a k stage network, we mean that there are k stages containing
internal nodes; that is, we neglect the input and output stages.

When describing particular networks, we will find it convenient to use a compo-
sition operation. We denote a composition of two networks X; and X, by X; ®X;,
where h is a positive integer. The composition operation yields a new network con-
sisting of one or more copies of X; connected to one or more copies of X5, with A
links joining each pair of subnetworks. More precisely, if X, is an n; port network
and X3 is an n; port network then X; ®X; is formed by taking n,/h copies of X,
numbered from 0 to (n2/h) — 1 followed by n; /k copies of X;, numbered from 0 to
(n1/h) —1. Then, for 1 <z < ny, 1 < 5 < ng, we join X;(4) to X,(5) using A links;
these links connect output port (n1/k)m+ 7 of X1(2) to input port (ng/h)m +1 of
X3(7), where 0 £ m < h. Finally, we eliminate the former input and output nodes

3. Performance Studies

X, (0)

L X, {(n/0)-1)

X(0)

X(p

X-z_ (nt/h)‘l)

Figure 3.1: Composition Operation

29

that are now internal and renumber the input and output nodes of the network as
follows; if « was input port ¢ of X;(7), it becomes input jn, +1 in the new network;
similarly if v was output port 7 of X3(7), it becomes output jny +4. We also allow
composition of more than two networks; the composition X; ®.X,(3)X; is obtained
by letting ¥; = X; ®X; and Y; = X2(9Xs, then identifying the copies of X, in ¥}
and Y2. This requires of course that the number of copies of X, generated by the
two initial compositions be the same. Note this is not the same as (X; ®X,)®X;.
The composition operation is illustrated in Figure 3.1.

A connection through a network is defined as a triple (z,y,p) where z € I,
y € Oand 0 < p < 1. A connection induces a load on the various links that

30 ACS Progress Report (9/1/86 - 8/31/87)

e

Figure 3.2: Recursive Construction of Delta Network

lie on paths joining the connection’s input and output ports. The load induced
by a connection (z,y, p) on the link leaving z is defined to be p. The magnitude
of the induced loads on the internal links depends on the types of the nodes and
the topology of the network. In this section, we will consider only a single node
type. If o is the sum of the loads induced by a connection (z,y, p) on the input
links of a node u, and u has ¢ output links that lie on paths from z to y, then the
load induced by the connection on each of these output links is /i and the load
induced on all other output links is 0.

A configuration is defined as a set of connections. The load induced by a
configuration on a link £ is simply the sum of the loads induced by the individual
connections and is denoted A,(C). A configuration C = {¢;...¢,} is a-bounded if
for all input and output links ¢, A,(C) < a. We say that a configuration is legal
if it is I-bounded and that a network is robust if for every legal configuration C,
A(C) <1 for alllinks £.

Delta networks form a well-known class of useful switching networks [11,12,13,
17). We can define these recursively using the composition operation. Let D; be a
network with two input ports and two output ports connected to a single internal
node. We then define D; = D, @D;_; for all ¢ > 2. We refer to Dj, as a k stage
delta network; note that Dy has n = 2* ports. An example of a 4 stage delta
network is given in Figure 3.2.

3. Performance Studies 31

Delta networks have been widely studied and have many interesting properties.
Most useful is the self-routing property that allows paths from inputs to outputs to
be easily determined. A related property is that there is a single path connecting
any input node to any output node. For the purposes of our loading analysis, this
means that a connection (z,y, p) induces a load of p on all links that lie on that
path and a load of 0 on all other links. To illustrate our method of loading analysis,
we start with a simple theorem which characterizes the worst-case loading for a
delta network.

THEOREM 3.1.1. Let C = {c1,...,¢.} be an a-bounded configuration for Dj.
Then 2(C) < ay/n for all links ¢£.

The bound in Theorem 3.1.1 can be achieved; that is, there exist worst-case
patterns that induce a load approaching +/n on some of the internal links. We note
that delta networks are readily generalized to networks in which each internal node
has m input ports and m output ports. The worst-case loading in such networks
is the same as for networks constructed from two port nodes.

The bound in Theorem 3.1.1 and the fact that there are traffic patterns that
achieve the bound, lead to the conclusion that the binary (and m-ary) delta net-
works can perform poorly in the worst-case. This has been observed previously
and various approaches have been proposed to remedy the situation. We review
two such approaches here. The first is to add one or more stages of distribution
nodes at the front of a delta network.

We denote a delta network with k routing stages and d distribution stages as
Dy..4, which we define by Dy g = Dy@Dy_s@DD;. This is illustrated in Figure 3.3.
If we consider the load induced by a connection (z,y,p) on the links in such a
network, we note that for any node u in the first d stages that lies on a path from
z to y, both of u’s output links lie on paths from = to y, hence the incoming load
from the connection is distributed across u’s output links. In contrast, any node v
in the last k stages is on at most one path from z to y. We refer to the nodes in
the first d stages as distribution nodes and the nodes in the last k stages as routing
nodes.

THEOREM 3.1.2. Let C = {cy,...,¢,} be an a-bounded configuration for Dy 4.
Then A(C) < an2~1++A/2 for o]l links L.

The bound in Theorem 3.1.2 is the best possible; that is, there exist traffic pat-
terns approaching the given bound. Theorem 3.1.2 tells us that every time we add
two distribution stages, we reduce the worst-case load by a factor of 2. To achieve
a robust network, we require d = k — 1. Also note that with respect to worst-case

32 ACS Progress Report (9/1/86 — 8/31/87)

—

Mo

i

~

Figure 3.3: Construction of Delta Network with Distribution Stages

loading, it never makes sense to have k + d an even number, since a network with
one fewer distribution stage has the same worst-case loading characteristics. We
note that this result can be readily generalized to networks with nodes having m
input and output ports. The bound in the statement of the theorem becomes
nm~((:+4)/2] (with k = log,, n).

In (37], Lea proposes a variant of the delta network that we refer to as the alfer-
nate routing network. We can define this network recursively using the composition
operation. The base network is denoted by A; and consists of four input ports and
four output ports connected to a single internal node. For i > 1, 4; = 4, @A; .
An example of an alternate routing network is given in Figure 3.4. Note that an
alternate routing network with k stages has n = 2%+ ports. Given any connection
(2,9,), if u is in the first k — 1 stages and lies on some path from z to ¥, then
two of u’s output links lie on paths from z to y. Consequently, whatever load is
induced on the input links of u will be shared by two of u’s output links. The fol-
lowing theorem characterizes the worst-case loading of an alternate routing fabric.
We note that essentially the same result is stated (in somewhat different terms)

in [37].

3. Performance Studies 33

Figure 3.4: Construction of Alternate Routing Network

THEOREM 3.1.3. Let C = {cy,...,¢.} be an a-bounded configuration for A.
Then X(C) < an'/? for all links £.

Loading in Copy Networks

The broadcast packet switch of [59] is one of several proposed systems for multi-
point communication. In this section we study the worst-case loading of the copy
network, which gives that system the ability to handle multipoint communication.
We also consider several variants.

When dealing with copy networks, we must modify our definition of connection.
In the current context, we define a connection to be an an ordered triple (z, F, p),
where z is the input port of the copy network where packets belonging to the
connection enter, F' is the fanout of the connection and p is the load induced by
the connection at the input port z. The fanout of the connection is the number
of copies that must be produced by the copy network for each input packet. We
say that a traffic configuration C is a-bounded if A,(C) < a for all input ports £

34 ACS Progress Report (9/1/86 — 8/31/87)

and 32, ro)ec PF < an, where n is the number of input and output ports. A legal
configuration is one that is 1-bounded.

Reference [59], describes a copy network that is topologically identical to a
delta network. However, the nodes of a copy network replicate received packets
under certain conditions. Specifically, a node may replicate a packet if the number
of output ports reachable from that node is less than 2F, where F' is the fanout of
the connection the packet belongs to. Packets that are not replicated are routed
to an arbitrarily selected output. Hence, if o is the load induced on the input links
of a node u by a connection (z, F\ p), then the load induced on each of u’s output
links is e, if the number of output ports that can be reached from u is < 2F and
a/2 otherwise.

Given these definitions, we find that for a connection ¢ = (z, F, p) and a link £
in stage ¢,

0 if there is no path from input z to link £
Ae(c) =< p27° if there is a path and 0 < ¢ < k — [log, F']
p2~(k=Mog2 F1) if there is a path and i > k — [log, F

Our first theorem, which was first proved in [5] shows that the worst-case loading
in a copy network is bounded.

THEOREM 3.1.4. Let C = (¢q,...,¢) be any a-bounded configuration for an n-
port copy network. Then, A[(C) < 3a for all links {.

There exist legal traffic patterns approaching the bound in Theorem 3.1.4. Copy
networks can also be constructed using nodes with m > 2 input and output ports.
In such networks, a node replicates a packet m times if the number of reachable
output ports is less than mF. Surprisingly, the worst-case performance of such a
copy network is worse than for a copy network constructed from binary nodes.

THEOREM 3.1.5. Let C = (¢y,...,cn) be an a-bounded configuration for an n-port
copy network constructed from m-port nodes. Then M(C) < a(m+1), for all links
£.

The proof of this is very similar to that of Theorem 3.1.4. Again, the bound
is the best possible; there exist legal traffic configurations that induce loads ap-
proaching m + 1 on some internal links.

As with routing networks, we can improve the worst-case performance of a copy
network by adding distribution stages. The topology of such a network is identical
to a routing network with added distribution stages. The effect on the worst-case
loading is captured by the following theorem.

3. Performance Studies 35

THEOREM 3.1.6. Let C = (c1,...,¢,) be an a-bounded configuration for a copy
network with k copy stages and d distribution stages. Then A(C) < o1 +2179),
for all links £ in stages 0 to k + d — 1; A < 2a for all links £ in stage k + d.

Theorem 3.1.6 shows that the worst-case loading in a copy network can be
brought very close to « in all but the last stage links, by adding a few distri-
bution stages. We note that Theorem 3.1.6 can be generalized to copy networks
constructed with m-ary nodes. In this case the bound on the worst-case loading
becomes a1 + m!~¢) for all but the last stage and m for the last stage.

3.2. Generalized Non-Blocking Networks

In this section we introduce a generalization of the classical theory of non-blocking
networks. This new theory applies to packet switching fabrics in which all packets
in a given connection are constrained to follow the same path. In the broadcast
packet switch architecture this is not the case within a switch module but is the
case for a large switching system comprising many switch modules.

We start with some definitions. We define a network as a directed graph G =
(V, E) with a set of distinguished input nodes I and output nodes O, where input
nodes have one outgoing edge and output nodes one incoming edge. A connection
in a fabric is a triple (z,y,w) where 2 € I, y € O and 0 < w < 1. We refer
to w as the weight of the connection and it represents the bandwidth required by
the connection. A route is a path joining an input node to an output node, with
intermediate nodes in V' — (U O). A route r realizes a connection (z,y), if z and
y are the input and output nodes joined by r.

A set of connections is said to be compatible if for all nodes € T U O, the
sum of the weights of all connections involving z is < 1. Similarly a collection of
routes is compatible if for all edges (z,y) € E the sum of the weights of all routes
involving (z,y) is < 1. A set of connections is said to be realizable if there is a set
of compatible routes that realizes that set of connections.

A fabric is said to be rearrangeably nonblocking (or simply rearrangeable) if for
every set C of compatible connections, there exists a set R of compatible routes
that realizes C. A fabric is strictly nonblocking if for every set of compatible
routes R, realizing a set of connections C, and every connection ¢ compatible with
C, there exists a route r that realizes ¢ and is compatible with R. For strictly
nonblocking fabrics, one can choose routes arbitrarily and always be guaranteed
that any new connections can be satisfied without rearrangements. Other fabrics
can be nonblocking if one chooses routes judiciously. Such fabrics are said to be
wide-sense nonblocking.

36 ACS Progress Report (9/1/86 — 8/31/87)

Sometimes, improved performance can be obtained by placing constraints on
the traffic imposed on a network. We will consider two such constraints. First,
we limit the weight associated with any connection and denote this maximum
weight by B. We also limit the sum of the weights of connections involving a node
zin TUO to 8. Clearly 0 < B < 8 < 1. We say a network is strictly non-
blocking for particular values of B and f if for all sets of connections for which the
maximum connection weight is B and total port weight is B, the network cannot
block. The definitions of rearrangeably non-blocking and wide-sense non-blocking
networks are extended similarly. (Note that such theoretical restrictions may not
restrict practical systems significantly, but may rather imply greater capacity in the
internal links of a network than in the external links connecting different networks
together. Such a speed advantage is commonly used in high speed systems.)

We start with an elementary observation to illustrate the definitions. A binary
delta network with n ports is strictly non-blocking if 8 < 4/1/n. Furthermore, if

log, n is odd, it suffices for # < {/2/n. This is similar to the first theorem in the
previous section. We now list a few more substantive theorems.

THEOREM 3.2.1. Let ¢ be a fized positive integer. Any network constructed from
nodes with at most ¢ incident arcs, that is non-blocking for 8 = 1 has Q(n?) nodes.

This implies that for unrestricted input traffic (8 = 1) a crossbar is essentially
a best possible strictly non-blocking network. This contrasts sharply with the
situation for space division networks. Our next theorem captures a general trade-
off between the complexity of a network and the maximum port weight 5.

THEOREM 3.2.2. Let ¢ > 3 be an integer, 0 < B8 < a < 1. Let F\,F;,... be
a family of networks in which each node is incident to at most c edges and the
number of nodes in F, is O(f(n)). If for all n, F, is strictly (rearrangeably,
wide-sense) non-blocking when the mazimum port weight is o, then there exists
a family of networks F|,F;,... where for each n, F. is an n port network with
O(n + f(Bn/a)) nodes and F,, is strictly (rearrangeably, wide-sense) non-blocking
when the mazimum port weight is .

The networks in F' are constructed by selecting an appropriate network in F' and
adding a set of (/) : 1 concentrators at the front and a set of 1 : (/) expanders
at the back.

A binary Benes network is the network Dy ;_; defined in the previous section
where k = log,n. A Cantor network of multiplicity m consists of a set of 1 : m
expanders feeding into m parallel Benes networks and followed by a set of m : 1

3. Performance Studies 37

concentrators. The complexity of a Benes network is O(n logn) and the complexity
of the Cantor network is O(mnlogn).

THEOREM 3.2.3. A Cantor network of multiplicity m is strictly non-blocking if
m > 1—% log, n.

COROLLARY 3.2.1. The Benes network is sirictly non-blocking if 1—;'32 > log, n.

Theorem 3.2.3 is similar to a corresponding result for space-division networks,
which states that a multiplicity of m = log, n is sufficient to ensure non-blocking
operation. Corollary 3.2.1 implies that for 8 < 1/(1 + log, n), the Benes network
is strictly non-blocking. Moreover, by applying Theorem 3.2.2 to this result, we
observe that there exists a strictly non-blocking network with O(n) complexity and
B = 1/(log,n)?. The Benes network is rearrangeably non-blocking in the space
division case. It turns out that it is also rearrangeably non-blocking for varying
rate connections in certain restricted cases.

THEOREM 3.2.4. For B < 4/(4+log, n), the Benes network is rearrangeably non-
blocking.

'THEOREM 3.2.5. Let r be any positive integer. The Benes network is rearrange-
ably non-blocking for sets of connections in which all weights w satisfy 1/(r +1) <
w< /e,

We can show that the Benes network is not rearrangeably non-blocking for unre-
stricted traffic configurations, but we conjecture that for small values of m, the
Cantor network of multiplicity m is. Theorems 3.2.3 and 3.2.5 suggest the pos-
sibility of a network in which connections with large weights are separated and
handled in a rearrangeably non-blocking fashion. This observation leads to the
following theorem.

THEOREM 3.2.6. Let r > 2 be an integer and m > (r —1) + Z5 logyn. A Cantor
network of multiplicity m is rearrangeably non-blocking for connections of weight
> 1/r and wide-sense non-blocking for connections of weight < 1/r.

We have also considered generalizations of Clos networks. Let Cu, . denote a
three stage Clos network with N input and output ports and constructed from
n X m crosshars in the first stage, (N/n) x (N/n) crossbars in the middle stage
and m X n crossbars in the third stage. Also, let b be the minimum weight for a
connection.

38 ACS Progress Report (9/1/86 - 8/31/87)

THEOREM 3.2.7. The Clos network Cy . is strictly non-blocking if
m> 1| g min {| 552 |25
b<w<B 1—w b

This yields several immediate consequences. If we let b = B = 8 = 1, the effect is
to operate the network in a space-division mode and the theorem states that we
get non-blocking operation when m > 2n —1 as is well-known. If we let = 0 and
B = 3 =1/2, we also get non-blocking operation for m = 2n — 1.

We have only scratched the surface of this research topic. There are several
directions in which this work may be extended. While we have good construc-
tions for strictly non-blocking networks, we expect our results for rearrangeably
non-blocking networks can be considerably improved. Another interesting topic is
non-blocking networks for multipoint connections. While this has been considered
for space-division networks, it has not been studied for networks supporting con-
nections of any size. Another area to consider is analysis of blocking probability
in such networks. We expect blocking probability to be highly dependent on par-
ticular choices of routing algorithm and anticipate that extensive simulation will
be required to explore this in depth.

3.3. Packet Misordering

This section presents some initial simulation results which attempt to assess the
likelihood that packets passing through a broadcast packet switch become mis-
ordered. The results presented here are for a configuration consisting of a copy
network, distribution network and routing network, all with 64 input and output
ports and all comprising binary switch elements with two buffer slots per input.

Our results are summarized in the two plots shown in Figure 3.5. The plot
on the left gives the distribution of the delay incurred by packets passing through
a switch fabric. Note that for an offered load of p = 0.4 (the maximum allowed
under normal operating conditions) the vast majority of the packets pass through
the switch fabric in under ten packet times and at this loading level, only about
one packet in 10° is delayed as much as 20 packet times. Since the switch fabric has
a 2:1 speed advantage over the external links, packets that arrive 10 packet times
apart on an external link are very unlikely to get misordered by the switch fabric.
This in turn suggests that resequencing packets on the output side of the switch
fabric may be viable using only a small resequencing buffer. In particular, one
could time-stamp packets on receipt from a link, then order them by time-stamp

3. Performance Studies 39

05 |
10!

10~

0.1
4 P
10—
0.01
108 0.005 ; !
8 10 12 14
delay entry separation

Figure 3.5: Distribution of Delay and Misordering Probabilities

in the transmit buffer. If in addition, one never transmits a packet that isn’t at
least say 10 packet times old, the likelihood of misordering can be reduced to a
very small level. While the logic to put packets in time-stamp order adds some
complexity to the output buffer, the incremental cost is fairly small.

The plot on the right examines, the likelihood of packets being misordered more
closely. In the simulations on which these results are based, all packets entering
the copy network on input port 0 were treated as belonging to a point-to-point
connection going to output port 0 of the routing network. The plot shows the
fraction of all pairs of packets entering the copy network with a separation of =z
packet times that were misordered. So for example, for p = 0.4, about 1% of
the pairs arriving six time units apart were misordered. If one extrapolates from
these curves, one finds that less than one pair of packets in 10® that arrive with a
separation of 20 packet times are misordered.

4. Prototype Hardware Design

Faculty Jonathan Turner

Research Associate Pierre Costa

Graduate Students Neil Barrett
Shabbir Khakoo
George Robbert

James Sterbengz
Einir Valdimarssen

A prototype of a BPN switch module is being designed. The purpose of this
prototyping effort is to provide a convincing demonstration of feasibility, allow
detailed examination of implementation issues and provide a testbed for future
experimental efforts at higher levels. During the past year, we have designed
several trial chips in order to obtain a detailed understanding of implementation
issues and to deepen our experience with the design process. We are now designing
integrated circuits to be used in our prototype system. These will incorporate a
number of fundamental improvements based on our experience with the trial chips
and related performance studies.

The overall structure of the prototype packet switch is shown in Figure 4.1. The
Connection Processor (CP), shown at the {op of the figure, is a general purpose
computer that provides overall control of the system, including connection estab-
lishment. The heart of the system is an eight port Switch Fabric (SF) comprising
a Copy Network (CN), a set of Broadcast Translation Circuits (BTC) and a Rout-
ing Network (RN). A set of Packet Processors (PP) provide the interface between
the SF and the high speed Fiber Optic Links (FOL) that are used to interconnect
different switches. The CP communicates with the rest of the system through the
CP Interface (CPI). The system is operated in a highly synchronous fashion, with
global timing provided by the single timing circuit shown at the top of the figure.
The prototype system is designed to support FOL speeds of at least 150 Mb/s. To
achieve this, the internal data paths are required to operate at an effective rate of
at least 300 Mb/s. Consequently, the prototype will use eight bit wide data paths
and the target clock speed is 50 Mb/s.

41

42 ACS Progress Report (9/1/86 - 8/31/87)

Timing

L I
CPI

Broadcast
Copy Network Translators Routing Network

[BTCy
PE,

‘F BTC,

& e
b W

BT PF;

i
i

Figure 4.1: Prototype Switch Module

Custom integrated circuits are being designed for the switch elements, BTCs
and Packet Processors (PP). The BTC and switch element designs will require one
chip apiece, the PP design will require two or three chips. A total of approximately
50 custom chips are required to implement the prototype switch module. At this
time, trial designs have been completed for the BTCs and switch elements. These
are being fabricated currently and will be tested on return. We are currently
revising these designs, in part to meet the speed objectives for the prototype, and
at the same time are developing detailed designs for the PP. Design of the cp
interface and timing circuitry is also underway. The remainder of this chapter
describes the format of the packets used within the prototype and gives a top level
description of the design of the various components.

4.1. Packet Formats

This section describes the formats of packets used in the switch. There are two
primary packet formats: external and internal. Packets are carried in external
format on the fiber optic links connecting switches, and in internal format within
each switch. The PP translates between these two formats. Note that higher level
processes may define additional packet formats; this section details only those fields
that are of direct concern to the prototype hardware.

4. Prototype Hardware Design 43

External Packet Format.

Each external packet is organized as a sequence of 8 bit wide words. Each packet
contains exactly 76 words, the first 3 of which constitute the packet header. The
last word of the packet is used for a frame checksum. When transmitted on the
external transmission links, external packets are separated by a SYNC pattern that
allows the receiver to identify packet boundaries. The meanings of the external
fields are given below.

¢ Packet Type (PTYP). Identifies one of several types of packets, including
ordinary data packet, control packets and test packets.

e Ezternal Logical Channel Number (ELCN). Logical channel numbers are used
to identify which connection a packet belongs to. For the prototype, only
256 distinct logical channels are recognized.

o Information (I). Normally contains user information. In the case of control
packets, may contain additional control information. Individual words are
denoted 1[0],1[1],1[2],... with 1[0] being the first word of the I field.

e Frame Check (FC). The frame check is used to detect errors in the packet.
A simple check sum over the first 75 bytes of the packets is used.

Internal Packet Format

Each internal packet is organized as a sequence of nine bit wide words, including
an odd parity bit. Each packet contains exactly 80 words, the first five of which
constitute the packet header. The structure of the packet is shown in Figure 4.2.
The meanings of the fields are given below.

® Routing Control (RC). This field determines how the packet is processed by
the switch elements. The possible interpretations are listed below.
0 Empty Packet Slot
1 Point-to-Point Data Packet
2 Broadcast Packet
4 Specific-Path Packet
o Operation (OP) This field specifies which of several control operations is to

be performed for this packet. The possible values of the field and the corre-
sponding functions are listed below.

44 ACS Progress Report (9/1/86 — 8/31/87)

Internal Format

RG OP
FAN/LN
External Format — BCN/ILCN
SYNG e
' PTYP = PTYD —
T e — — ELCN
80
76
I I

FC

Figure 4.2: Packet Formats

N~ parity

4. Prototype Hardware Design 45

0
1

A

Vanilla Packet. No control functions.

Read LCXT Block. Directs PP to read a block of 16 entries from the
Logical Channel Translation Table. 1[0] specifies which block to read.
The data is copied into I[1]-1[64] and the packet is returned to the cPp.

Write LCXT Block. Directs PP to write a block of 16 entries to the Logical
Channel Translation Table. 1[0] specifies the block to write. The data to
be written is in I1{1]-1[64].

Read PP Parameter Block. Read the contents of the PP parameter block
into 1[1]-1[64] of the packet and return the packet to the cp.

Write PP Parameter Block. Write the contents of 1[1]-1[64] into the PP
parameter block.

Switch Test Packet. When received by a PP is returned to the SF with
a new routing field. The new routing field is obtained by rotating the
entire contents of the packet by five words.

Read BTT Block. Directs BTC to read and return a block of 16 entries
from the Broadcast Translation Table (BTT). 1[0] field specifies which
block to read. The data is copied into 1{1]-1[64] and the packet returned
to the cp.

Write BTT Block. Directs BTC to write information into a block of 16
entries of the BTT. 1[0] field specifies which block to write. The data to
be written is in 1[1]-1[64].

BTT Single Entry Update. Directs all BTCs in a given group to update
an entry in their BTTs. BCN gives the broadcast channel number of the
connection, I[0] is the new fanout, I[1] is the block of Broadcast Copy
Indices that are to be updated (16 BCIs to a block) and 1[2]-1[65] contains
the block of 16 entries. Each BTC calculates its broadcast copy index,
J, for the connection and if |j/16] equals the block number in 1[1], it
copies I[4(7 mod 16)]-1{(j mod 16) + 3] to BTT[BCN].

Read BCIT Block. Directs the BTC to read the contents of one block of 64
BCIT entries into I[1)-1[64] and return the packet to the CP. 1[0] specifies
the block to read.

Write BCIT Block. Directs the BTC to write the information in words
1[1]-1[64] into one block of the BCIT. I[0] specifies the block to write.

C-I'F Reserved.

e Destination (DST). The interpretation of these three words depend on the
value of RC.

46 ACS Progress Report (9/1/86 — 8/31/87)

~ Fanout (FAN). If RC = Broadcast Packet, the second word of the packet
is taken to be the fanout, that is the number of switch fabric output
ports that require copies of the packet.

— Broadcast Channel Number (BCN). If RC = Broadcast Packet, the third
and fourth words of the packet are taken to be the broadcast channel
number. All packets within a particular multi-point channel have the
same broadcast channel number. Only 256 distinct BCNs are recognized.

— Link Number (LN). If RC = Point-to-Point Packet, the second word of
the packet is taken to be the number of the outgoing link to which the
packet should be delivered.

— Internal Logical Channel Number (ILCN). If RC = Point-to-Point Packet,
the third and fourth words of the packet are taken to be the internal
logical channel number. This will become the external logical channel
number when the packet exits the switch module.

— Specific Path Specification. If RC = Specific-Path Packet, the three
words of the DST field specify output ports for each of the three net-
works. The packet will be routed through each of these.

e Source (SRC). The number of the most recent PP through which the packet
has passed. For vanilla packets, this will be the number of the link on which
the packet entered the switch. For test packets it will be changed as the
packet passes through different PPs.

4.2, Timing

The system is operated in a highly synchronous fashion. All packets are the same
length and pass through the switch fabric in synchrony with one another. There
is a global packet cycle that determines the timing of all events within the system.
Incoming packets are received by the packet processors and synchronized to this
packet cycle. Each cycle is referred to as an epoch. The length of an epoch is 84
clock times or 1.68 us. This allows time for one packet to be processed and leaves
a guard time of four clock periods between packets.

The global timing generator provides the base 50 MHz clock that drives the
system plus a set of signals that define various instants within the global time
reference. The notation gtz is used to denote clock cycle i in the global time
reference. By definition, gt0 is the time at which packets start to enter the leftmost
stage of the copy network. The nodes of the switch fabric delay packets passing
through them for exactly 32 clock times and the BTC delays packets for exactly

4. Prototype Hardware Design 47

Timing
il B
CPI
Broadcast .
Copy Network Translators Routing Network
BTG
PP,
[PP,]
PPs]
PPy
| PPs|
(PP
[BTC]
t0 = gt0 t0 = gt64 t0 = gt76 t0 = gt56
t0 = gt32 t0 = gt44 t0 = gt24 t0 = gt4

Figure 4.3: Local and Global Timing Relationships

64 clock times. Consequently, packets pass from the leftmost stage of the copy
network to the next stage at gt32 and so forth.

Every component in the system has a local time reference which is typically
synchronized to the point in the global time reference at which that component
can start to receive a packet on one of its input links. The notation t0 denotes
the starting point of the epoch for a particular component’s local time reference.
Fach of these local time references is synchronized to the global time reference as
shown in Figure 4.3.

4.3. Packet Switch Element

The Packet Switch Element chip (PSE) is the 2 x 2 VLSI switch element used in the
binary routing, copy and distribution networks. The PSE directs packets to one or
both outputs based on packet type (point-to-point, broadcast, or specific-path),
switch operation mode (routing, copy, or distribution), and the contents of the
LN/FAN field.

The prototype version of the PSE differs from the initial trial chip in several im-
portant respects. The objective of these changes has been to eliminate constraints

48 ACS Progress Report (9/1/86 — 8/31/87)

wdA —7 9 .+ dd0
ugh — dg0
udB — |7 . ddl
'I.lgB | t— dgl
sn —f‘—— — t3
om —f—. PSE — ti
res ~——s — to
ST —
err «—— ——— pwr
+—— gnd
phil —
phi2 —
t0 —

Figure 4.4: External Interface for Packet Switch Element Chip

on the speed of operation of the PSE. The design outlined below is expected to
run at clock speeds of 50 Mb/s, as opposed to 10 Mb/s for the trial chip. This
improvement is due largely to changes in some basic design decisions. The most
important change is to modify the way in which grant propagation is handled.
In the system as described in [59], grants are propagated from the output of the
routing network back through the inputs to the copy network before packets can
flow forward. This design makes best use of the nodes’ internal buffers but places
tight constraints on the number of clock cycles a node can delay a packet. In
the new design a node makes decisions on its upstream grants independent of the
status of the downstream grants. This change greatly relaxes the constraint on the
number of clock cycles a node can delay a packet, which in turn makes it possible
to increase the speed of the clock. Because this change reduces the effectiveness
of node buffers, we have also decided to switch from a design with a single buffer
per input to one with two buffers per input.

External Interface

The external leads of the switch element are shown in Figure 4.4 and described
briefly below.

4. Prototype Hardware Design 49

o Upstream data leads (udA,udB). Incoming data from upstream neighbors.
Nine bits wide, including parity.

o Upsiream grants (ugh,ugB). Grant signals to upstream neighbors. When
asserted, grants permission to transmit packet on corresponding data leads
during subsequent epoch.

¢ Downstream data leads (dd0,dd1). Outgoing data to downstream neighbors.
Nine bits wide, including parity.

¢ Downstream grants (dg0,dgl). Grant signals from downstream neighbors.
When asserted, grants permission to transmit packet on corresponding data
leads during subsequent epoch.

e Stage number (sn). Three bit stage number. Each network has up to eight
stages (columns), numbered from 0, with stage 0 being the last (rightmost)
stage in a network.

¢ Operating mode (om). Two bit code identifying which of three possible oper-
ating modes the switch element implements. 1 for route, 2 for distribute, 3
for copy.

o Reset (res). Initialize all internal control registers; this causes any packets
in the node to be discarded.

o Soft Reset (sr). Clear the error flag.
e Error (err). Report parity violation or other error.
o Clock (phil,phi2). Two-phase, non-overlapping clock.

e Start of Packet Cycle (t0). Goes high when first word of packet is present
on ud leads.

o Test Shift (ts). Shift lead for controlling shifting of test data.
o Test In (ti). Input lead for test data.

o Test Out (to). Output lead for test data.

e Power (pur).

o Ground (gnd).

50 ACS Progress Report (9/1/86 — 8/31/87)

Global Operation

A single PSE circuit is used to implement the routing, copy and distribution net-
works. Packets are handled based on the information in the packet headers and
either forwarded to the appropriate output (or outputs) or held until the required
output(s) is available. The grant signals are used by nodes to control the arrival of
packets from their upstream neighbors. In general, a node asserts a grant, allowing
a new packet to arrive if it has an available buffer in which to store the packet.
Each node can store up to four complete packets in its internal buffers.

PSE routing decisions are based on the operation mode and RC field, as specified
below.

e For om =route; use bit sn of the LN field to select an output port, where sn
is the stage number.

¢ For om =copy; if RC is broadcast, and FAN exceeds 257, where sn is the stage
number, send copies of packets to both output ports. If RC is specific-path,
use bit sn of LN field to select an output port. Otherwise, distribute.

e For om =distribute; if RC is specific-path, use bit sn of LN field to select an
output port. Otherwise, distribute.

When arbitrary routing choices can be made, the following policies are used to
make decisions:

o Ties among input ports for a given output port are arbitrarily broken based
on the last input port favored, to avoid individual starvation.

o Packets that can proceed to either output are uniformly and arbitrarily
distributed (all packets in distribution network, point-to-point packets and
broadcast packets not replicated in copy network).

o Packets requesting both outputs in the copy network are favored over packets
requiring only one.

o Packets requesting a specific output are favored over packets which can use
either.

The clock period during which the first word of a packet appears on the up-
stream data leads is called t0 and in general, the clock period during which word
¢ appears is called ti. The delay through a node is 32 clock times, or 640 ns. So,
if an incoming packet can be switched through a node without buffering, the first

4. Prototype Hardware Design

51

phi2 gnd sr

phil

|

pwr res '

|

t0
phi2 ti err
phil ts l to
TC MISC
l l . A l
t: ti:g pel
udA —%— dao
IC4
ugh +—
TA[3 enAf2
occ

rBf3 enB/2

ugB «—
ICp

udB —9/——

A o+ dao

A Fwaddl

Figure 4.5: Block Diagram of Packet Switch Element Chip

byte will appear on the output at t32. Each node makes its upstream grant signals
available at t32 in the node’s frame of reference and holds the grant leads in that
state until t32 of the subsequent cycle. Consequently, the grant signal is available
to the upstream neighbor any time after 64 in the neighbor’s frame of reference.

52 ACS Progress Report (9/1/86 - 8/31/87)

Internal Components

A block diagram of the PSE appears in Figure 4.5. The major components are
described below.

¢ Output Conirol Circuit (0cc). The 0CC arbitrates access to the two output
ports, based on the downstream grant signals and port requests received
from the input circuits. The port requests are given in the form of three bit
request vectors, rA and rB; a value of 101 requests access to a output port 0,
110 requests output port 1, 111 requests both output ports and 100 requests
a single output port, with either one being acceptable. The individual bits
of these three bit codes are assigned the names rn, rl, and r0 with the suffix
A or B included when necessary to designate a specific side. The response is
given in the form of two bit enable vectors enA and enB; a value of 01 grants
access to port 0, a value of 10 grants access to port 1 and a value of 11 grants
access to both. The individual bits have the names enl and en0.

¢ Inpui Circuits (ICA,I0B). There is one input circuit for each input port.
Each 1¢ includes two buffers large enough to hold a single packet, plus control
circuitry to extract information from the packet header, generate the request
vector for the 0CC and use the resulting enable vector to make decisions
on the disposition of the packet. It also modifies the packet header when
necessary.

o Timing Circuit (TC). This circuit generates signals of the form t7 and ti:j,
for various values of %, . Signal t: is high during clock period ts of the epoch;
in particular it goes high during phi2 of the preceding clock cycle and goes
low before phi2 goes high again. Signal ti:j is similar; it is high during t
and stays high through tj.

Output Control Circuit. The Output Control Circuit is a PLA with ten
inputs and six outputs plus two flip flops which store the values of a pair of tie-
breaker variables. The flip flop ui specifies the input port that was most recently
favored the last time a tie was broken; in particular, if input port A was most
recently favored ui is 0, otherwise it is 1. Similarly, uo gives the number of the
output port that was most recently used during an epoch when only one output
port was used.

Input Circuit. The structure of the input circuit is shown in Figure 4.6.
The main blocks are summarized below.

4. Prototype Hardware Design 53

IpeA
ud —%+ ISRP
-9 . ddao
BSRO EMC
¥ —3 - ddal
BSR]_ F 3 - A F
idjs repar 1
bsel/2 ben [cpy [rot a0 |el
sb0 sbl
ugh «— 1CC
rA end

Figure 4.6: Input Circuit

¢ Input Shift Register (ISR). The input shift register is a 20 stage static shift
register with an output tap after the first stage and a parity checker. Packets
are shifted into the ISR from the upstream data lines. The first stage of shift
delay provides synchronization. The remaining stages allow time for control
and routing decisions to be made by the input and output control circuits.
The leads hd are connected to the output of the first shift register stage (data
bits only) and provide access to the header information. The signal rcpar
is 1 if the parity of the first byte of the packet is incorrect. This is used to
suppress copying of packets with incorrect routing control.

o Input Control Circuit (1cc). The ICC controls the flow of packets through
the input circuit. It extracts and decodes header information from incoming
packets and stores the decoded information for packets stored in the packet
buffers. Using this information, it requests output ports from the occ and
based on the results, controls the flow of packets through the 1c. It also
generates the upstream grant signals. A more detailed description of the 1cC
appears below.

o Buffer Shift Register (BSR). Each BSR is a static 80 stage shift register, with
the shift control provided by the IcC. A total of two BSRs are provided. The

54 ACS Progress Report (9/1/86 — 8/31/87)

buffers are followed by a multiplexor also controlled by the 1cc, which selects
from one of the buffers or the bypass path.

o Header Modification Circuit (EMC). This component makes minor changes
to the header as specified by the 1cC. If the rot bit is asserted, words 1-3 of
the routing field are rotated, with word 1 becoming word 3, word 2 becoming
word 1 and word 3 becoming word 2. If the cpy bit is asserted the packet
is sent to both output ports and the fanout fields of the copies are modified.
The bcn bit determines which copy gets the “extra” when the fanout value
is odd. The en0 and enl signals control the passage of data onto the output
links, with en0 enabling output 0 and enl enabling output 1.

Figure 4.7 details the Input Control Circuit. The ICC contains several major
components. The Header Register and Decode Logic (HRDEC) latches various fields
of an incoming packet’s header and decodes those fields into six bits. The cpy bit is
1 if the packet must be copied to both outputs. The ben bit specifies which output
receives the “extra” when the fanouts of the two copies are modified. The rot bit
1s 1 if words 1 to 3 should be rotated. The rn bit is 1, if there is an incoming
packet. The r0 bit is 1, if output 0 is required and the rl bit is 1, if output 1 is
required.

The buffer control registers BCREG0, BCREG1 store the decoded control bits
for packets stored in BSRO and BSR1. Fach BCREG has six data inputs and six
tri-state data outputs. In addition, the rn signal has a non tri-state output. The
BCREGs have two control inputs. If latch is high at t16, the input control bits are
latched. When sbc is high, the six stored bits are placed on the tri-state outputs.

The PLA at right provides overall control of the IcC. At the start of the epoch
it selects one of the HRDEC or BCREGs to provide a request vector to the Output
Control Circuit. Then, based on the response, it controls the steering of data
to and from the buffer shift registers and controls updating the BCREGs. It also
generates the upstream grant signals. The latches at the top of the figure simply
hold the control signals for the duration of the epoch and are latched at the times
indicated.

The fifo to the right of the PLA is used to keep track of the order of packets
stored in the buffers. The fifo is two bits wide and two deep. The output of the fifo
gives the number of the buffer containing the packet which is to be output first.

4.4, Packet Processor

The Packet Processors (PP) form the interface between the external fiber optic
links and the switch module’s internal data paths. They perform all the link level

4. Prototype Hardware Design 55

cpY
't ben sho bsel ugh
rot| sbi 9
t i1t
as wef S
| i f 1
latch =0
outen ce0
Oiﬂ dp dp0
id R
R BREGO
:;: HREG
t3 —
t4 — -
latch si
outen oe b t16
a dpl
P
|| PLA
BREG1
nfb
oce2
-
<
>
< —
| : dp2
riA enA0 enil
Yrod
rn

Figure 4.7: Input Control Circuit

protocol functions, including the determination of how packets are routed.

External Interface

The external leads of the packet processor are shown in Figure 4.8 and summarized
briefly below.

e Upstream data from SF (ud). Data from switch fabric. Nine bits wide in-
cluding parity.

ACS Progress Report (9/1/86 - 8/31/87)

1i —3] 9 ud
1f

L . dd
lo ? —— dg
rpn B +—— phil
res ? «—— phi2
8T —— PP ——— t0
bo +—m
fce «— e——— t8
Pe -— e— ti
err -——— ——— to

—— PpVT
+—— gnd

Figure 4.8: External Interface for Packet Processor

Downstream data to SF (dd). Data to switch fabric. Nine bits wide including
parity.

Downstream grant from SF (dg). When asserted, allows PP to transmit
packet in subsequent epoch.

Data from link (11). Data stream from FOL. Eight bits wide.

Link framing (1£). Link framing signal. Goes high at start of packet.
Data to link (10). Data stream to FOL. Eight bits wide.

PP number (ppn). Eight bit number identifying PP.

Reset (res). Resets the entire PP when it is asserted, causing any packets
stored in the PP to be discarded.

Soft reset (sr). Resets PP error flags.

Buffer overflow (bo). Asserted whenever a packet is discarded by the PP due
to buffer overflow.

4. Prototype Hardware Design 57

fol in RLI —+ RCV _| RCB | = RCVT ,_, ouT _‘Jﬁﬁ;;gafg‘,ﬂﬁ
TB
STB
fol out +— XLI XMIT XMB XCVT L IN l— data_in

Figure 4.9: Packet Processor Circuit

® FC error (fce). Asserted when the PP receives a packet containing a bad
frame check field.

¢ Parity error (pe). This signal is asserted whenever the PP detects a parity
error.

® Error(err). Asserted when the PP detects any error, including those signaled
above.

e Clock (phil,phi2). Two-phase, non-overlapping clock.

e Start of epoch (t0). Goes high when first word of packet is present on udleads.
o Test shift (ts). Shift lead for controlling shifting of test data.

o Test in (t1). Input lead for test data.

e Test out (to). Output lead for test data.

o Power (pwr).

e Ground (gnd).

Global Operation

The processing of packets by the PPs is determined by the PTYP field for external
packets (received from FOL) and by the OP field for internal packets (received from
SF).

58 ACS Progress Report (9/1/86 — 8/31/87)

o Ezternal Data Packet. Converted to internal format, with the routing field
determined by a lookup in an internal Logical Channel Translation Table
(LcXT). The packet is then transmitted to the switch fabric.

¢ External Link Test Packet. The PTYP field is changed to external data
packet, and the packet is returned on the outgoing FOL.

¢ Ezxternal Control Packet. Converted to internal format, with the LN field set
to 0 and the RC set to ordinary data packet. Transmitted to SF.

o Internal Data Packet. Converted to external format, with contents of internal
LCN field transferred to external LCN field. Transmitted to FOL.

o Switch Test Packet. The RC field is set to 0 and then the first five words of
the packet are moved to the end of the packet and everything else shifted
up. In other words, the whole packet is rotated by five words. The packet is
then returned to the sF.

Internal Components

A block diagram of the PP appears in Figure 4.9. The various components are
described briefly below.

¢ Buffers. The PP contains four packet buffers. The Receive Buffer (RCB) is
used for packets arriving from the FOL and waiting to pass through the SF.
The Transmit Buffer (XMB) is used for packets arriving from the SF that
are to be sent out on the FOL. The Link Test Buffer (LTB) and Switch Test
Buffer (STB) provide paths for test packets used to verify the operation of
the FOL and SF respectively. The RCB has a capacity of 16 packets, the XMB
has a capacity of 32. The LTB and STB can each hold two packets. Together,
the four buffers require a total of about 35 Kbits of memory.

o Receive Link Interface (RLI). Converts the incoming optical signal to an eight
bit electrical format, synchronized to the local clock.

o The Receive Circuit (RCV). Checks incoming packets for errors, adds parity,
strips off CRC, routes test packets to the LTB and other packets to the RCB.

o Receive Conversion Clircuit (RCVT). Adds five bytes of header information
to the front of each packet received from the RCB.

4. Prototype Hardware Design 59

e Output Circuit (OUT). Performs logical channel translation, using an inter-
nal Logical Channel Translation Table (LOXT) and sends packets to the SF.
Also reads test packets, LCXT read/write packets and PP parameter block
read/write packets from the STB and processes them appropriately.

o Input Circuit (IN). Routes internal data packets to the XcvT and others to
the LTB. Performs the rotation required for switch test packets.

e Transmit Conversion Circuit (XCVT). Removes the first five words of the
packet then transfers it to the XMB.

o Transmit Circuit (XMIT). Takes packets from the XMB, adds the sYNC field,
strips parity and computes the frame check. Also processes test packets from
the LTB.

o Transmit Link Interface (XLI). Converts from eight bit electrical format to
optical format.

The RLI and XLI will be implemented separately from the integrated circuit that
implements most of the PP functions. These will be implemented using commer-
cially available components. We are currently evaluating the TAXI chip set for
this purpose. The circuits that make up the bulk of the PP chip can be divided
into three basic types; synchronous streams processors (SsP), packet buffers and
lookup tables.

An SSP is a circuit that has several typed I/O ports over which it sends and
receives data in a highly synchronous fashion and which transforms the contents
of certain fields as the data passes through. These can be readily described in a
high level specification language that we have designed and can then be compiled
into a special-purpose circuit implementing the given specification. Some details
of the language and the translation process are given in the following chapter of
this report. The RCV, XMIT, RCVT, XCVT, OUT and IN circuits are all examples
of sSPs and our plan is to implement all of them using the automatic translation
process just described.

A packet buffer is a memory designed to hold packets. The XMB, RCB, LTBand
STB are all specific instances. As with the SsPs, we are designing a program that
will automatically generate a specific packet buffer given a description of its desired
characteristics (packet length, data path width, timing requirements, etc.). This
program will be used to design the particular packet buffers required for the pp.
This is described further in the following chapter.

A lookup table is also a memory, but has a somewhat different interface than
a packet buffer, since it must offer random access to the table entries rather than

60 ACS Progress Report (9/1/86 ~ 8/31/87)

uwd —3 L % . ad
Ires ———s l——— ts
ST — — ti
ery «—— BTC ——» to
phil —— —— pwr
phi2 — ——— gnd
t0 —f

Figure 4.10: External Interface for BTC

implementing a buffer. We will soon begin work on a similar program that gener-
ates a lookup table from a given specification. The LCXT is the only lookup table
in the PP, but other chips in the system also contain lookup tables, so we felt it
advantageous to design a general tool to create them.

4.5. Broadcast Translation Circuit

The Broadcast Translation Chip (BTC) provides unique addresses for each of the
copies of a broadcast packet replicated by the copy network. It also provides a
hardware assist for updating the table of new addresses for a single broadcast
channel.

External Interface

The external leads of the BTC are shown in Figure 4.10 and described briefly below.

o Upstream data leads (ud) Incoming data from upstream neighbors. Nine bits
wide including parity.

o Downstream data leads (dd) Outgoing data to downstream neighbors. Nine
bits wide including parity.

o Reset (res). Resets the entire BTC when it is asserted, causing any packets
stored in the BTC to be discarded.

4. Prototype Hardware Design 61

o Soft reset (sr). Resets PP error flags.

e Error (err). Asserted when the BTC detects any error.

e Clock (phil,phi2). T'wo-phase, non-overlapping clock.

o Start of epoch (t0) Goes high when first word of packet is present on udleads.
o Test shift (ts). Shift lead for controlling shifting of test data.

o Test in (ti). Input lead for test data.

o Test out (to). Output lead for test data.

e Power (pwr).

¢ Ground (gnd).

Global Operation

The BTC’s operation depends upon the type of packet passing through it.

o Ordinary Data Packet. These packets are passed straight through the main
shift register unchanged.

e Broadcast Data Packet. The routing field is replaced with a new field selected
from an internal Broadcast Translation Table (BTT). The new field is selected
using the BCN of the packet.

o Read/Write BTT Block. These two packet types are used for updating the
BTT in large chunks and for reading it for auditing and testing purposes.

e Read/Write BCIT Block. These packets read and update the entire broadcast
copy index table.

o Single Entry Update. This packet supplies a set of new routing fields for
this BCN. The BTC chooses which one to write into the BTT depending on
the value of the broadcast copy index, which is determined from an internal
Broadcast Copy Index Table (BCIT). 1[0] specifies the new fanout for the
connection, I[1] specifies which group of routing fields are contained in the
packet. 1[2]-1[65] contains the routing fields.

e All other packets are passed through like ordinary data packets.

62 ACS Progress Report (9/1/86 — 8/31/87)

BCIT BTT

ud — BTCC —-dd

Figure 4.11: Block Diagram of Broadcast Translation Chip

Internal Components

The internal components that make up the BTC are similar to those in the PP.
In particular, the BTC can be described as a single SSP along with two lookup
tables, one for the BTT and the other for the BCIT. This structure is illustrated in
Figure 4.11 and the components are described briefly below.

¢ Broadcast Translation Table (BTT). This is the table used to store the rout-
ing information for packets belonging to to multipoint connections. The
prototype version will consist of 256 entries, each four bytes long, plus par-
ity.

e Broadcast Copy Index Table (BCIT). This table is used to compute the
broadcast copy index of the BTC, for use in updating the BTT when the
fanout of a connection changes. It contains 512 single byte entries, plus
parity.

e BTC Control (BTcc). This is the control circuit that processes all received
packets using the BTT and BCIT.

Our plan is to implement the two lookup tables using a lookup table generator,
which is described briefly in the next section. The BTccC will be implemented as
a synchronous streams processor using the program we are developing for that
purpose.

5. Tools for Design of
Communication Circuits

Faculty Jonathan Turner
Research Associate Pierre Costa
Graduate Student Neil Barrett

George Robbert
James Sterbenz
Einir Valdimarssen

The implementation of the prototype packet switch for the ACS project will
require several custom VLSI chips. In the past year, we have designed preliminary
versions of two chips and gained considerable insight into both the impact of low-
level design issues on architecture and on the design process itself. In this chapter,
we review our efforts at constructing special purpose tools to reduce the amount of
manual effort associated with the design of integrated circuits. Our most ambitious
effort in this area is the design of a circuit generator for a particular class of circuits
that arise frequently in our work and which we refer to as synchronous streams
processors. We have also begun several other projects which seek to automate or
partially automate other design tasks.

5.1. Synchronous Streams Processors

Many of the circuits required in a fast packet switching system contain a large
number of functional modules that accept packets on one or more input ports,
modify the packet headers and transfer the packets to one or more output ports.
The various modules operate in tight synchronism because of the use of fixed length
packets. We have come to view each of the specific modules as special cases of a
generic synchronous streams processor or SSP.

An SSP, is a module with one or more typed input and output ports, a local clock
synchronized by external timing signals and a function which can be described in

63

64 ACS Progress Report (9/1/86 — 8/31/87)

start_time ¢

L
in —- @ ——--— out

program

in — — out

Figure 5.1: Generic Synchronous Stream Processor

a style similar to a conventional programming language (see Figure 5.1). The local
clock is set to 0 when the external synchronization signal start_time is received,
and is then incremented on every tick of the global system clock ¢. The period
between successive start_time signals is referred to as an epoch and all events
happen at specific times during an epoch.

Each port has a type associated with it. The base type is bit and complex
types can be constructed using arrays and structures. As an example, the following
declaration defines the format of an internal packet in the BPN prototype.

struct ipfmt {
bit op[B], rcl[3];
bit fan_1n[8];
bit ben_ilen[16];
bit src[8]:
bit £ill{4], ptypl4];
bit elcn[16];
bit infol[72][8];

g

In addition to its type, a port has a start time and a width. The start time
defines at what point in each epoch the data item defined for that port begins to
appear on the port. The width of the port defines the number of bits available
to carry the data. These pieces of information are sufficient to define when in an
epoch and where on a port, specific items of data appear. This allows a designer

5. Tools for Design of Communication Circuits 65

to describe the function of an SSP in terms of actions on port fields, ignoring the
details of timing and bit location.

We now turn to a simple example to illustrate how an SSP can be described.
The circuit we will describe combines the functions of the IN and XCVT circuits
of the packet processor. It accepts an input packet from the switch fabric on one
port and based on the control field directs the packet to either the XMB or STB.
For test packets, the RC field is set to 0 and the packet is rotated by five words.
In addition, packets sent to the XMB are placed in a format that is intermediate
between the internal and external formats; basically, it is the internal format with
the first five words removed. As part of this transformation, the logical channel
number in the ILCN field is copied to the ELCN field.

struct hpfmt { // Hybrid packet format
bit £ill1[4], ptyp[4];
bit elcn[16];
bit info[72][8];
};
module inxcvt{(port[8] struct ipfmt <sfp@0, >1tbpe2,
port[8] struct hpfmt >xmbp@6)
if sfp.op == OP_DATA ->

xmbp.fill = sfp.fill;
xmbp.ptyp = sfp.ptyp;
xmbp.elcn = sfp.ben_ilen;

xmbp.info = sfp.info;

| sfp.op == OP_STEST ->
1tbp:(0,74+8) = sfp:(5+8,79%8); // Rotate
1tbp: (75%8,79%8) = sfp:(0,4%8);

1tbp: (75%8,75%8+2) = 0; // Clear rotated RC
| sfp.op != OP_DATA && sfp.op != OP_STEST ->
1tbp = sfp;

fi;
end

The example module defines three eight bit wide ports; sfp is an input port
(indicated by <) carrying data in mpfmt, starting at time 0; 1tbp is an output port,
also carrying data in mpfmt, starting at time 2; xmbp is an output port carrying
data in hpfmt, starting at time 6. The program specifies the appropriate action
based on the OP field of the incoming packet. The assignments define the contents
of the various output fields. Unspecified output fields are filled with zeros. The
notation port: (i, j) refers to a range of bits on the given port, providing a simple
low level mechanism for rearranging large blocks of a packet. Notice that the only

66 ACS Progress Report (9/1/86 — 8/31/87)

input bus
ctrl guard expr other
. . delay
timing eval eval |:--proc---)
. . . lines
logic logic logic elems
output bus

Figure 5.2: Target sSpP Architecture

times that must be defined explicitly are the times at which data items start to
flow across ports.

The simple paradigm of typed, synchronous ports can also be used to define
control signals that must be exchanged between different modules. This allows us
to define more complicated interfaces such as are required on the output side of
various buffers. Modules can also have local variables that can be used to save
information across time epochs.

5.2. Implementation of SSPs

SsPs that perform simple functions, as are typical in the Packet Processors, fit
nicely into a common architecture illustrated in Figure 5.2. This architecture
supports several input and output ports of varying widths. Input ports connect to
a common input bus and outputs to a common output bus. Between these are a
set of processing elements (PE). Each processing element has data registers which
latch selected input fields. The guard evaluation logic in addition, contains the
combinational logic to evaluate the conditions in if-statements. The ezpression
evaluation logic evaluates expressions on the right side of assignments. The delay
lines are used to delay the passage of certain fields to the output bus in order to
satisfy timing constraints. The control and timing element provides timing signals
for latching input data and controlling access to the output bus.

5. Tools for Design of Communication Circuits 67

(module description)

Silicon Compiler

(register zfer lang)

SSP Assembler

(PE description lang)

PE Assembler

PE Gen [/ PE Gen

(certtiv) (celitiv)
!

C mask description j

Figure 5.3: Structure of A Silicon Compiler

Our objective is to develop a circuit generator that takes a high level description
of an SSP and creates a circuit implementing it, by tailoring the target architecture.
We have divided the translation into several parts as illustrated in Figure 5.3. The
compiler takes the high level module description and translates it to a simple
register transfer language. This is further processed by an ssPassembler which
translates it further to a PE description language. This is further processed by
a PE assembler which generates the actual mask-level description of the module,
using a library of standard cells and a set of PE generators, which include existing
tools such as a PLA generator. A great deal of progress has been made on both
the compiler and the assembler in the last six months. An early version of the
compiler can now generate many simple circuits and work is continuing to make
it more general and robust.

68 ACS Progress Report (9/1/86 — 8/31/87)

full«--- - - CAP |f~---—----- > empty
I &
4]
Write--——-----o_-— - 4 - - — - — - - — read
CONTROL
digc----==---=-- o m — e - - = out_clock
h J i X
- ==

IPTR| |MUX| DPPTR

dat_in _1 1 ,—— dat_out
_— —»
IN | BYNG ouT
rEG| [REG MEMORY REG
I frereiind

Figure 5.4: Packet Buffer

5.3. Tools for Constructing Memories

Two general memory types arise often in the circuits for the broadcast packet
switch; packet buffers and lookup tables. A packet buffer is a first-in-first-out
buffer for storing packets. During a given packet cycle or epoch, one packet can be
written to the buffer and one read out. The overall structure of a typical packet
buffer is shown in Figure 5.4. Its external interface includes input and output
data ports and several control and status signals. The memory array is split
into multiple bit planes and uses static memory; dynamic memory was avoided
to reduce control complexity and because simulation studies indicated that the
required refresh intervals might prove difficult to achieve. Reading and writing
to the memory array take place at specific times during a packet cycle or epoch.
Incoming packets enter input shift registers and when the packet has been shifted
in, the content of the input shift registers is transferred to buffer registers and from
there to the appropriate place in memory. Outgoing packets are read from memory

5. Tools for Design of Communication Circuits 69

Wwrite- - - - - - - - - . 4 - — - — - —— - read
CONTROL
writeblock---------- 4 = = ——— - — - = read_block
i
in_adr ADDR DECODER out._adr
dat_in —l l 1 ’——— dat_out

—— —c —= L

IN ovuT

reG| [WSEL MEMORY WSEY |pna
[—]

Figure 5.5: Lookup Table

to an output shift register and then shifted out over the output port. The control
section includes memory read and write pointers and a counter that keeps track
of the number of packets in the buffer. We are writing a program that will take as
input a specification of a particular packet buffer. Parameters that the user can
specify include the size of the packets, the number of packets stored in the buffer,
the data path widths and the target aspect ratio.

A lookup table is a second memory type, used for storing a table of data. The
entries in a lookup table can be accessed randomly, using an externally supplied
address. As with the packet buffer, they can be read or written just once per packet
cycle. It is also possible to access them in large blocks rather than single entries.
A block diagram of a lockup table appears in Figure 5.5. Incoming data enters on
an input data port at a specific time in an epoch and is transferred to memory at
a location specified by the address signals. Similarly, data is read from a specified
memory location at a specific time in an epoch and then transferred through the
output data port. The program for the lookup table will take as parameters the
number and size of the table entries, the size of blocks for the large block transfers,
the data path widths and the target aspect ratio.

70 ACS Progress Report (9/1/86 — 8/31/87)

5.4. Other Tools

Several other tools for assisting in circuit developmient are being planned. One
is a program for generating registers and counters. User-specified options will
include number of bits, up-counter, down-counter, shift capability, inverted outputs
and tri-state outputs, among other things. As a first step in this work, we have
developed a library of standard cells that can be easily assembled into a variety of
counter types.

Another tool that would be useful is a program that generates circuits imple-
menting small amounts of random logic. Often in a complex circuit, there is a
need for a few gates worth of logic to generate control signals. The amount of logic
is too small to warrant a PLA and consequently the required gates are typically
hand-crafted for the particular circuit. This is reasonable, but requires more time
and effort on the designer’s part than is really warranted. A better approach would
be to have the circuit generated by a program. We plan to examine the feasibility
of such a circuit generator in the coming year.

One of the more time consuming parts of an integrated circuit design is the
simulation performed to help verify the correct operation of the circuit. Much of
this work is tedious, repetitive and error-prone. We are considering strategies for
reducing the time and effort consumed in this phase of the process. One promising
idea is to develop a high level circuit simulator that would allow the the user to
specify the operation of the circuit and a set of test inputs in a high level notation
similar to a programming language. The program would determine the appropriate
outputs for the user’s test inputs and would then generate the required low level
test vectors required by the various circuit simulation tools. The user could then
run the circuit simulator and compare its output to the predicted output. Such a
tool could be used in conjunction with the circuit generator for the synchronous
streams processor, to verify that the generated circuits are correct and to facilitate
timing simulations for performance evaluation.

6. Connection Management

Faculty Jonathan Turner
Graduate Students Victor Griswold
Mark Hunter

David Wexelblat

Connection management refers to the collection of algorithms, data structures
and protocols used to create and maintain connections among users. In conven-
tional networks, connections join two endpoints. In multipoint networks, connec-
tions may join an arbitrary number of endpoints. Several types of connections
appear to be useful, including point-to-point connections and simple broadcast
connections having one transmitter and many receivers. Connections in which all
participants can both transmit and receive are also useful for conferencing and
LAN interconnect applications among others.

As one considers applications of multipoint communication, one soon realizes
that what is needed is a general multipoint connection capability that realizes
point-to-point, broadcast and conference connections as special cases. In sec-
tion 6.1 below, we describe a flexible scheme for specifying multipoint connections
that provides the network with the information needed to allocate resources appro-
priately. In section 6.2 we briefly describe both an access and an internal protocol
for manipulating such connections and in section 6.3 we report on a simulator that
has been developed to test these protocols and to provide a foundation for future
developments.

6.1. Specification of Multipoint Connections

As indicated above, there are a variety of useful multipoint connection types.
Rather than have the network implement each type individually, we have chosen
to define a general capability that includes each specific type as a special case.

71

72 ACS Progress Report (9/1/86 — 8/31/87)

G7,0
50M

Figure 6.1: One-to-Many Connection

We introduce this method of specification by giving several examples. We start
by describing a simple one-way broadcast connection, illustrated in Figure 6.1.
The connection has a single transmitter G and receivers C, D, F and J. The
internal nodes in the diagram represent switching systems. At various internal
nodes, the stream of packets originating at G is replicated and forwarded to the
appropriate destinations. The connection induces a tree in the network, in much
the same way that a point-to-point connection induces a path in a conventional
network. The table in the upper right-hand corner of the diagram summarizes
some global information describing this connection. The G at the top is the
connection identifier, which is a globally unique name identifying this connection
and distinguishing it from all other connections in the network; the motivation for
having a connection identifier will be explained below. One simple way of providing
such an identifier is to use the address of the owner of the connection together
with an integer distinguishing this connection from others that the owner may also
be participating in. The owner of the connection is just that termination that is
responsible for the connection and controls access to it. This scheme has been used
in the example, implying that G is the owner, as well as the only transmitter in the
connection. The 50M denotes a rate specification of 50 megabits per second. In a
real network, a more complex rate specification is required, allowing specification
of peak rate, average rate and some measure of “burstiness,” but we will ignore this
issue here. Each endpoint participating in the connection can have transmit-only

6. Connection Management 73

permission, receive-only permission or transmit/receive permission. The permission
concept provides the basic mechanism needed to allow the specification of general
multipoint connections, that can be tailored to different applications. The network
uses the permission information to allocate resources, (primarily link bandwidth)
appropriately. The R at the bottom of the table defines the default permission to
be receive-only, meaning that whenever an endpoint is added to the connection it
is initially assigned receive-only permission; this can of course be changed by the
owner if some other permission is required.

The example illustrates a connection that might be appropriate for distributing
an entertainment video signal. To establish such a connection, G would send a
control message to the network, describing the type of connection required. At
that point it could begin transmitting on the connection, but initially there would
be no one to receive the signal. Endpoints can be added to the connection in one
of two ways. First G, as the owner, can send a message to the network asking that
a particular endpoint be added. In response, the network would send a connection
invitation to the specified endpoint and if the endpoint agrees (by exchange of
control messages) to join the connection, the network would allocate the necessary
resources to include the new endpoint in the connection. For entertainment video
signals, a more appropriate way of adding an endpoint is at the endpoint’s request.
That is, an endpoint could send a control message to the network, requesting that
it be added to a specified connection. To make such a request, the endpoint must
specify the appropriate connection identifier. For entertainment video signals, this
information would typically be widely available and could be built into terminal
equipment, or programmed in, as appropriate. In response to such a request, the
network would first search for the nearest place that the specified connection is
available and then attempt to add the new endpoint by creating a branch at that
point.

Addition of new endpoints from “outside” the connection raises the need for
some form of authorization. In the example, the O at the top of the table specifies
that this connection is open, meaning that anyone who wishes to join the connection
may do so without explicit authorization from the owner. This would probably
be the appropriate specification for a commercial video broadcast. Other options
include closed, meaning that no one can join from outside and verify, meaning that
outsiders may join, but only after getting explicit permission from the owner.

This example has illustrated the essential notions of the multipoint connection
mechanism. A point-to-point connection for voice communication can be readily
described using these mechanisms. In that case, the rate specification might be 50
kilobits per second rather than 50 megabits, the default permission would be TR,
for transmit/receive and the outside access specification would be C (closed). No-
tice that in neither example is there any need for the switching systems supporting

74 ACS Progress Report (9/1/86 — 8/31/87)

50K

TR

Figure 6.2: Connection for Video Lecture

the connection to have detailed knowledge of the application, such as whether the
signals carried are voice or video. Such information is required in the termina-
tions and possibly network interface equipment (depending on the desired form of
access), but is not needed anywhere in the core of the network. This application-
ignorance is important for maintaining the flexible nature of the network. By
keeping that information from the network core, we ensure that changes in the
applications cannot affect the network’s operation in any fundamental way.

Figure 6.2 gives an example of a more complicated connection requiring two
related but separate channels within a single connection. This connection is in-
tended for use in a video lecture situation. It includes a downstream channel from
Ato C, F and G, which has a rate of 30 megabits per second and a default permis-
sion of receive-only. It also has a second channel, which can be used for upstream
audio, allowing the audience members to direct questions to the speaker. The
audio channel has its own rate and default permissions specified. The network
allocates link bandwidth separately for the two channels, but routes them through
the same set of switches, for convenience in handling addition of new endpoints.
The concept of multiple channels within a connection is an important extension
of the basic multipoint connection mechanism that can be useful in more complex
applications.

6. Connection Management 75

6.2. Multipoint Control Protocols

This section briefly describes the access and internal network protocols for es-
tablishing and modifying multipoint connections. The access protocol is used for
control communication between the network and the terminations. At this level
of abstraction, the network is viewed as a monolithic entity. The internal network
protocol is used for control communication among the internal network nodes. This
protocol must ensure that concurrent control operations taking place in a given
connection are handled in a consistent fashion.

Before we describe the protocols, we must mention the basic mechanisms for
providing reliable communication. The reliable transmission of control messages
is handled as a low level function separate from the higher level control protocols.
That is, there is a low level protocol that detects lost control messages and retrans-
mits them as necessary, without explicit involvement of the higher level protocols.
We omit any detailed discussion of this low level protocol.

Access Protocol

The access protocol supports four general classes of operations on a multipoint
connection: commands, queries, offers and notifications. A command is a directive
from the user to the network that requests establishment or modification of a
connection. A command consists of two messages, a request from user to network
and an acknowledgement from network to user. The major command types are
listed below.

e open_con. Requests opening of a new connection. Parameters include the
external accessibility, the rate and default permissions for the initial chan-
nel, and the owner permissions. The acknowledgement includes the logical
channel number for the initial channel. This channel is also used for all
subsequent control messages relating to this connection.

® close_con. Requests that all endpoints be removed from a connection and
all resources associated with the connection released.

e open chan. Requests a new channel in an existing connection. Parameters
include the rate and default permissions and the owner permissions. The
acknowledgement includes the logical channel number.

® close_chan. Requests that all resources associated with a given channel be
released.

76 ACS Progress Report (9/1/86 — 8/31/87)

e add EP. Requests addition of a new endpoint to a connection. Parameters
include the identity of the new endpoint’s termination, permissions for each
channel and an initial control message to be passed transparently to the new
endpoint.

¢ join. Requests that the termination be added to an existing connection.
Parameters include the identifier of the desired connection and the expected
rates and default permissions for each of the connection’s channels. The
acknowledgement includes the actual rates and permissions for the channels
and the logical channel numbers to be used for each channel.

e drop EP. Requests removal of an endpoint from the connection. Parameters
include the identity of the endpoint to be dropped.

e dropout. Requests removal of the requesting endpoint. No parameters.

¢ change con. Requests modification of global connection parameters such as
the external access specification.

e change chan. Requests modification of the rate or default permissions as-
sociated with a particular channel.

e change FP. Requests modification of the permissions associated with a par-
ticular endpoint.

Most commands can be issued only by the owner of the connection; exceptions are
the join and drop_out commands.

A queryis a request for information from either the user to the network or from
the network to the user. A query can relate to a connection the user is currently
participating in or to an unrelated connection. A query consists of two messages,
the request and the reply which contains the desired information. Qeuries from
users are strictly informational and have no effect on the state of any connections.
The only query currently defined is the check_join, described below.

e check join. The request is sent from the network to the owner of the
connection informing it that some endpoint has requested entry to the con-
nection and seeking verification. The response includes acceptance or refusal
and, in the case of acceptance, the channel permissions for the new endpoint.

An offer is made by the network to a user, and affords the user an opportunity
to do something but does not oblige the user in any way. An offer consists of three
messages, the initial request from the network to the user, an acknowledgement
that either accepts or rejects the offer and a confirmation from the network to the

6. Connection Management 7

user. The confirmation is used only when a user accepts an offer and informs the
user that the actions necessary to carry out the offer have been completed. The
network may also send the user an abort message, cancelling the offer at any time
before the confirmation. The offers currently defined are listed below.

e invite. The request message invites the user to join a connection. It
includes all the connection parameters, plus the prospective endpoint’s per-
missions and an initial message from the originating termination. If the user
accepts, the network replies later with a confirmation.

A notification is a message from the network to a user of some change that has
taken place in a connection. A notification consists of just the one message from
the network. No response is expected or permitted. The notifications currently
defined are listed below.

¢ announce EP. Sent from network to owner when a new endpoint has joined a
connection and the owner has requested notification of all endpoint changes.

e announce.drop. Sent from network to owner when an endpoint drops out of
a connection and the owner has requested notification of all endpoint changes.

¢ announce.change. Sent from network to endpoint to inform it of a change
in the connection’s channels or the endpoint’s permissions.

e dropped fromcon. Sent from network to endpoint to inform it that it has
been removed from an existing connection.

® confailure. Sent from network to owner informing it of failure of the
connection. The connection is closed and all resources released. Typically
caused by an unrecoverable hardware failure.

Internal Protocol

The network’s internal protocol must provide the mechanisms needed to support
the operations the user can specify in the access protocol. Because the network
1s actually a collection of geographically distributed switching systems and not a
monolithic entity, some care must be taken to maintain consistency of the net-
work’s internal data structures. Multipoint connections raise the possibility of
concurrent control operations taking place in a given connection. To ensure that
such operations do not lead to inconsistency, we require a general mechanism that
makes such concurrent operations occur in an apparently serial fashion.

78 ACS Progress Report (9/1/86 — 8/31/87)

The internal network protocol implements two general classes of operations;
queries and transactions. A guery consists of two messages; the initial request and
the reply. A query has no effect on the internal state of the target node, although
the reply may well affect the state of the originating node. Query messages may
be forwarded from one node to another; if the node that first received the message
cannot reply it relays the message to another node that may be able to reply and
then forgets about the message. The node that ultimately replies to the query must
be able to do so using only local information and replies directly to the originating
node.

A transaction consists of a sequence of messages used to effect some change
in a connection that affects two or more nodes. Transactions use four types of
messages; requests, acknowledgements, commits and aborts. A request is sent
from one node to another to request its assistance in carrying out some operation.
The receiving node sends an acknowledgement when it is prepared to complete
the requested action or when it determines that it cannot carry out the request.
A commit message is sent by a node in order to finalize changes requested and
acknowledged earlier, and is the mechanism that ensures that all nodes involved
in the transaction remain consistent. A node can drop out of a transaction at the
time it sends its acknowledgement. In such a case, no commit message will be sent
to the node. This option is most commonly used when the node cannot complete
the requested action, but can also apply to other situations where the node is
unaffected by the eventual outcome of the transaction. Typically, a transaction
is initiated in response to a user command. The internal network node adjacent
to the user’s termination sends request messages to one or more other nodes in
the connection, which in turn may send requests to others. When the first node
receives all outstanding acknowledgements and determines that it can proceed
with the requested operation, it sends commit messages to those nodes that it sent
requests to and that are still in the transaction. These in turn send commits to
the nodes that they sent requests to, and so forth. It is during this commit phase
of the transaction that resources identified and reserved during the request phase
are actually allocated to the connection.

A transaction or part of a transaction may be aborted if the resources required
to carry out the operation are not available. Aborts can also take place as a result
of one transaction interrupting another. Because of the possibility for concurrent
transactions, we require a mechanism by which one transaction may preempt an-
other in an orderly way. If a transaction request is received at a node at which
another transaction (for the same connection) is in progress, one of two things may
happen. If the new transaction has a lower priority than the current one, the re-
quest message is simply queued until the current transaction completes. If the new
transaction has a higher priority, the current transaction must be interrupted. To
ensure serializability, this requires rolling back the current transaction and restor-

6. Connection Management 79

ing the connection state at that node to the state that existed prior to receipt of
the first transaction request. This rollback involves release of any resources that
have been reserved by the transaction and transmission of abort messages to other
nodes that have been sent request messages and which are still in the transaction.
After the rollback, the request message for the first transaction is queued to allow
it be restarted later and the request message for the new transaction is processed.
Preemption may only occur up until the time that a node sends an acknowledge-
ment to the node that first sent it the request. New transaction requests received
after this point are queued until the current transaction completes, typically upon
receipt of a commit. The transactions currently defined are described briefly below.

¢ net_add_EP. This transaction implements an add_EP command. The request
message includes the connection identifier, channel rates and permissions,
identity of the target termination and permissions for the target endpoint.
Nodes that are not adjacent to the target termination extend the transac-
tion in the direction of the target. The node adjacent to the target sends
it an invite message. If the target accepts the connection, positive ack-
owledgements are sent back along the path followed by the requests. When
the acknowledgement is received at the origin of the transaction, it commits
the transaction and sends a positive acknowledgement to the termination
that sent the original add_EP message. If the target rejects the connection,
negative acknowledgements are sent back to the origin and no commit phase
occurs.

¢ net drop EP. This transaction implements a drop_EP command. The re-
quest message is sent from the node adjacent to the owner to the node adja-
cent to the target endpoint, which responds with a positive acknowledgement.
When the originating node receives the positive acknowledgement, it initi-
ates the commit phase. During the commit phase, resources are released and
the target node is sent a dropped from_con message.

e net_drop.out. This transaction is initiated by an internal node upon observ-
ing that it has only one link in the connection, and that link does not connect
to the owner. The request message is sent to its one neighbor. That node
acknowledges and then the first node initiates the commit phase at which
point resources are released. This transaction effectively prunes connections
following removal of endpoints.

e net_open chan. This transaction implements an open_chan command. Re-
quest messages are sent to all nodes in the connection, following the tree
structure of the connection. These requests are sent in parallel to speed pro-
cessing. The request messages include the rate and default permissions for

30

ACS Progress Report (9/1/86 - 8/31/87)

the new channel. Each node that receives a message reserves the resources
for the new channel on its downstream links and sends requests to its down-
stream neighbors. If all nodes can allocate the required resources, positive
acknowledgements are sent back up the tree and eventually the originating
node receives the required positive acknowledgements. It then sends commit
messages, which cause the reserved resources to be allocated. The transac-
tion can fail if the required resources for the new channel are unavailable
at some node. In the event of failure, an abort is used to release reserved
resources.

net_close chan. This transaction implements a close_chan command. It
operates similarly to net_open_chan but releases resources associated with
an existing channel. The actual release of resources occurs during the commit
phase,

net_close.con. Implements a close_con command. Request messages are
sent in parallel to all nodes in the connection, following the tree structure.
Resources are released during commit phase.

net_join. This transaction implements a join command. The request mes-
sage parameters include the connection identifier and the expected channel
rates and permissions. The transaction is routed through the network until a
node in the desired connection is found. If the external access permission is
open, positive acknowledgements are then sent back along the path followed
by the request messages. These acknowledgements carry the actual connec-
tion parameters. When the acknowledgement is received at the originating
node, it initiates the commit phase, causing resources reserved earlier in the
process to be allocated. If the connection requires verification by the owner,
the transaction is extended to the node adjacent to the owner, which seeks
the necessary verification with a check_join query.

net.change con. Implements a change con command. Used to modify
global connection parameters such as external accessibility. Request mes-
sages propagate through connection in parallel following tree structure.

net.change chan. Implements a change chan command. Used to modify
rate or default permissions of a channel. Request messages propagate in
parallel following tree structure.

net_change EP. Implements a change to the permissions of a particular end-
point.

6. Connection Management 81

STATS

Figure 6.3: Connection Management Architecture

6.3. Prototype Connection Management Software

We have designed and implemented a prelimirary connection management soft-
ware system based on the connection model and protocols described above. This
prototype software is implemented as a simulator that allows us to configure arbi-
trary networks and simulate the interaction of the nodes and terminations. The
simulator can be operated in an interactive mode, allowing a user at a termination
to send messages of various types to the network and observe the effect of these
messages on the state of terminations and internal nodes. It can also be operated in
a batch mode, with messages generated by load generators. In this mode, various
types of failures can be simulated and the reaction of the connection management
software to these failures can be observed.

The program is written in the C++ programming language and uses the C++
task library to simulate concurrent processes. The overall software architecture is
shown in Figure 6.3. Each internal node in the network comprises a node controller
and zero or more connection managers. A node has an active connection manager
for every connection it is involved in. The connection managers maintain infor-
mation on the state of the connection, and communicate with each other and the
terminations in order to control the connection. The node controller handles the
details of resource allocation and communication between nodes. In particular,
it ensures that control messages are transmitted reliably. It also provides some
support for the transaction protocols described above. In particular, it handles
queueing of transaction requests and roll-back of connection managers.

82 ACS Progress Report (9/1/86 — 8/31/87)

A similar structure exists within the terminations. Each termination comprises
a termination coniroller and one or more devices. Devices can simulate a variety
of physical devices including telephones, television sets or computers. Control
of the simulator is provided through a network manager. A user controlling the
simulator gives commands to the network manager, which in turn sends messages
to a particular device. The network manager also provides the user with access to
the data structures within the connection managers and node controllers, allowing
him to observe the effect of various actions on the network’s internal state.

The simulator also includes mechanisms for simulating link errors and hard
failure conditions, thus providing a mechanism for testing the robustness of the
protocols. The current implementation, supports a subset of the protocols de-
scribed above. Subsequent versions will refine the protocols based on what we
learn from the current version. We also plan to provide a more convenient user
interface, including graphical display of some of the network status information.
The software developed for the simulator will form the basis of software for the
prototype switch module now being designed.

7. Multipoint Routing

Faculty Jonathan Turner
Graduate Students Bernard Waxman

In a packet switched network which uses virtual circuits, the primary goal in
routing connections is to make efficient use of the network resources. For example
we favor an algorithm which can handle the largest number of connections for
a given set of network resources. In a point-to-point network, routing is often
treated as a shortest path problem in a graph. Here the network is modelled as
a graph G = (V, E) where the nodes of a graph represent switches and the edges
represent links. In addition we have two functions cap: E — R+ and cost: F — R+
which give us the bandwidth and cost of each edge (link). In this model we equate
cost and edge length. At the time a connection is established, a shortest path
connecting the pair of endpoints is selected. Of course only paths consisting of
edges with sufficient unused bandwidth may be chosen.

Routing of multipoint connections may be modelled in a similar way. In the
multipoint problem we wish to connect a set D C V. Instead of the shortest path,
one is interested in the shortest subtree which contains the set D. Finding the
shortest subtree connecting a set of points is a classical problem in graph theory
known as the Steiner tree problem in graphs [19]. This problem has been shown
to be NP-complete by Karp [40] in 1972. Consequently one is forced to consider
approximation algorithms which are not guaranteed to produce optimal solutions.

7.1. Approximation Algorithms

There are several polynomial time approximations algorithms for solving the Steiner
tree problem, which we have used as a starting point for work on multipoint rout-
ing. The minimum spanning tree heuristic (MST) [34] is probably the best known
approximation algorithm. It can be shown that a solution produced by this algo-
rithm will have cost that is never worse than twice that of an optimal solution. Our

83

84 ACS Progress Report (9/1/86 — 8/31/87)

G[D]

a 5 d
T 4
e g
4
A minimum spanning tree for G[D] Basic MST solution, cost = 13

Figure 7.1: An Example of the Application of MST

experimental results indicate that MST typically yields solutions that are within
five percent of optimal. Figure 7.1 illustrates an example of the application of MST.
Here we are asked to connect the set of four nodes D = {a,d, e,g}. The first step
of the algorithm involves constructing the derived graph G[D]. This graph is a
complete graph on the four nodes in D, where the length of each edge corresponds
to the length of the shortest path in the original graph G. The second step involves
finding a minimum spanning tree for G[D]. This can be done using one of several
polynomial time algorithms. Finally the edges of the minimum spanning tree for
G[D] are mapped back to paths in the original graph, taking advantage of path
overlap. Note that the solution here has cost two units more than optimal.

To gain some insight into the probable performance of MST we have imple-
mented two versions of this heuristic using the C++ language. The first version
we refer to as the basic MST heuristic and is the algorithm described in the pre-
vious paragraph. We refer to the second version as the improved MST heuristic.

7. Multipoint Routing 85

1.05
l\
1
104 |-
103 - l—
Ratio 1
to \
. 1
Optimal
102
3\
\\\ 3
] M mmm= Ve
‘\\3 -------- Boeeccan Bammmmmm= 3
101 |-
2 —_—2
————— 4-'-'--“-"4-..\ 44
4 - e 4- - 2 R
——_go--
100 U] 1 I 1 A
4 6 8 10 12 14 18

Number of Randomly Selected Nodes

1 = Basic MST, 2 =1Imp MST, 3=RS, 4 =ImpRS (alpha=04, beta =0.4)

Figure 7.2: Experimental Performance of MST and RS

Improved MST takes the results of basic MST and forms a set D; which contains
all of the nodes of D plus any additional intermediate nodes used in the solution
produced by basic MST. Basic MST is then applied to the set D;. From the re-
sulting tree any branch which does not contain nodes in D is pruned. Improved
MST will always yield a solution that is at least as good as the solution produced
by basic MST, but in the worst case will do no better.

We have also investigated a second approximation algorithm due to Rayward-
Smith [47], which we refer to as RS. This algorithm addresses the one major
problem of MST. MST considers only the distance between pairs of nodes to be
interconnected and does not give any consideration to the importance of intermedi-
ate nodes. Our improved MST heuristic does consider intermediate nodes, but not
in a systematic way. Thus improved MST does not have worst case performance
any better than that of basic MST. On the other hand, RS makes an attempt to

86 ACS Progress Report (9/1/86 — 8/31/87)

choose intermediate nodes in a systematic way, based on a collection of functions
fe:V — R, At each stage £ of this algorithm RS chooses a path through a node
for which the function f; has a minimum value. We have proved the the worst case
performance of RS is within twice optimal and have found a class of problems for
which the performance approaches 3/2 optimal. It is apparent from considering
a number of simple examples that RS should do better than MST in most cases.
We had conjectured that the worst case performance was actually within 3/2 of
optimal but have recently found that it can be as bad as 1.61 times optimal. If
the worst case performance of RS is actually bounded by a value that is less than
twice optimal, this leads to the interesting possibility of modifying RS to yield
even better worst case results while still maintaining polynomial time complexity.

For the purpose of running these experiments we have developed two random
graph models RG1 and RG2, which have some of the characteristics of an actual
network. In RG1 n nodes are randomly distributed over a rectangular coordinate
grid. Each node is placed at a location with integer coordinates. In RG2 for each
pair of nodes a random distance in (0, L] is chosen. Then in both models edges
are introduced between pairs of nodes u,v with a probability that depends on the
distance between them. In the case of RG1 the Euclidean distance between each
pair is used. The probability function is given by

P({u,0)) = exp —?)

where d(u,v) is the distance between nodes u and v, L is the maximum distance
between a pair of nodes, and « and 8 are parameters in the range (0, 1). The size
of B determines the overall edge probability independent of distance, while small
values of decrease the density of longer edges relative to shorter ones. Finally
the length or cost of each edge is set equal to the distance between its endpoints.

The experimental results of applying MST and RS to the graph model RG1
are illustrated in Figure 7.2. These experiments were run on five different twenty
five node random graphs. Each experiment consists of choosing a subset of the
graph nodes at random and then executing the basic and improved versions of both
MST and RS. In addition an exact algorithm was used to determine the cost of
an optimal solution. Each data point represents a set of twenty five experiments,
five on each of five graphs. The graph displays the average ratio of the cost of the
solution given by MST and RS to an optimal solution. It is interesting to note
that results of experiments run with random graph model RG2 are not significantly
different from those with RG1. The fact that RG1 introduces the Euclidean metric
on the distances apparently makes little difference in the performance of these
algorithms.

7. Multipoint Routing 87

7.2. The Dynamic Steiner Tree Problem

The algorithms just presented assume that the problem is basically static and can
be solved in a centralized fashion. In a large network one must rely on distributed
algorithms in which no individual processor has global knowledge. In addition one
cannot expect to know in advance all of the nodes that will be in a given connection.
Thus, in their present form the MST and RS heuristics are most useful as tools
against which the performance of more realistic algorithms can be measured.

We now consider the problem of the dynamic multipoint problem in which
nodes are allowed to join or leave a connection at any point during the lifetime of
that connection. Probably the simplest algorithm for handling dynamic multipoint
routing is one which we refer to as the greedy algorithm. This greedy algorithm
adds new endpoints to a connection by using the shortest path from the endpoint
to a node already in the connection. Nodes are removed from the connection by
deleting that branch which serves only the node to be removed. Note that if a
given node is an endpoint in a connection as well as an intermediate node in a
path to other nodes, reinoving it as an end point will not allow us to delete it
from the connection. Figure 7.3 illustrates a sequence of five events handled by
the greedy algorithm. Note that event four gives an example of a situation where
the connection is not optimal. In fact this connection has a cost of three units
more than that of an optimal solution.

We have implemented this greedy algorithm in C4++ and have run a set of
experiments on 195 node graphs, again using our random graph model RG1. For
these experiments we used a simple probability model to determine if an event
should be an addition or deletion of a node from a connection. The function

aln —k)
aln— k) + (1 — a)k

was defined for this purpose. Here Py is the probability that an event is an
addition of a node, & is the number of nodes in the current connection, n is the
total number of nodes in the network and « is a parameter in (0,1). The value
of o determines the fraction of nodes in the connection at equilibrium. In other
words an is roughly the average number of nodes in the connection. For example,

when k/n = a, Po(k) =1/2.

Figure 7.4 shows the results from one experiment. The figure contains two
curves, the bottom one showing the number of endpoints in the connection as
the experiment progressed and the top one showing the ratio of the length of the
solution produced by the greedy algorithm to the length of the MST solution at
each point in time. (This experiment was run on a graph with 195 nodes and with
a=6/195.)

Po(k) =

88 ACS Progress Report (9/1/86 - 8/31/87)

@ O o O QT
Event 0

Event 1
@ @, @ N LOU/()
Event 2 Event 3 Event 4

® Connected node (O Intermediate node

Figure 7.3: Dynamic Greedy Algorithm with Sequence: a,b,d,f,e, f,d

These experimental results indicate that the greedy algorithm does reasonably
well in comparison to MST. On average the performance of the greedy algorithm
is within 35% of MST. It does poorly on a few isolated events, but notice that this
poor performance occurs at times when several nodes leave the connection; that
is, it is not caused by bad routing decisions, but by the inability of the greedy
algorithm to reconfigure a connection after its been reduced in size. There are
several techniques that might be used to reduce the sharp deterioration in these
cases, at the cost of worsening the performance slightly in other cases. For example,
the choice of a connection path for a new endpoint could be based on function of
both the length of the path to a node in the connection and the distance of that
node from the center of the current connection.

Recently we have implemented a version of the greedy algorithm where the
choice of a connection path is weighted by the distance of the connection point
from the owner of the connection. Here the owner o is just a distinguished node
chosen at random which cannot be removed during the life of the connection. In

7. Multipoint Routing 89

[72
{
|
1
5 | : — 60
i
i
i
|
/
4 s — 48
[;
[}

Ratic No.
to 3 of
MST Nodes

2 L
1 |k
0
500
EVENT
---- = Ratio to Improved MST, _ = Number of Nodes

Figure 7.4: Experimental Results for the Greedy Algorithm

this version, greedy adds a node u by choosing a node v, in the connection, which
minimizes the function W

W(u,v) = (1 —w)d(u,v) + wd(v,0)

where 0 < w < 0.5. When w = 0 this version is equivalent to our basic greedy al-
gorithm. If w = 0.5 a node u is added to the connection by the shortest path to the
owner o. Our experimental results indicate that a value for w in the neighborhood
of 0.3 yields the best results. For example in one experiment worst event results
were reduced from 3.5 with the original algorithm to just under 2.0 with a weighted
algorithm using w = 0.3. Though the improvement in average performance was
not as dramatic, in most cases we saw improvements of better than 5%

90 ACS Progress Report (9/1/86 — 8/31/87)

7.3. Random Graphs and Probable Performance

We have investigated the relationship between the values of «, 8 and the property
of being connected for RG1 and RG2. To simplify our analysis we modified RG1
so that the nodes are placed on a sphere of radius 1. Here the maximum distance
between two nodes is 7. Using the results of Erdés and Rényi [15] we have derived
the threshold functions for both models. To illustrate we have the function
_ 2C(7*a*+1) lnn
p= w2a?(e~la+1) n

for model RG1. When C > 1 graphs will almost always be connected and when
C < 1 the graphs will almost always be disconnected. In other words, as the
the number of nodes n grows the probability that a graph from RG1 is connected
(disconnected) goesto 1 if C > 1 (C < 1).

We have looked at a simpler model of a random graph in which all edges have
unit cost and the probability of an edge is uniform for all pairs of nodes. For a
constant edge probability we know that almost all graphs have a diameter of 2.
As a result, we have been able to show that for a small subset of graph nodes 3,
RS will almost always find the optimal solution while MST will not always find
an optimal solution with this model. For example with an edge probability of 0.2
and |S| = 10 MST is expected to find an optimal solution approximately 50% of
the time.

Most recently we have been looking at the diameter of random graphs where
the edge probability is a decreasing function of n and is not bounded below by
any positive value. We know from the work of B. Bollobas [4] that if the edge
probability is given by

(2Cnlnn)H/?
pln) = ———
then almost all graphs have diameter d for C > 1. We can also show that for
a graph G with this edge probability that the distance between a pair of nodes
is almost always d. Thus for a small subset S of nodes in G the expected cost
of a connection produced by the MST heuristic will be d(|S]| —~ 1). We still need
to consider the expected cost of an optimal solution and the cost of a solution
produced by RS. We suppose that both of these will be less than the cost of the
MST solution.

7.4. Distributed Routing Algorithms

We now briefly consider the problems involved with the development of a dis-
tributed algorithm without access to complete global information. Most of the

7. Multipoint Routing 91

work in this area deals with point-to-point networks. Algorithms have been devel-
oped which perform such functions as updating routing tables and finding shortest
paths in a distributed fashion. For example the ARPANET makes use of distributed
packet routing algorithms. Unfortunately most of the work with distributed rout-
ing algorithms cannot be applied directly to a network which handles multipoint
connections. Thus most of the existing results will serve primarily as a starting
point for the development of new algorithms.

The work of J.M. Jaffe [29] is of particular interest. He has considered the
problem of multipoint routing with limited information. His work considers the
effects of limited information on the Steiner tree problem. He shows given certain
assumptions that it is not possible for any algorithm to produce optimal solutions
in all cases. For example, Jaffe presents a class of algorithms which are restricted to
local information and shows that the worst case performance for these algorithms
can be no better than 2k/3, where k is the number of nodes to be connected. These
results indicate, that with limited data storage at each node, we are not likely to
find a routing algorithm which yields optimal routing. In fact Jaffe’s results lead
us to believe that any distributed algorithm based on the quantity of data, which
can reasonably be assumed to be available for local processing in a very large
network, is not likely to have worst case performance even within a constant factor
of optimal. On the other hand, Jaffe’s results do not tell us anything about average
performance, which is of great importance for a real network. Finally these results
suggest that the performance of the greedy algorithm is reasonably good, and thus
the greedy algorithm seems to be a reasonable starting point for the development
of distributed multipoint routing.

92

8. Bandwidth and Buffer
Management

Faculty Jonathan Turner
Research Associate Riccardo Melen
Graduate Students Shahid Akhtar

One of the principal advantages of packet switching is its ability to support
communication channels of any rate across a potentially wide range. Not only can
different channels operate at different rates, but the rates of individual channels
may vary over time. This latter property leads to the possibility of overload since
there may be periods when the total offered traffic exceeds the network’s capacity.

In conventional, low speed packet networks, such overload periods are con-
trolled using a variety of feed-back oriented techniques, which attempt to detect
overload and then apply control mechanisms that reduce the offered load. A com-
mon approach is to allow transmission of a packet from one switch to another
only when the receiving switch is known to have a buffer available. During over-
load periods, such networks become congested with traffic backing up toward the
sources, which are ultimately forced to reduce their rate of transmission until the
congestion clears. This technique works well in networks with low speed or physi-
cally short transmission links. It works less well in networks with high speed links
connecting switches that are separated by large geographic distances. The fun-
damental reason is that many packets (hundreds or thousands) can be in transit
across a long, high speed link at any instant in time. With conventional data link
protocols, buffers to store each of these packets are required in the receiving switch
even though under normal conditions, only a few of these packets will be present in
the switch at the same time. This leads to unreasonably high buffer requirements.
Consequently, high speed packet networks use protocols that do not preallocate
buffers. Instead, they simply permit packets to arrive in a relatively unconstrained
fashion, and discard packets if insufficient buffer space is available. To keep the
frequency of packet loss at an acceptable level, connections are allocated a portion
of link bandwidth based on their traffic characteristics.

93

94 ACS Progress Report (9/1/86 — 8/31/87)

A key problem in the design of fast packet networks is how to perform this
bandwidth allocation. This in turn depends on the behavior of information sources
that may be very bursty. We are attempting to characterize the behavior of bursty
sources and describe some of this work in section 8.1 below. Section 8.2 briefly
describes how the analysis of 8.1 can be used to determine a connection’s effective
bandwidth, along with a practical method for calculating effective bandwidth in an
operational switching system. Section 8.3 describes how user-specified bandwidth
requirements can be enforced by the network. Section 8.4 introduces the additional
problems that arise in multipoint connections and proposes a promising candidate
solution. Section 8.5 describes a rather different approach to handling multipoint
connections.

8.1. Queueing Behavior of Bursty Sources

We can model a bursty source as a two state Markov chain. When in the idle state,
a source transmits no data and when in the active state, it transmits A packets
per second. Sources that make infrequent transitions between the active and idle
states are called bursty. When a bursty source becomes active it stays active for a
relatively long period of time. We define the burst factor B of a source to be the
average time spent in the active state, times the difference between the source’s
peak and average rates.

We can model the behavior of a queue of length n receiving traffic from m
independent and identical bursty sources, as a finite Markov chain with states s; ;
1 <2< m, 1 <j < n. Weinterpret state s;; to mean that ¢ sources are in their
active state and j packets are in the buffer. This model is illustrated in Figure 8.1.
This Markov chain can be solved numerically to determine the state probabilities
and from these the, fraction of transmitted packets lost due to queue overflows.
We show two plots obtained in this way in Figure 8.2. These plots show packet
loss rates for a queue of length n = 64, fed by m = 64 sources. In the plot on the
left, the peak rate A is held constant at 1/16, while the offered load (p) and burst
factor B are varied. In the plot on the right, the burst factor is held constant at 4,
while the offered load and peak rate are varied. In both plots, we note packet loss
rates substantially higher than predicted by an M/M/1 queueing model. Even for
a burst factor of 1, our target loss rate of 107® is achieved at an offered load of
about 70%, whereas an M/M/1 model predicts this loss rate at an offered load of
about 83%. Increasing either the burst factor or the peak rate increases the loss
rate substantially, requiring a corresponding decrease in the allowable offered load.

The Markov chain model is the simplest analytical model that captures the
essential characteristics of bursty information sources. We have also used simula-

8. Bandwidth and Buffer Management 95
L) o
— R
-
(2, (1)
3 a A

me
. . -mv--l:“")"C L
wl e I e e

X‘mﬁ mA e &mﬁ JBC
. SO
i~
Figure 8.1: Markov Chain Model

tion models to explore the behavior of queues fed by bursty sources. Using such
simulation models it is possible to study sources with more complex behavior. The
drawback of simulation is that it does not allow accurate determination of the ex-
tremely small packet loss rates of interest. Details of these simulations will appear
in a later report.

The Markov chain model can be extended ir a couple different ways. First, it
is possible to model the behavior of a queue carrying traffic from several types of
sources. That is, two state sources with different peak rates, average rates, and
burst factors. If there are k types of sources, the resulting Markov chain has £ +1
dimensions. Unfortunately, the number of states in the model increases rapidly
with the number of types of sources and the time required to obtain accurate
numerical solutions increases also. With more efficient algorithms, we expect to
be able to solve models with two or three types of sources, but that is probably
the practical limit of this particular method.

The model can be extended in another way also. Instead of two state sources,
we can consider k state sources which transmit at different rates depending on
their state. A Markov chain modelling an n slot queue fed by m such sources
has k dimensions. Again, the number of states grows rapidly with % limiting the

96 ACS Progress Report (9/1/86 - 8/31/87)

o1 LR

m= (%
am bl N 4 am L ™=é4
=L N6
3
' B=4
(1T L
1
P
- ooe0L |- Y
0.0001 = ’\\m .
0,00001) N
opooor | n

' 1 = 1 1 ' 1

00 02 L2 (0] 08 1.0 0.0 (4 04 06 08 b

Figure 8.2: Packet Loss Rates

usefulness of this method to sources with just a few states.

8.2. Bandwidth Allocation

The bandwidth allocation problem in fast packet networks is to determine if a
given set of connections with known traffic characteristics can share a link with
acceptable packet loss rate. If the sources can be adequately described by two
state Markov chains, this problem can be solved in principle by the methods of
the previous section. Unfortunately, the time required for solving a Markov chain
model with many different source types is prohibitive, particularly in the context of
a practical communications network, where the time available to make such a deci-
sion is on the order of 10 ms. An interesting research problem would be to develop
methods of synthesizing models with far fewer states that would yield approximate
solutions of reasonable accuracy. We take a simpler approach here, using Markov
chain models for a single source type to compute an effective bandwidth, then using
the effective bandwidth as the basis for bandwidth allocation decisions.

Consider a bursty source with a peak bandwidth of A packets per second, an
average rate of p packets per second and a burst factor of B. Let L(A, p, B,m,n)
be the packet loss rate that results when m such sources feed an n slot queue.
Let L* be the largest packet loss rate we wish to allow in the system and let m*
be the largest value of m for which L(}, p, B,m,n) < L*. We define the effective

8. Bandwidth and Buffer Management a7

0.35

A= 032

ff. b)

0.5

0.10

0.05

0.0 i 1 1 ! !

Figure 8.3: Effective Bandwidth

bandwidth of the source by

L* — L(A, p, B,m*,n) -

L(2, p, B,m* + 1,n) — L(},p, B,m*,n)

f(A:PsB;n) = l:m* +

Using the Markov chain analysis of the previous section, it is reasonably straight-
forward to compute the effective bandwidth. Figure 8.3 displays a plot of effective
bandwidth for sources with an average bandwidth of about 0.03 and various values
of the peak bandwidth and burst factor. The number of buffer slots used here is 32
and the target loss rate is 1075, Note that for small to moderate peak bandwidths,
the effective bandwidth approaches a maximum somewhat lower than than the
peak, but for large peak bandwidths and burst factors of 100 or more, the effective
bandwidth approaches the peak.

In an operational switching system, it is probably impractical to compute the
effective bandwidth of a source every time a connection is established, since the
time to solve the Markov chain model can be substantial. On the other hand
1t is reasonable to precompute a table of effective bandwidths for a wide variety
of sources and then use interpolation to determine values that do not appear in
the table. Since the values of n and L* are fixed for a given switch, such a table
has three dimensions. We estimate that about twenty values in each dimension,
covering three orders of magnitude should suffice in practice. This would yield a
table of 8,000 values. We are currently evaluating the accuracy of the interpolation
scheme for such a table and will report on that in a subsequent report.

We close by noting that this approach to bandwidth allocation may result in
decisions that lead to higher than expected packet loss rates. The actual behavior

98 ACS Progress Report (9/1/86 — 8/31/87)

pass/drop
—* P -~ >
peak bandwidih
entorcer pseudo queue
O
pseudo queue
e —
L server

Pseudo-Queue Mechanism

Figure 8.4: Simple Bandwidth Enforcement Mechanism

of a queueing system depends on the particular combination of sources feeding the
queue. We have ignored that here, computing effective bandwidth based on the
behavior of identical sources, not an arbitrary mixture. Consequently, decisions
based on this method can err either on the liberal or conservative side, leading to
excessive packet loss in one case and excessive connection blocking in the other.
This is inherent in any method that relies on a single number to characterize the
behavior of a bursty source, and unfortunately such methods are the only kind
that appear computationally tractable. There is a slightly different approach that
may yield better results. Rather than compute effective bandwidths for identical
sources, we could compute them in the context of some representative background
load. Possibly several different background loads could be used, and the appropri-
ate one selected based on actual source statistics.

8.3. Bandwidth Specification and Enforcement

The bandwidth allocation methods discussed in the previous section, all require
that the user provide some description of the connection’s traffic characteristics,
when the connection is established. This bandwidth specification must include the
connection’s peak rate, its average rate and burst factor. The network requires
this information to determine the effective bandwidth. In addition, the network
must have a straightforward way of preventing the user from sending traffic at a
higher rate than allowed by his specification. This is done by having the network
monitor the connection’s traffic as it enters the network and discard any packets
that exceed the rate spec. We refer to this enforcement mechanism as a traffic
valve. (Alternatively, the valve could reset the priority of the packet to a lower

8. Bandwidth and Buffer Management 99

value and allow it to proceed, or buffer the packet and flow control the user across
the access link.)

One simple way to implement a traffic valve is called the pseudo-buffer mech-
anism. The network monitors the flow of traffic entering the connection and sim-
ulates the effect of this traffic on an imaginary buffer. When the user sends a
packet, the length of the pseudo-buffer is increased by one. So long as this doesn’t
cause the pseudo-buffer to overflow, the packet simply passes over the connection;
if the pseudo-buffer does overflow, the packet is discarded. This idea is illustrated
in Figure 8.4. The pseudo-buffer accepts packets at a certain maximum rate (the
connection’s peak rate), is drained at a constant rate (the connection’s average
rate) and has a maximum length (the connection’s burst factor). These three pa-
rameters may all be specified by the user, allowing him in effect, to specify the
characteristics of a virtual private link.

A pseudo-buffer mechanism that simultaneously monitors all the logical chan-
nels on a single access link can be implemented in hardware in a straight-forward
fashion. The main component is a memory that contains the values of the param-
eters associated with each pseudo-buffer, the state of the pseudo-buffer at the time
it was last updated and a time field indicating when its state was last updated.
Whenever a packet arrives on the link, the packet’s logical channel number is used
to select the appropriate set of parameters from the memory, the parameters are
updated and written back to memory and a decision is made as to whether or
not to discard the packet. The amount of information required for each channel
is sixteen bytes, implying that 512 channels can be monitored using 64K bits of
memory.

8.4. Multipoint Congestion Control

The previous sections deal mainly with point-to-point connections and multipoint
connections with a single transmitter. In these cases, it is straightforward to
provide the bandwidth enforcement function entirely at the edge of the network.
Connections with two or more transmitters and three or more receivers raise new
issues, because in this case it becomes possible for packet streams from different
transmitters to converge with one another inside the network, creating loads larger
than are permitted at the boundary.

When one considers applications involving multiple transmitters, it becomes
evident that often, while there are many potential transmitters there is only one or
a few concurrent transmitters. The solution proposed here involves adding some
functionality to the internal switch nodes that controls access to buffer slots within
switches. The underlying idea is to allocate slots in link buffers to connections in

100 ACS Progress Report (9/1/86 - 8/31/87)

proportion to the allocation of bandwidth on the link. For example, if a given
connection has been allocated say 20% of the bandwidth on a given link, then it
is also allocated 20% of the buffer slots in that link’s buffer. This allocation has
no effect unless the link buffer becomes full; in the event that it does becomes
full, the buffer allocation is used to determine which packets should be discarded.
That is, connections using more than their allocated buffer slots lose packets during
overload while connections that are operating within their allocation are protected.

We now give a more precise description of this policy and describe a simple
mechanism to implement it. Suppose we have a set of connections ¢, . . ., ¢, shar-
ing a common transmission link. Each connection c; has an associated rate ;.
The link has a rate R and the link buffer has a capacity of B packets. We require
that 3°r; < R, but note that this does not imply that each source transmits at a
constant rate of r;, but rather that r; is the amount of link bandwidth reserved for
the connection during overload periods. We define b; = [Br;/R] to be the number
of buffer slots allocated to ;.

During overload periods, the link buffer fills and overflows (we can take this as
the definition of overload). The objective of buffer management is to discard pack-
ets selectively so that ideally, only connections c; using more than “their share” of
the link buffer are affected by the overload. We propose to do this by supplement-
ing the link hardware with a table containing an entry for each connection. The
entry for ¢; consists of two fields, one containing &;, the number of buffer slots allo-
cated to ¢;, and the other containing f;, the number of buffer slots currently being
used by c;. Whenever a packet on ¢; is received, the corresponding table entry is
read and f; is incremented, then written back to memory. If 8; > b; the packet
is marked as an ezcess packet, meaning that it may be discarded if an overload
occurs. When a packet on ¢; is removed from the buffer (either to be transmitted
or discarded) B; is decremented. This mechanism is illustrated in Figure 8.5.

One simple way to implement the buffer is as a priority queue with the excess
packets being treated as lower priority. One drawback of this implementation
is that it introduces the potential for packets in a given connection to pass one
another. A better solution is a buffer that maintains packet ordering, but still
allows excess packets to be discarded first in an overload. Figure 8.6 shows a
block diagram of such a buffer. The packets are stored in the memory array at
the bottom of the figure. They enter on the left, passing through an input shift
register (ISR) before being strobed into memory. In the simplest case, each packet
occupies one full column of the memory array, although this isn’t essential. Packets
leave on the right, passing first through an output shift register (OSR). A master
control circuit provides global control logic and timing.

The status block at the center maintains information about the packets stored
in each column of the memory array. It supports writing to and reading from the

8. Bandwidth and Buffer Management 101

incremevt

| decrewent

il | L

deQag mark bulfer IR

Figure 8.5: Buffer Management Mechanism

buffer in FIFO order. It also supports writing to a memory column occupied by an
excess packet. It can be implemented as a one-dimensional array of control slices,
with each slice corresponding to a column of memory. Each slice contains a control
word, consisting of a column number, which identifies the column controlled by the
slice, a data present bit, which is set if the column contains a packet, an ezcess bit,
which is set if the packet in the column is an excess packet, and a channel number,
which identifies the channel that the packet belongs to.

Notice that if 3~ b; < B, we can guarantee that only excess packets are lost. If
such a guarantee is required, we can provide it by refusing to accept new connec-
tions that would violate this condition. We note however that there are common
situations in which this strategy is overly restrictive. Suppose for example, we have
1000 connections with rates r; = .001 that we would like to multiplex on a single
link. To accommodate these connections subject to the constraint that 5 b; < B
we need at least 1000 buffer slots, a number which may be impractically large. We
note however that in this situation, we can tolerate much smaller buffer capacities
since the probability of buffer overflow will generally be small, even using a buffer

102

ACS Progress Report (9/1/86 - 8/31/87)

write——— : ! reod
Maskter Control -—-*-émPl:j

4 = §

3€ s[5 332

o|® ITOClEls

Statua
K

din—-= Column Decoder — doud

] |

ISR Memory Armj oSk

Figure 8.6: Buffer Implementation

8. Bandwidth and Buffer Management 103

with say 50 slots.

This mechanism can effectively control the bandwidth usage of multipoint con-
nections as well as point-to-point connections. We require that the user provide a
rate specification not just for a single transmitter but the for the total connection
as well. Using this information, the network can compute an effective bandwidth,
which in turn is used to determine the buffer allocation. There remains a poten-
tial for local overloads occurring in a switching system in the case of a multipoint
connection with three or more links at a switch, two of which result in packets
entering the switch. This local overload can be controlled by discarding packets
before entry to the switch fabric if the transmit buffer at the incoming packet pro-
cessor is in the overload state and the connection the packet belongs to is already
using its share of that transmit buffer.

8.5. Access Arbitration in Multipoint Channels

In the previous sections, our objective has been to allocate bandwidth to users
to get acceptable performance and then control each connection’s ability to ac-
cess bandwidth and buffers so that each gets its share. In the case of multipoint
connections, this may involve discarding packets from a connection with several
simultaneous transmitters, without regard to where the packets came from. In this
section we consider the possibility of active arbitration among the set of transmit-
ters in a multipoint connection. In this model, terminals in a multipoint connection
transmit information in bursts consisting of many packets and compete for the right
to transmit bursts. In the simplest case, the channel allows only one terminal to
transmit at a time; this can be extended to k& concurrent transmitters. The prob-
lem resembles contention resolution in local area networks. It is distinguished by
the topology of the channel, the magnitude of the delays involved and the potential
for multiple transmitters. In this section we summarize work that we have done
on the access arbitration problem. A more detailed report can be found in [39).

Perhaps the most obvious approach to access arbitration in a tree-structured
channel is to supply the connection with some number k of transmit permits or to-
kens, and require that a terminal possess at least one token before being allowed to
transmit a packet. This approach limits the number of simultaneous transmitters
to k, while allowing the set of transmitters to vary over time, through the passing
of tokens. The network can allocate bandwidth for & simultaneous transmitters,
independent of the total number of terminals in the connection.

While this strategy seems simple enough, finding a practical implementation
for a high speed packet network is not as straightforward as it might appear. The
reason is that passing of tokens must be completely reliable; since the underlying

104 ACS Progress Report (9/1/86 — 8/31/87)

network may lose packets on occasion, a protocol is required that allows tokens to
be passed reliably, while at the same time preventing terminals from creating new
tokens. We have devised two algorithms which take rather different approaches to
the problem. The first provides a simple and practical solution that can be imple-
mented using a set of distributed monitor processes at the access links connecting
the terminals to the remainder of the channel. In this algorithm, the network plays
a passive role, with the terminals handling most of the work associated with token
passing, while the network provides minimal support for reliable transmission and
prevents token creation by the terminals. In the second algorithm, the network
plays a more active role, distributing tokens to users based on request messages;
this approach, while more complex can reduce the latency associated with token
passing.

In the first algorithm, terminals transmit two types of packets, data and token
packets. Every token packet has two fields, one containing the token id, and another
containing the destination terminal, that is the identity of the terminal that is to
receive the token. The internal nodes of the channel, replicate all received packets
and propagate them throughout the channel.

The algorithm is implemented by a collection of monitor processes, located at
the terminals’ access links. The monitor processes observe the flow of packets over
the channels and are responsible for preventing a terminal from transmitting a
packet unless it is in possession of a token. The monitor processes, also prevent
creation of new tokens by making sure that terminals pass only those tokens that
are in their possession. The monitors provide indirect support for reliable token
transmission; if a terminal passes a token to another and determines that the
token packet was lost, it is allowed to retransmit the packet. The tricky part, is
allowing such retransmissions without introducing a mechanism that allows the
user to create new tokens. We have devised an effective method for handling this
problem which is described in detail in [39].

In the second algorithm the network plays a more active role in token distri-
bution, so as to reduce the latencies associated with token acquisition. In the new
algorithm, a terminal with data to send first requests a token, then waits for the
network to provide one. The algorithm is implemented by two types of processes.
The first is a monitor process, which observes the passage of token control mes-
sages and allows data packets to be sent only when the terminal is in possession
of a token. The second type of process implements token circulation; there is one
such process for each internal node in the connection. One of the internal nodes,
is designated the root of the channel; all other nodes u in the tree have a unique
parent, which is the neighboring node that lies on the path from u« to the root.
The root can be any node, but the best performance is obtained when it is at the
center of the tree. Whenever there are no pending requests for tokens, unused

8. Bandwidth and Buffer Management 105

tokens propagate up the tree to the root. Token requests also propagate up the
tree, but each node maintains a list of token requests from its subtrees and if a
token is received from either the parent or a subtree, while a request is pending,
that token is used to satisfy the request. This simple form of the algorithm can be
improved upon in several respects; details can be found in [39].

The token-based approach described above is inherently limited in performance
due to the time required for token acquisition. Better performance is possible by
allowing terminals with data to send to simply transmit the data at will and allow
the internal nodes to select one (or several) from a set of competing bursts. Several
algorithms for this problem have been devised. We briefly describe one of them
here.

For the contention-based algorithms, we assume that a burst consists of a start
packet, one or more data packets and an end packets and that the start and
end packets can be transmitted with perfect reliability (these assumptions can be
relaxed, but for simplicity we will not do so here). All packets transmitted include
the identity of the transmitting terminal. The maximum number of simultaneous
transmitters is k. We provide priorities for each burst by including a priority field
in each start packet. Once a burst becomes active, it can be interrupted only by a
higher priority burst. If two bursts of the same priority contend with one another,
an arbitrary decision is made to select the winner. This arbitrary decision is based
on another field of the start packet which is filled with an arbitrary random value
when the packet enters the network.

The key part of any contention-based arbitration algorithm is to ensure that
the selection of which of a set of competing bursts should gain access to the channel
is done in a consistent fashion. The approach we use here is to exploit the natural
numeric ordering on the triples consisting of the priority, the random value and the
terminal identifier. Each internal node monitors the traffic passing through it and
if more than k bursts attempt to pass through at once, it ceases propagating one
of the bursts. The burst that is discontinued is the one with the lowest priority,
with ties broken using first the random value and then the terminal identity. Each
node stores the values of these triples for all bursts that are active in a connection.
This algorithm can be efficiently implemented in hardware in a practical multi-
point communication network. The main hardware cost is for the memory, which
amounts to roughly 5k to 10k bytes per channel.

106

9. Packet Video

Faculty Jonathan Turner
Graduate Student Shabbir Khakoo

The use of packet networks for carrying video signals raises a variety of new
research issues. We have recently begun an investigation of some of these. In this
section, we summarize our initial observations and outline our research objectives.
We begin with a brief review of methods used to reduce the bandwidth required
to transmit video signals. We feel such methods will become even more important
in the coming era of relatively inexpensive bandwidth, since the combined effect
of inexpensive bandwidth and inexpensive codecs will be to drastically expand the
market for two-way video, and because we expect a growing interest in dramatically
higher resolutions.

A variety of techniques including transform coding, motion compensation, dif-
ferential coding and adaptive quantization are commonly used to reduce the band-
width required for video signals. Motion compensation [43,44] is among the most
powerful techniques. It exploits the fact that there is relatively little change in de-
tail between adjacent frames of a sequence. Thus by only transmitting the change
in detail referenced to an initially transmitted frame, a significant compression
may be realized.

Typical video codecs combine several techniques to yield a hybrid; an example
of such a hybrid codec is shown in Figure 9.1. In such a codec, a previous frames
is stored in the frame buffer (FB). The current frame is divided into blocks of
typically 16 by 16 pixels. The search unit (S) compares each block to the previous
frame to find the position in the previous frame that most closely matches the
block. The result of this search is a displacement vector for the block which is
transmitted to the remote decoder. The displacement vector is also used to select
a block from the frame buffer and then this block along with the current block
are subjected to a two-dimensional discrete cosine transform (DCT) and then the
differences between the corresponding pixels are computed. These differences are
then quantized using an adaptive quantization scheme. Typically, this involves

107

108 ACS Progress Report (9/1/86 — 8/31/87)

QUANTIZER DATA

IN + CODED BLOCKS QUT
+*DCT—0—— Q QH—d IDCT
Q—i
B
SEARCH DCT]
DCT IDCT
t !
FRAME FRAME
BUFFER BUFFER
1 DISPLACEMENT 1
VECTORS

Figure 9.1: Hybrid Video Codec

classifying the block based on the amount of change and using one of several sets
of quantization parameters. The coded blocks are then transmitted to the far end
coder and the process reversed. At both coder and decoder, the decoded blocks are
fed back into a reference frame buffer. Using such techniques, compression rates
approaching 50:1 are possible with reasonable quality. Video conferencing codecs
gain additional compression by starting with a relatively low resolution signal (256
by 256 is typical) and using a frame refresh rate of 7.5 frames per second. These
techniques provide 16:1 compression over broadcast quality video.

When video coding is used in conjunction with a fixed rate communication
channel, it is necessary to suppress the natural variability in the codec’s bit rate.
This is handled in two ways, as shown in Figure 9.2. First, a rate-equalizer buffer is
placed between the output of the codec and the channel, so as to absorb short term
variations in coding rate. During periods of rapid motion, the buffer can become
full, necessitating a reduction in the coding rate. Several methods [43] of optimizing
the feedback mechanism for maximal picture quality within a given bandwidth
budget exist (typically these involve changing the criteria used by the quantizer),
but large variations in quality are unavoidable, especially at high compression
rates.

Packet switching systems, on the other hand, needn’t constrain the codec to
a constant bandwidth channel. Rather, the coding rate can vary in a relatively
unconstramned fashion. Where the conventional codec attempts to maintain a
constant or nearly constant data rate, while minimizing distortion subject to that
constraint, a packet video codec can seek to minimize the number of bits per frame

9. Packet Video 109

CONTRO
. .| RATE
INPUT CODER BUFFER FIXED RATE CHANNEL
RATE
BUFFER
INPUT
—CODER PACKETIZER

VARIABLE RATE CHANNEL

DEPACKETIZER DECODER—— OUTPUT

Figure 9.2: Fixed vs. Variable Rate Channels

subject to a constraint on distortion. The ability to transmit at high rates for short
periods makes possible substantially better quality in periods of rapid motion.

The overall structure of a packet video system is shown in Figure 9.2. The
data from the coder passes through a packetizer which organizes the data into
packets with additional header information, then sends the packets through the
network to the decoder which includes a depacketizer, which detects lost packets
and restores packet order, based on sequence numbers provided by the packetizer.
In this system, the rate buffer is optional, since the network can absorb the normal
fluctuations in the coder’s data rate. Since the network’s bandwidth management
mechanisms may constrain the coder’s rate to some degree, a rate buffer may be
of some value, but does not appear essential.

Packet loss can have a serious implications on the quality of the signal, partic-
ularly since it can result in a loss of synchronism between the coder and decoder.
Since the round trip delay through the network is large, retransmission of packets
is not the most efficient means of tackling the problem of packet loss. One simple
method of overcoming this problem [65], is to replace the lost data by dummy

110 ACS Progress Report (9/1/86 — 8/31/87)

information that is derived either from the previous decoded picture or by interpo-
lating between the received data of the current image under consideration. Either
one of these method can reduce the effect of a lost packet substantially. At the
same time, it is necessary to transmit redundant information at a low rate, to allow
synchronization to be recovered.

Our initial investigations of packet video have been limited to studying exist-
ing video coding methods and developing an understanding of the implications of
packet transport on these methods. We have begun to develop a set of programs
that will allow us to apply some of these coding methods to actual video sequences.
We plan to use these programs for several purposes. First, we wish to obtain a
better understanding of the typical variation in data rates. Among other things,
we need to understand the duration and intensity of high data rates during periods
of rapid motion. Second, we will use these programs to explore various methods
for coping with lost packets and measure the effect of various packet loss rates on
the quality of the resulting signal. We also plan to study the implications of high
resolution video on codec architecture. Currently, high compression rate codecs
can operate with fairly limited parallelism because they use video signals of limited
resolution and relatively low frame rates. The application of such techniques to
higher quality video will require a greater reliance on parallelism and on custom
integrated circuits to perform the necessary computations.

Bibliography

[1] Agrawal, D. P. “Testing and Fault Tolerance of Multistage Interconnection
Networks,” Computer, 4/82.

[2] Batcher, K. E. “Sorting Networks and Their Applications,” Proceedings of the
Spring Joint Computer Conference, 1968, 307-314.

[3] Beckner, M. W., T. T. Lee, S. E. Minzer. “A Protocol and Prototype for
Broadband Subscriber Access to ISDNs,” International Switching Symposium,
3/87.

(4] B. Bollobas. “The Diameter of Random Graphs,” Transactions of the Amer-
ican Mathematical Society, 267:41-52, 9/81.

[5] Bubenik, Richard. “Performance Evaluation of a Broadcast Packet Switch,”
Washington University Computer Science Department, MS thesis, 8/85.

[6] Bubenik, Richard and Jonathan S. Turner. “Performance of a Broad-
cast Packet Switch.” Washington University Computer Science Department,
WUCS-86-10, 6/3/86.

[7] Coudreuse, J. P. and M. Servel. “Asynchronous Time-Division Techniques: An
Experimental Packet Network Integrating Videocommunication,” Proceedings
of the International Switching Symposium, 1984.

[8] Coudreuse, J. P. and M. Servel. “Prelude: An Asynchronous Time-Division
Switched Network,” International Communications Conference, 1987.

[9] Day, C.,J. N. Giacopelli and J. Hickey. “Applications of Self-Routing Switches
to LATA Fiber Optic Networks,” International Switching Symposium, 1987.

[10] De Prycker, M., and J. Bauwens. “A Switching Exchange for an Asynchronous
Time Division Based Network,” International Communications Conference,
1987.

111

112 ACS Progress Report (9/1/86 — 8/31/87)

[11] Dias, D. M. and J. R. Jump, “Packet Switching Interconnection Networks For
Modular Systems,” Computer, vol. 14, no. 12, 12/81, 43-53

[12] Dias, D. M. and J. R. Jump, “Analysis and Simulation of Buffered Delta
Networks,” IEEE Transactions on Computers, vol. C-30, no. 4, 4/81, 273-282

[13] Dias, D. M. and Manoj Kumar. “Packet Switching in Nlog N Multistage
Networks,” Proceedings of Globecom 84, 12/84, 114-120.

[14] Dieudonne, M. and M. Quinquis. “Switching Techniques Review for Asyn-
chronous Time Division Multiplexing,” International Switching Symposium,
3/87.

[15] P. Erdos and A. Renyi. “On random graphs 1,” Publication Mathematica De-
brecen, 6:290-297, 1959.

[16] Feng, Tse-yun and Chuan-lin Wu, “Fault-Diagnosis for a Class of Multistage
Interconnection Networks,” EEE Transactions on Computers, vol. ¢-30, no.
10, 10/83.

[17] Feng, Tse-yun. “A Survey of Interconnection Networks,” Computer, vol. 14,
no. 12, 12/83, 12-30.

[18] Franklin, Mark A. “VLSI Performance Comparison of Banyan and Crossbar
Communications Networks,” IEEE Transactions on Computers, vol. C-30, no.
4, 4/81, 283-290.

[19] Gilbert, E. N. and H.O. Pollak. “Steiner Minimal Trees.” SIAM J. Appl.
Math., 16(1):1-29, 1968.

[20] Giorcelli, S., C. Demichelis, G. Giandonato and R. Melen. “Experimenting
with Fast Packet Switching Techniques in First Generation ISDN Environ-
ment,” International Switching Symposium, 3/87.

[21] Goke, L. R. and G. J. Lipovski, “Banyan Networks for Partitioning Multi-
processor Systems,” Proceedings of the 6th Annual Symposium on Computer
Architecture, 4/79, 182-187.

[22] Gonet, P., P. Adam, J. P. Coudreuse. “Asynchronous Time-Division Switch-
ing: the Way to Flexible Broadband Communication Networks,” Proceedings
of the International Zurich Seminar on Digital Communication, 3/86, 141-
148.

(23] Haserodt, Kurt and Jonathan Turner. “An Architecture for Connection Man-
agement in a Broadcast Packet Network,” Washington University Computer
Science Department, WUCS-87-3.

References 113

(24] Hayward, G., L. Linnell, D. Mahoney and L. Smoot. “A Broadband Local Ac-
cess System Using Emerging Technology Components,” International Switch-
ing Symposium, 3/87,

(25] Hoberecht, William L. “A Layered Network Protocol for Packet Voice and
Data Integration,” IFEEE Journal on Selected Areas in Communications, vol.
SAC-1, no. 6, 12/83, 1006-1013.

[26] Huang, Alan and Scott Knauer. “Starlite: a Wideband Digital Switch,” Pro-
ceedings of Globecom 84, 12/84, 121125,

[27] Huang, Alan. “Distributed Prioritized Concentrator,” U.S. Patent 4,472,801,
1984.

[28] Huang, Alan and Scott Knauer. “Wideband Digital Switching Network,” U.S.
Patent 4,542,497, 1985.

[29] Jaffe, J. M. “Distributed multi-destination routing: the constraints of local
information.” SIAM J. Comput, 14(4):875-88, November 85.

[30] Jenq, Yih-Chyun. “Performance Analysis of a Packet Switch Based on a
Single-Buffered Banyan Network,” IEEE Journal on Selected Areas in Com-
munications, vol. SAC-1, no. 6, 12/83, 1014-1021.

(31] Karol, M. J., M. G. Hluchyj and S. P. Morgan. “Input vs. Output Queueing
on a Space-Division Packet Switch,” Proceedings of Globecom, 12/86.

[32] Kermani, P. and L. Kleinrock. “Virtual Cut-Through: A New Computer Com-
munication Switching Technique,” Computer Networks, vol. 3, 1979, 267-286.

[33] Khakoo, Shabbir and Jonathan Turner. “System Testing of a Broadcast
Packet Switch,” Washington University Computer Science Department,
WUCS-87-4.

[34] Kou, L., G. Markowsky, and L. Berman, “A fast algorithm for Steiner trees.”
Acta Informatica, 15:141-5, 81.

[35] Kruskal, C. P. and M. Snir. “The Performance of Multistage Interconnection
Networks for Multiprocessors,” IEEE Transactions on Computers, vol. C-32,
no. 12, 12/83, 1091-1098.

[36] Kulzer, John J. and Warren A. Montgomery. “Statistical Switching Architec-
tures for Future Services,” Proceedings of the International Switching Sympo-
sium, 5/84.

114

ACS Progress Report (9/1/86 — 8/31/87)

[37] Lea, Chin-tau. “The Load-Sharing Banyan Network,” IEEE Transactions on

[38]

[39)

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

Computers, 12/86.

Lee, Tony T. “Non-Blocking Copy Networks for Multicast Packet Switching,”
Bell Communications Research, 1987.

Melen, Riccardo and Jonathan S. Turner, “Distributed Protocols for Access
Arbitration in Tree Structured Communication Channels,” Washington Uni-
versity Computer Science Department, WUCS-87-17, 8/87.

Miller, R. E. and J. W. Thatcher. Complezity of Computer Computations,
chapter “Reducibility Among Combinatorial Problems,” by R.M. Karp,
pages 85-103. Plenum Press, 1972.

Montgomery, Warren A. “Techniques for Packet Voice Synchronization,”
IEEE Journal on Selected Areas in Communications, vol. SAC-1, no. 6, 12/83,
1022-1028.

Muise, R. W., T. J. Schonfeld and G. H. Zimmerman III. “Experiments in
Wideband Packet Technology,” Proceedings of the International Zurich Sem-
inar on Digital Communication, 3/86, 135-139.

Netravali, A. N. and J. D. Robbins. “Motion Compensated Television Coding:
Part 1,” Bell System Technical Journal, vol. 58, No. 3, 3/79,

Netravali, A. N. and J. O. Limb. “Picture Coding: A Review,” Proceedings of
the IEEE, vol. 68, No. 3, 3/80.

Patel, J. H. “Performance of Processor-Memory Interconnections for Mul-
tiprocessors,” IEEE Transactions on Computers, vol. C-30, no. 10, 10/81,
771-780.

Pratt, W. K. “Image Transmission Techniques,” Wiley (Interscience), New
York, 1978.

Rayward-Smith, V. J. “The Computation of Nearly Minimal Steiner Trees in
Graphs,” International Journal of Math. Ed. Sci. Tech., 14(1):15-23, 1983.

Rettberg, R., C. Wyman, D. Hunt, M. Hoffman, P. Carvey, B. Hyde, W. Clark
and M. Kraley. “Development of a Voice Funnel System: Design Report,” Bolt
Beranek and Newman, Report No. 4098, 8/79.

Richards, Gaylord and Frank K. Hwang. “A Two Stage Rearrangeable Broad-
cast Switching Network,” IEEFE Transactions on Communications, 10/85.

References 115

[50]

[51]

[52]

[53]

[54]

[55]
(56]

[57]

[58]

[59]

[60]

[61]

[62]

Robbert, George. “Design of a Broadcast Translation Chip,” Washington Uni-
versity Computer Science Department, WUCS-87-9.

Sincoskie, W. D. “Transparent Interconnection of Broadcast Networks,” Pro-
ceedings of the International Zurich Seminar on Digital Communication, 3/86,
131-134.

Staehler, R. E., J. J. Mansell, E. Messerli, G. W. R. Luderer, A. K. Vaidya.
“Wideband Packet Technology for Switching Systems,” International Switch-
ing Symposium, 3/87.

Stroustrup, Bjarne, “The C++ Programming Language,” Addison-Wesley,
1986.

Takeuchi, Takao, Hiroshi Suzuki, Shin-ichiro Hayano, Hiroki Niwa and Take-
hiko Yamaguchi. “An Experimental Synchronous Composite Packet Switching
System,” Proceedings of the International Zurich Seminar on Digital Commu-
nication, 3/86, 149-153.

Turner, Jonathan S. and Leonard F. Wyatt. “A Packet Network Architecture
for Integrated Services,” Proceedings of Globecom 83, 11/83, 45-50.

Turner, Jonathan S. “Fast Packet Switching System,” United States Patent
#4,494,230, 1/15/85.

Turner, Jonathan S. “Design of an Integrated Services Packet Network,” Pro-
ceedings of the Ninth ACM Data Communications Symposium, 9/85, pages
124-133,

Turner, Jonathan S. and L. F. Wyatt, “Alternate Paths in a Self-Routing
Packet Switching Network,” United States Patent #4,550,397, 10/29/85.

Turner, Jonathan S. “Design of a Broadcast Packet Network,” Proceedings of
Infocom, 4/86.

Turner, Jonathan S. “New Directions in Communications,” IEEE Communi-
cations Magazine, 10/86.

Turner, Jonathan S. “Design of an Integrated Services Packet Network,” IEEE
Journal on Selected Areas in Communications, 11/86.

Turner, Jonathan S. “Specification of Integrated Circuits for a Broadcast
Packet Network,” Washington University Computer Science Department,
WUCS-87-5.

116 ACS Progress Report (9/1/86 — 8/31/87)

[63] Turner, Jonathan S. “The Challenge of Multipoint Communication,” Wash-
ington University Computer Science Department, WUCS-87-6. Also, to ap-
pear in Proceedings of the ITC Seminar on Traffic Engineering for ISDN
Design and Planning, 5/87.

[64] Turner, Jonathan S, “Fluid Flow Loading Analysis of Packet Switching Net-
works,” Washington University Computer Science Department, WUCS-87-16,
7/817.

[65] Verbeist, W. “Video Coding in an ATD Environment,” Picture Coding Sym-
postum, 6/87.

(66] Waxman, Bernard. “Thesis Proposal: Routing of Multipoint Connections,”
Washington University Computer Science Department, WUCS-87-2.

[67] Wirsching, J. E. and T. Kishi, “Conet: A Connection Network Model,” IEEE
Transactions on Computers, vol. C-30, 4/81.

[68] Yeh, Y. S., M. G. Hluchyj and A. S. Acampora. “The Knockout Switch: a
Simple Modular Architecture for High Performance Packet Switching,” Inter-
national Switching Symposium, 3/87.

