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ABSTRACT 

We consider the problem of arbitrating access to a tree stn~c- 
tured communication channel with large geographic extent, pro- 
viding multipoint communication among a set of terminals. In 
our model. terminals transmit information in bursts consisting of 
many packets and compete for the right to transmit bursts. In 
the simplest case, the channel allows only one terminal to 
transmit at a time; this can be extended to k concurrent” 
transmitters. The problem resembles contention resolution in lo- 
cal area networks. It is distinguished by the topology of the 
channel, the magnitude of the delays involved and the potential 
for multiple transmitters. In this paper we identify two general 
approaches and several specific access arbitration algorithms and 
make a preliminary assessment of their promise. 

1. Introduction 
The problem considered in this paper is motivated by recent 

research on the design of communication networks supporting high 
speed multipoint communication [6]. We consider a particular case 
of a multipoint channel used for communication among a set of n 
terminals. Each terminal can transmit data in the form of packets, 
which are replicated by the channel and delivered to all the other 
terminals. In typical applications, such as teleconferencing or LAN 
interconnection, information is transmitted in bursts comprising 
many packets and while every endpoint is a potential transmitter, 
typically only a few transmit at one time. 

Given that the underlying network must provide bandwidth to 
support the channel, there is the question of how much bandwidth to 
allocate. A worst-case allocation provides bandwidth for all n 
sources to transmit simultaneously. While this may be appropriate 
in some applications, it is unacceptably inefficient if only one or 
two tranmitters are active at one time. On the other hand, if the net- 
work allocates resources for only a few active transmitters, it must 
provide mechanisms to ensure that only a few transmitters can be 
active at one time. 

The necessity of access arbitration arises primarily from the 
network’s need to prevent terminals on one channel from usurping 
resources allocated to other channels that may be sharing the same 
links. However, access arbitration may also be viewed as a service 
provided by the network for the terminals, since it regulates the flow 
of data into each terminal, in an orderly fashion. 

We note that our problem is similar in spirit to media access 
protocols for local area networks, and indeed current LAN arbitra- 
tion schemes have given us several useful ideas. (See [4] for an 
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introduction to popular LAN media access protocols.) What distin- 
guishes our problem is the tree-structured channel in which the 
internal nodes can play an active role in access arbitration, the rela- 
tively long delays involved (on the order of tens of milliseconds) 
and the possibility of having multiple transmitters. These factors 
have a strong influence on the performance and implementation of 
various solutions, as will be seen in subsequent sections. Previous 
work of some relevance to our problem can be found in references 
t1.51. 

Formally, we denote a channel C by a pair (T ,a), where 
T=(N J,) is an undirected tree with node set N and link set L ;  
6:L +Z+ is a function that assigns a positive integer delay to each 
link. The nodes of T with only one incident link are called the ter- 
minals and are collectively denoted by Nt ; all other nodes are called 
internal. We define the distance between two nodes U and v to be 
the sum of the link delays on the path joining U and v and denote it 
by 6(u ,v). Packets transmitted at one end of a link (U ,v ) are 
delivered to the other end after a delay 6(u,v). We define the 
diameter of the channel to be to be the length of the longest simple 
path in T joining two terminals and denote it by A. Packets 
delivered to a node are replicated and sent out over all of the other 
links incident to the node. While in an actual system, this involves 
some (relatively small) stochastic delay, we will neglect it in this 
paper and assume that the nodes operate instantaneously. Packets 
that arrive simultaneously at a node are processed sequentially in 
some arbitrary order. Constant link delays and zero node delays are 
adopted to simplify the presentation and are not essential to any of 
the algorithms described here; in general, the only essential proper- 
ties are sequentiality for links and in some cases for nodes. 

We present two fundamental approaches to access arbitration. 
The first, described in section 2, is based on the idea of transmit per- 
mits or tokens; that is a terminal must have explicit permission to 
transmit before starting a burst. We give two algorithms using this 
approach; one an essentially passive algorithm that provides the 
minimal set of facilities to support token-based access arbitration 
and the other, an active token circulation algorithm that seeks to 
reduce token latencies by adding intelligence to the internal nodes. 
The second approach, described in section 3, allows terminals to 
transmit whenever the number of bursts they can observe from their 
vantage point is less than the limiting number; the network then per- 
forms arbitration internally, possibly aborting some bursts in the 
process, to prevent too many bursts from being active on a link at 
one time. We present three algorithms using this second approach. 
We conclude with a brief assessment of the various methods and 
suggest some possible topics for future investigation. 

2. Arbitration Using Transmit Tokens 
Perhaps the most obvious approach to access arbitration in a tree- 
structured channel is to supply the connection with some number k 
of transmit permits or tokens, and require that a terminal possess at 
least one token before being allowed to transmit a packet. This 
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approach limits the number of simultaneous transmitters to k , while 
allowing the set of transmitters to vary over time, through the pass- 
ing of tokens. The network can allocate bandwidth for k simultane- 
ous transmitters, independent of the total number of terminals in the 
connection. 

While this strategy seems simple enough, finding a practical 
implementation for a high speed packet network is not as straight- 
forward as it might appear. The reason is that passing of tokens 
must be completely reliable; since the underlying network may lose 
packets on occasion, a protocol is required that allows tokens to be 
passed reliably, while at the same time preventing terminals from 
creating new tokens. We consider two algorithms in this section 
which take two different approaches to the problem. The first pro- 
vides a simple and practical solution that can be implemented using 
a set of distributed monitor processes at the access links connecting 
the terminals to the remainder of the channel. In this algorithm, the 
network plays a passive role, with the terminals handling most of 
the work associated with token passing, while the network provides 
minimal support for reliable transmission and prevents token crea- 
tion by the terminals. In the second algorithm, the network plays a 
more active role, dismbuting tokens to users based on request mes- 
sages; this approach, while more complex can reduce the latency 
associated with token passing. 

2.1. A Passive Algorithm 
In this section, we describe a passive algorithm, which we refer to 
as Algorithm 2.1, for support of token-based access arbitration. 
Terminals transmit two types of packets, data and foken packets. 
Every token packet has two fields, one containing the token id, and 
another containing the destinution terminal, that is the identity of 
the terminal that is to receive the token. The internal nodes of the 
channel, replicate all received packets and propagate them 
throughout the channel. 

The algorithm is implemented by a collection of monitor 
processes, located at the terminals’ access links. The monitor 
processes observe the flow of packets over the channels and are 
responsible for preventing a terminal from transmitting a packet 
unless it is in possession of a token. The monitor processes, also 
prevent creation of new tokens by making sure that terminals pass 
only those tokens that are in their possession. The monitors provide 
indirect support for reliable token transmission; if a terminal passes 
a token to another and determines that the token packet was lost, it 
is allowed to retransmit the packet. The tricky part, is allowing 
such retransmissions without introducing a mechanism that allows 
the user to create new tokens. 

Each monitor maintains several variables for each token 
allowed in the connection. For token i ,  the variable 
stutei=present if token i is present at the terminal (meaning the 
terminal can use it to transmit packets), stufei=absent if token i is 
not present and stutei=passing if the terminal is in the process of 
passing the token to another terminal. More precisely, 
stutei=passing if the terminal has transmitted a token packet for 
token i and has not yet received any positive indication that the 
token has been received. If sfutei=passing, the variable desri is 
the identity of the terminal that the token was passed to; additional 
token packets can be sent to that destination, but no others. The 
variable geni is the generation number of token i ; the generation 
number of a token is incremented whenever the token is passed and 
used to help prevent replication of tokens. In addition, each moni- 
tor has a variable n , which gives the number of tokens present at 
the node, and a variable termid that uniquely identifies the terminal 
that the monitor is associated with. 

A program implementing the monitor process is shown in 
Figure 1 .  The program is written using Dijkstra’s guarded com- 
mand notation [2]. Input and output are denoted using a variant on 

do termport?p +relay@ ,termport ,nodeport) 
I nodeport?p +relay@ ,nodeport,termport ); 

od;  

procedure relay(packet p , port from, port to) 

I p .  typ=data A frownodeport+ 

I p .  typctoken A frowtermport  + 

i f p .  typ=data hfrom=termport A n >O+ 
nodeport!p ; 

termport !p ; 

i : = p .  tid; 
if stutei =present+ 

stutei :=passing; desti :=p .  desc 
gen; := geni+l; p .  gen := geni; 
n := n -1; nodeport!p ; 

p .  dest := desti ; p .  gen := geni ; 
nodeport!p ; 

I stutei=passing+ 

fi; 

i : = p .  tid; 
if p ,  desgtermid ~ p .  gen2geni + 

I p .  t y p t o k e n  A from=nodeport+ 

i f  stutei#present+ n := n+l ;  fi; 
statei := present; geni :=p.gen; 
termport !p ; 

statei :=absent; geni :=p.gen ; 
I p .  deswtermid A p .  gen2geni + 

fi; 
fi; 

e n d  
Figure 1. Program for Monitor Process 

Hoare’s notation for CSP [3]. In particular, portnume?x reads an 
item from the named port into the variable x if there is any data 
available and portnume !x transmits the value of x on the named 
port. Each monitor has two bidirectional ports, one for communica- 
tion with its associated terminal (termport) and the other for com- 
munication to the associated internal node (nodeport). 

It’s tempting to simplify the algorithm by omitting the token 
generation numbers. Unfortunately, such a change allows the crea- 
tion of multiple tokens. Consider, for example if terminal A sent a 
token packet to terminal B , which in turn sent a token packet to C . 
If this latter packet is not seen by the monitor at A (because of an 
error on one of the links between B and A ), then A might send a 
second token packet to B .  The algorithm described above uses the 
token generation number to filter out this second token packet; 
without it, the token would be passed on to B and we would be left 
in a situation where B and C possess copies of the same token. 
Algorithm 2.1 can never enter a state in which a given token is 
present at more than one terminal. 

In practice, the mechanism implementing the monitor process 
must simultaneously implement monitor processes associated with 
other channels that are statistically multiplexed on the same link. 
When a packet is received on a link, a logical channel number is 
extracted from the packet and used to extract information from an 
internal table that records information about all the channels on that 
link. This information includes the state of the monitor process con- 
trolling each channel. This information is used to make decisions, 
then the state is changed if necessary and written back to the table. 

In Algorithm 2.1, the network plays the smallest possible 
role, leaving to the terminals, the real work of ensuring that tokens 
are reliably exchanged. This approach keeps the network simple 
and provides a great deal of flexibility. A variety of token distribu- 
tion strategies can be implemented by the terminals; we note here a 
few possibilities, without going into detail. One simple method is to 
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have a logical ring associated with each token and allow each token 
to circulate around its ring; the assignment of terminals to rings can 
be optimized to satisfy performance requirements that may vary 
among the different terminals. Another method is for one terminal 
to play the role of token dispenser, with other terminals explicitly 
requesting tokens when needed. Alternatively, the task of token 
dispensing could be distributed, so any terminal with an available 
token might respond to a token request that was broadcast to all. 

2.2. An Active Algorithm 
While Algorithm 2.1 keeps the internal network mechanisms fairly 
simple, it places a lot of the responsibility for token management on 
the terminals and may give poor performance as a result of the 
token latencies involved. In this section we sketch an alternative 
strategy in which the network plays a more active role, explicitly 
managing the token distribution so as to reduce the amount of time 
that terminals spend waiting for tokens. 

In the new strategy, a terminal with data to send must first 
request a token, then wait for the network to provide one; once the 
token has been assigned the transmission can start; at the end of the 
burst, the terminal issues a token release. Note that terminals do not 
simply wait for the arrival of a free token circulating through the 
connection, but play an active role; this choice, together with the 
tree-shaped topology of the connection permits faster token circula- 
tion. 

The algorithm is implemented by two types of processes. 
The first is a monitor process similar to the one in Algorithm 2.1, 
which observes the passage of token control messages and allows 
data packets to be sent only when the terminal is in possession of a 
token; we omit the details of this process. The second type of pro- 
cess implements the actual token circulation; there is one such pro- 
cess for each internal node in the connection. As we will see, these 
processes are sufficiently complicated that a hardware implementa- 
tion is probably impractical; consequently, we assume that the token 
circulation processes are implemented in software. This may limit 
the token handling capacity of an actual implementation, but we do 
not consider that issue in detail here. We also assume that the vari- 
ous token control messages are passed between adjacent nodes 
using a reliable communication protocol to prevent token loss. 

The token circulation processes view the tree induced by the 
channel as a directed tree. One of the internal nodes, is designated 
the root of the channel; all other nodes U in the tree have a unique 
parent, which is the neighboring node that lies on the path from U 
to the root. The root can be any node, but the best performance is 
obtained when it is at the center of the tree. Whenever there are no 
pending requests for tokens, unused tokens propagate up the tree to 
the root. Token requests also propagate up the tree, but each node 
maintains a list of token requests from its subtrees and if a token is 
received from either the parent or a subtree, while a request is pend- 
ing, that token is used to satisfy the request. 

A program implementing a simple version of the token circu- 
lation process appears in Figure 2. The process can receive mes- 
sages from its parent, or from any of several children, denoted 
child(i). The process at the root has its parent variable set to 
null. The variable R is a list of children with pending requests; 
R [ 11 is the first item on the list and R [2..] denotes the sublist with 
the first item removed. The assignment R := R& from adds the 
value of from to the end of the list. The variable T ,  records the 
number of tokens available at the root. The variable, tokp is just a 
packet with the type field set to token. 

There are a few aspects of the algorithm that can be improved 
upon. Suppose a node U has a single pending token request from a 
child c (i) and has requested a token from its parent. If U receives 
a token from one of its children, that token will be used to satisfy 

do parent?p +circ(p parent) 
1 child(i )?p +circ@ ,child(i 1); 

od; 

procedure circ(packet p , port from) 
ifp. typ=request ~p~ent; tnul l+  

parent!p ; R := R& from; 
I p. tprequest A parent=null A T > O+ 

T := T-1; from!tokp; 
I p. typ=request rparent=null A T = ( k  

R := R& from; 
I p. typ=token A R #null + 

R [ I]!p ; R := R [2..]; 
I p. typ=token A R =null A parent;cnull+ 

parent!p ; 
I p.  typ=token A R =null Aparent=null+ 

T := T+1; 
fi; 

end 
Figure 2. Program for Token Circulation Process 

the pending request. When the token requested from the parent 
arrives later, it will be returned, assuming no other requests have 
arrived in the meantime. The time spent by that second token trav- 
elling to U and back is essentially wasted; it’s possible that overall 
performance could be improved, if in this situation U sent a cancel- 
lation packet to its parent. A node receiving such a packet from one 
of its children would respond by deleting any pending request for 
that child and sending the cancellation on to its parent. If the node 
no longer had a pending request for that child (because it had 
already sent a token in response to the earlier request), it would sim- 
ply ignore the cancellation. 

Note also, that as written, the algorithm permits starvation; 
that is, it is possible for a node with a pending request to never get 
served since the token may stay in another subtree. We can avoid 
starvation by constraining the token circulation somewhat. In par- 
ticular, whenever a token is received from child(i), the token is 
used to satisfy a request from childu), where j is the smallest 
integer greater than i for which there is a pending request. If there 
is no such request, the token is sent to the parent. With this change, 
the waiting time of a pending request is bounded if the time that a 
terminal holds a token is bounded. We refer to the algorithm incor- 
porating these two refinements as Algorithm 2.2. 

3. Contention-Based Access Arbitration 
The algorithms of the previous section required that a terminal 
acquire an explicit transmit permit or token before starting a burst. 
In this section, we consider access arbitration algorithms in which 
terminals contend for access to the channel by simply transmitting 
thek bursts at will and allowing the channel to select the bursts to 
be delivered. 

We are interested in access arbitration algorithms that can be 
implemented by a collection of arbiters; each link having an arbiter 
at each of its two ends. Preferably, these should be simple enough 
to be implemented within a hardware packet processor that handles 
many channels multiplexed on the common link. An arbiter is a 
sequential process that monitors the flow of traffic at its position in 
the channel and either allows packets to pass or discards them. 
Arbiters may also exchange control packets, but they may not delay 
user packets. While practical arbiters require some time to operate, 
we neglect that here and assume that they operate instantaneously. 

Terminals transmit packets in the form of bursts comprising a 
start packet, zero or more data packets and an end packet. Each 
packet has a source field that identifies the terminal from which it 
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originated. We say that a burst is conrending if the originating ter- 
minal has transmitted the start packet, but the start packet has not 
yet been received by every other terminal. We say that a burst is 
active if its start packet has been received by every other terminal 
and its end packet has not yet been transmitted. The set of active 
bursts at time t is denoted by Nt) and the set of contending bursts 
at time t is denoted by ?rif ). We say that a burst is current at a node 
U ,  if the start packet of the burst has been transmitted from U and 
the last packet of the burst to be transmitted from U has not yet left 
U. We denote the set of current bursts at U at time t by pu ( t )  

We now list the defining properties for an access arbitration 
algorithm allowing up to k concurrent bursts. 
P If a packet is transmitted by a terminal U at time f , it is 

delivered to terminal v #U by time t +6(u ,v ) or not at all. 
P 2  If a terminal v does not receive a packet p , it will not receive 

any packets that are part of the burst containing p and are 
transmitted after p . 
At all times t , ((X(t )Ilk and Ipu (t )Ilk for all nodes U. 
If no terminal transmits any packer after time t , then 

If the start packet of a burst transmitted by U is delivered to 
every terminal in N , - ( u ) ,  then every other packet of the 
burst is also. 

We also expect access arbitration algorithms to be fair in the sense 
that they not favor some terminals at the expense of others. 

Properties p 1 - P ~  have some useful consequences if all 
bursts have a duration of at least 2A. In this case, if a terminal 
starts a burst and during the period [ t  ,t+2A], there is no time when 
k bursts are arriving, then the transmitted burst is completely 
received by all other terminals. Moreover, if there is some time in 
that interval when k bursts are arriving, the outgoing burst is not 
received completely by any other terminal. That is, either the burst 
is completely received by everyone. or it is received by no one; 
moreover, the transmitting terminal can determine which is the 
case, allowing the possibility of retransmission at a later time, if 
appropriate. 

P 3  
P 4  

P5 
lor(t+A>I=min Ik$@)I+l?rit)I). 

3.1. Distributed Access Arbitration 
The first access arbitration algorithm we present allows just a single 
active transmitter. Extension to multiple transmitters, while possi- 
ble, is complicated. The key idea underlying the algorithm is that 
contention between two competing bursts can be resolved at that 
point in the channel where the two bursts meet. This requires the 
cooperation of the pair of arbiters at opposite ends of the link where 
the bursts meet, or of the arbiters at the node where they meet. The 
arbiters that are not at the meeting point can respond in a passive 
way; they simply allow a later burst to preempt an earlier one that is 
not yet finished, since the later burst must be the one chosen by the 
arbiters that were at the meeting point. 

Most often, the start packets of bursts cross on some link and 
the arbiters at opposite ends of the link must resolve the contention. 
The winner resulting from a contention alternates between the two 
link directions. This requires a simple hand-shake protocol between 
the arbiters, so that they both properly recognize a contention event 
and respond consistently. It is also possible for contending start 
packets to arrive simultaneously at a node. To resolve the conten- 
tion at this point, we add two additional constraints on the operation 
of the node. First, we require that start packets sent to a node from 
an arbiter be sent to all arbiters at the node, including the arbiter 
that first sent it. This serves as an acknowledgement packet for that 
arbiter. We also require that the order in which start packets from a 
node to an arbiter are processed, be the same for all arbiters at the 
node. In a practical system, this implies that the node arbitrarily 

serialize start packets that arrive at about the same time and deliver 
them in the Same order to all arbiters. 

We now describe the arbiters used by the internal nodes. 
These can be described as finite state machines with three major 
states, stable, in-burst and out-burst; in-burst is a transitory 
state, which the arbiter enters upon receiving a start packet from the 
link. The start packet is sent on to the node and when the node 
returns the packet as an acknowledgement, the arbiter goes to the 
stable state. Similarly, the arbiter enters out-burst upon receiving 
a start packet from the node. The packet is sent to the link and in 
the simplest case, when an acknowledgement is received from the 
far end of the link, the arbiter enters the stable state. 

The arbiters contain several supplementary variables. The 
variable current-trans identifies the terminal whose burst is 
currently active at the arbiter. The variable my-turn is used to 
resolve contention when two start packets cross on a link in oppo- 
site directions. The arbiters at opposite ends of each link, initialize 
these variables to complementary values to ensure consistent con- 
tention resolution. Each arbiter also has a variable pending, which 
counts the number of start packets that have been sent to linkport, 
but not acknowledged (either implicitly or explicitly). Finally, each 
arbiter has a packet ackp, which is just a packet whose type field is 
set to ack. 

The most subtle part of the algorithm is the part that deals 
with contention resolution across a link. The important thing here is 
that both arbiters recognize when start packets have crossed on the 
link (we call this a contention event). This can be tricky, since an 
arbiter may send several start packets before receiving an indication 
that any of the packets was received. The key to recognizing a con- 
tention event is some form of acknowledgement. It turns out that 
one need not acknowledge every start packet, only the ones that are 
not involved in contention events. A transition diagram for the 
arbiter is shown in Figure 3 and a program defining the detailed 
logic in Figure 4. The numbers labelling the guards in Figure 4 
correspond to the numbers labelling the arcs in Figure 3. 

We use a slightly different arbiter for the terminals. The ter- 
minal arbiter does not allow the terminal to start a burst if there is 
another burst already in progress. Since the terminal has only one 
incident link (and hence one arbiter), there is also no need to resolve 
contention among bursts arriving simultaneously at the node. Con- 
sequently the arbiter can be slightly simpler, having only one transi- 
tory state, out-burst. A transition diagram for the arbiter is given 
in Figure 5 and a program in Figure 6. We refer to the algorithm 
implemented by the two arbiters just described as Algorithm 3.1. 

We do not attempt to fully address the issue of correctness 
here, but a few remarks are in order. By a correct access arbitration 
algorithm, we mean one that satisfies properties P 1-P5. We note 
that property P1 is satisfied by Algorithm 3.1, since packets are 
never delayed by the arbiters. Property P 2  is satisfied since the 
nodes transmit only well-formed bursts and the arbiters propagate 
only packets whose source field matches the variable 
current-trans. Property P 3  is satisfied (with k = l ) ,  since only 
packets with source field equal to current-trans are propagated. 
Property P4 is satisfied because whenever a set of terminals con- 
tend for access to the channel, one is guaranteed to gain access. 
Property P5 is satisfied since the terminal arbiters prevent outgoing 
bursts from propagating while an incoming burst is being received. 

We close with a discussion of some of the basic assumptions 
made in this section and their implications for a practical realization 
of Algorithm 3.1. We first address the question of delays. We have 
assumed, for simplicity of description, that link delays are fixed and 
node delays are zero. Neither of these properties is essential for a 
practical algorithm. We do require that links process packets 
sequentially (that is, one packet cannot pass another on a link). We 
also require that all packets arriving at a node on a particular link 
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Figure 3. Transition Diagram for Internal Arbiter 

do linkport?p +relay@ ,linkport,nodeport) 
I nodeport?p +relay@ .nodeport,linkport); 

od; 

procedure relay(packet p , port from, port to) 
(1) ifp. t y p ~  { data,end) ~ p .  source=current-trans+ 

ro!p ; 
1 statestable ~ p .  typ=start rfrom=linkport+ 

current-trans :=p. source; nodeport!p ; 
linkport!ackp; state := in-burst; 

I statestable ~ p .  typ=start A from=nodeport+ 
current-trans :=p. source; linkport!p ; 
pending := 1; state := out-burst; 

statein-burst A p. typ=start rfrom=linkport+ 
current-trans := p.source ; nodeport!p ; 
linkport!ackp; 

statein-burst A p. typstart A 

p. source=current-trans A from=nodeport+ 
state :=stable; 

state=out-burst A p. typ-start A from=nodeport+ 
current-trans := p. source; linkport!p ; 
pending :=pending+l; 

state=out-burst A p. typ=start A from=linkport A 

pending > 1 4  
myturn := 

statmut-burst A p. typ=start A from=linkport A 

pending=l A myturn + 
myturn := false; state := stable; 

statmut-burst A p. typstart A from=linkport 
Apending=l A -, myturn + 
current-trans :=p. source; nodeport!p ; 

myturn ; pending :=pending-1; 

myturn-= true; state := in-burst; 

pending > 1 + 
pending :=pending-1; 

pending=l+ 
state := stable; 

1 statmut-burst ~ p .  typ=ack A from=linkport A 

I statmut-burst A p. typ=ack A from=linkport A 

fi; 
end; 

Figure 4. Program for Internal Arbiter of Algorithm 3.1 

and leaving on another, leave in the same sequence in which they 
arrived, and in the case of start packets, that every arbiter “see” 
start packets coming out of the node in the same sequence. This last 
property, can be implemented without difficulty. In a typical net- 
work, the node is implemented as a high speed packet switching 
fabric (see [6] for example). The start packets can be serialized by 
first sending them to a dedicated seriulizer port on the switch fabric, 
which is fed back and then broadcast to all ports in the channel. So 
long, as the total volume of start packets is not too large, this solu- 
tion can be effective. 

Figure 5. Transition Diagram for Terminal Arbiter 

do linkport?p +relay@ ,linkport,nodeport) 
1 nodeport?p +relay@ ,nodeport,linkport); 
O d  

procedure relay(packet p , portfrom, port to) 
if p. typ=data ~ p .  source=Current-trans+ 

to!p ; 
1 p. typ=end ~ p .  source=current-trans+ 

to!p ; current-trans=null; 
I state=stable ~ p .  typstart A from=linkport+ 

current-trans := p. source; nodeport!p ; 
linkport!ackp; 

I statsstable ~ p .  typ=start A from=nodeport A 

current-transnull + 
current-trans :=p. source; linkport!p ; 
pending := 1; state := out-burst; 

I state=out-burst ~ p .  typ=start A from=linkport A 

pending> 1 + 
myturn := 7 myturn ; pending := pending-1; 

1 statmut-burst ~ p .  typ=start A from=linkport A 

pending=l A myturn + 
myturn :=false; state := stable; 

I state=out-burst ~ p .  typstart A frondinkport A 

pending-1 A - myturn + 
current-trans :=p. source; nodeport!p ; 
myturn := true; state :=stable; 

pending> 1 + 
pending :=pending-1; 

pending=l+ 
state :=stable; 

1 stateaut-burst ~ p .  typ=ack A from=linkport A 

1 statmut-burst ~ p .  typ=ack rfrom=linkport A 

fi: 

Figure 6. Program for Terminal Arbiter 

We have also assumed that start, end and acknowledgement 
packets can be reliably transmitted. This is essential for correct 
operation and to maintain the synchronization of the state informa- 
tion at the opposite ends of each of the links. This reliance on per- 
fect transmission and synchronization makes the algorithm rather 
fragile. A practical version would have to incorporate additional 
mechanisms to allow detection of and recovery from synchroniza- 
tion loss. Such additions would probably preclude a simple 
hardware implementation. 

3.2. A Transparent Algorithm 
The algorithms considered up to now all incorporate explicit control 
packets to coordinate the access arbitration. As we have seen, this 
leads to a number of complications since the operation of these 
algorithms depends critically on reliabile transmission of control 
packets. In this section, we modify the algorithm of the previous 
section in three ways. First, we eliminate the use of explicit control 
packets and instead rely on contention among data packets. This 
provides a transparency that makes the algorithm simpler to use and 
eliminates (in part) the need for perfectly reliable transmission of 
control packets. The second change involves the method used to 
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Figure 7. Transition Diagram for Near End Arbiter 

do linkport?p -+relay@ ,linkport) 
nodeport?p -+relay@ ,nodeport); 
timeout +relay@ ,timeout); 

od; 

procedure relay(packet p , port from) 
(1) i f  stat-free A from=linkoort+ 

p.lno := I n 0  ; nodeport !p ; 
reset (timer); state := up; 

s t a t s f r e e  A from=nodeport+ 
linkport!p ; reset (timer); state := down 

s t a t e u p  A from=linkport-+ 
nodeport!p ; reset (timer >; 

s t a t s u p  A from=timeout -+ 
state := free; 

s t a t e u p  I from=nodeport r p h o  < lno + 
linkoort!o ; reset (timer >; state := down 

(6) I state-down from=ideport+ 
to!p ; reset (timer); 

(7) I s ta t edown A from=timeout + 
state := free; 

fi; 
end; 

Figure 8. Program for Near End Arbiter 

pick a winner, when two bursts contend across a link. The algo- 
rithm considered here, uses a fixed priority scheme that sacrifices 
fairness for the sake of simplicity. These changes make possible 
one final simplification, involving the arbitration method used to 
resolve contention at a node. 

The algorithm (called Algorithm 3.2) treats the channel as a 
directed tree with one particular node designated as root. All links 
then connect a parent node to a child node, with parents having 
priority. What this means is that if two nodes start to transmit at 
about the same time, the node whose packet first reaches the nearest 
common ancestor of the two nodes is given priority. Once a burst 
reaches the root of the connection, it is guaranteed to be successful, 
since the root is a nearest common ancestor of all the nodes. While 
this scheme favors nodes that are close to the root, it appears to 
allow higher throughput than the fair scheme and is much simpler to 
implement. In the following, we describe the single transmitter ver- 
sion, but in this case, the extension to multiple transmitters is 
straightforward. 

Two different types of arbiters are required for the algorithm. 
For every link, the arbiter nearcst the root gives priority to packets 
coming from the node and the arbiter furthest from the root gives 
priority to packets coming from the link. We refer to these two 
arbiters as neor end andfur end arbiters, respectively. 

The state diagram of a near end arbiter is given in Figure 7, 
and the corresponding program is in Figure 8. The arbiter has three 
states, free,  up  and down. When in the free state, there is no 
active burst, when in the up  state, there is an active burst coming 
from the link and when in the down state, there is an active burst 

Figure 9. Transition Diagram for Far End Arbiter 

procedure relay(packet p , portfrom) 
(1) i f  state-up I from=nodeport+ 

linkport!p 
(2) I s t a t s u p  A from=linkport-+ 

nodeport!p ; state := down; 
(3 )  I s ta t sdown rfrom=linkport+ 

p.lno := 0; nodeport!p ; 
(4) I state=down A from=timeout + 

state := up; 
fi; 

end; 

Figure 10. Program for Far End Arbiter 

coming from the node. When in the down state, packets received 
from the link are discarded. When in the up  state, packets received 
from the node can preempt the current burst and cause a transition 
to the down state if the burst comes from a link whose link number 
is smaller than the number of the arbiter’s link. The arbiter on the 
link connecting to the node’s parent (which is a far end arbiter) 
always puts a link number of 0 in its packets, allowing it to preempt 
bursts from other links. A simple timeout mechanism causes a tran- 
sition from either the up or down states back to the free state. The 
timer is reset whenever a packet is sent. The state diagram of a far 
end arbiter is given in Figure 9, and the corresponding program in 
Figure 10. In this case, there are just two states, up  and down. A 
packet received from the link always causes a transition from up to 
down. If the timeout expires, the link reverts to the up state. 

The algorithm provides the best performance if the root node 
is as close as possible to the geographical center of the connection. 
We close with a brief sketch of an efficient distributed algorithm for 
finding the center. Let U be a node with neighbors v 1, . . . , v d ,  
(d12). Let xi be the length of a longest path starting from U and 
passing through vi .  Let yi be the length of a longest path starting 
from from vi that does not pass through U. Let y * be the largest of 
the yi (for simplicity, assume it is unique), let x ;  and x ;  be the 
largest two of the xi and let v * be the neighbor on the path of length 
x ; .  We note that 2y*<x;+x; if and only if U is on the longest 
path (the diameter) of the tree, assuming all links have strictly posi- 
tive delay. Also, if U is on the diameter, x i  Ix; +6(u ,V *) if and 
only if U is a center node. Note that there may be two center nodes. 

Thus, we can identify the center nodes of the tree if each 
node can learn the values of the xi and yi . This however is easy to 
do, so long as each node knows the delay across each of its incident 
links. The algorithm is initiated by the terminal nodes, each of 
which simply sends a packet to its neighbor. The packet contains a 
field, which is used to carry a delay estimate and the terminals ini- 
tialize this field to zero. When an internal node U receives a packet 
from a neighbor vi ,  the delay value in the packet is equal to yi . The 
node computes xi by adding 6(u,vi) .  Once U has received mes- 
sages from d-1 of its neighbors, it sends a packet to the remaining 
neighbor, containing the largest yi value computed so far. Later, 
when it receives a packet from the last neighbor, it sends a packet to 
every other nieghbor v, containing the largest value in 
( y l ,  . . . . y d ) - ( y , ) .  The algorithm requires exactly 2(n-1) mes- 
sages to compute the xi and yi for all the nodes, where n is the 
number of nodes in the channel. By the remarks in the previous 
paragraph, once this is done, the center nodes can identify 
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themselves. An arbitrary tie-breaking rule can be used to pick a 
unique center node and for all other nodes U ,  the neighbor vi for 
which xi is maximum is on the path from U to the center. 

3.3. Mult iple  Transmitters and Priorities 
The next algorithm we consider offers a simple implementation 
supporting multiple transmitters, plus the option of prioritized 
access. The maximum number of simultaneous transmitters is k .  
We provide priorities for each burst by including a priority field in 
each start packet. Once a burst becomes active, it can be inter- 
rupted only by a higher priority burst. If two bursts of the same 
priority contend with one another, an arbitrary but fair decision is 
made to select the winner. 

We let x(b)  denote the priority of a burst b .  Priorities have 
non-negative integer values with smaller numbers corresponding to 
“higher priority.” We define a partial ordering on bursts, which we 
denote by the symbol b2 if 
7~(bl)<X(b2) or x(b1)--n(b2) and b l E a ( t )  and b 2 d a ( t ) .  We 
define a prioritized access arbitration algorithm by properties 
P 1-P4 given earlier together with one new property: 
P’s If no terminal transmits any packet after time t ,  then 

b d a ( t  +A) A b 1 b 2 implies b2 d a( t  +A). 
As indicated above, start packets now must have a priority 

field in addition to the source field that is part of every packet. In 
addition, we require a third field called rand to ensure fair conten- 
tion resolution; this field is filled with a randomly selected integer 
by the terminal arbiter when a start packet is transmitted from a 
node. 

We now describe an algorithm that implements prioritized 
access, which we refer to as Algorithm 3.3. The basic idea is to use 
the natural numeric ordering on the triples (prio,rand,source) to 
resolve contention in a consistent way. There are two arbiter types, 
internal arbiters at all the internal nodes and terminal arbiters at all 
the terminals. Each internal arbiter monitors the traffic passing 
through it and if more than k bursts attempt to pass through it at 
once, it will cease propagating the burst with the largest triple. 
Since the priority field is treated as most significant, high priority 
bursts are treated preferentially; the random field provides fair treat- 
ment of bursts at the same priority level and the source field elim- 
inates the possibility of ties, ensuring consistent contention resolu- 
tion at all arbiters. 

Each internal arbiter maintains a set B containing triples; one 
for every source that is currently authorized to transmit. Each triple 
includes the values (prio,rand,source) transmitted in the start packet 
initiating the burst. The arbiter monitors the bursts passing through 
it, updates the set B as necessary and discards packets from sources 
that are not currently authorized to transmit. A program implement- 
ing such an arbiter is given in Figure 11. In this program, * is used 
to indicate a “don’t care” field. Terminal arbiters are slightly dif- 
ferent, in that they must prevent a terminal from preempting another 
burst of the same priority. A program implementing a terminal 
arbiter appears in Figure 12. We again omit any discussion of 
correctness issues other than to note that in this case correctness 
means satisfaction of properties P ,-P4 and P ’5 .  

Algorithm 3.3 can be efficiently implemented in a practical 
multipoint communication network. The packet processors that 
implement the arbiters must maintain a copy of the set B for every 
channel passing through them. When a packet is received, the 
appropriate set must be retrieved from memory, used to make deci- 
sions and possibly updated, then written back to memory. The main 
hardware cost is for the memory, which amounts to roughly 5k to 
10k bytes per channel (where k is the number of simultaneous 
transmitters). 

; if b 1 and b2 are bursts, then b 1 

do  linkport?p +relay@ ,nodeport) 
I nodeport?p +relay@ ,linkport); 

od; 

procedure relay(packet p , port  to) 
if p .  t y p s t a r t  A IB <k -+ 

t o !p ;  B := B u(@.prio,p.rand,p.  source]; 

x := max b ; y := @. prio,p. rand,p. source); 

I p .  typ=data (*,*,p.source) E B + 

I p .  t p n d  A (*,*,p.source) E B + 
I p .  t y p s t a r t  A B I=k -+ 

fi; 

to!p ; 

to!p ; B := B -( (*,*,p. source)]; 

if y e  +B :=B u ( y  1-(x 1; to!p ; fi; 

end; 

Figure 11. Program For Internal Arbiter of Algorithm 3.3 

do  linkport?p +relay@ ,linkport ,nodeport) 
I nodeport?p +relay@ ,nodeport ,linkport); 

od; 

procedure relay(packet p , port  from, port  to) 
if p.typ=start A IB <k + 

t o !p ;  B := b u(@.pr io ,p .  randp. source]; 

x := max b ; y := @. pr iog .  rand,p. source); 

I p.typ=data A (*,*,p.source) E B + 
I p .  typ=end A (*,*,p.source) E B + 
I p .  typ=start B I=k from=linkport+ 

I p .  t y p s t a r t  A IB I=k A from=nodeport+ 

fi; 

to!p ; 

t o !p ;  B :=B-((*,*,p.source)]; 

if y -a +B := B u ( y  1-{x ] ; to!p ; fi; 

( x  ,*,*) := maxB ; 
if ygr io  (X +B := B u { y  1-{x  ] ; to!p ; fi; 

end: 

Figure 12. Program For Terminal Arbiter of Algorithm 3.3 

As with Algorithm 3.1, this algorithm requires reliable 
transmission of start and end packets. However, the consequences 
of packet loss are less severe; a lost start packet leads to a lost burst, 
a lost end packet leads to a temporary loss of a portion of the chan- 
nel bandwidth. We can reduce the probability of these events by 
simply transmitting several start and end packets, to avoid packet 
loss due to link errors, and giving control packets higher priority to 
avoid their loss due to buffer overflows. Another approach is to 
eliminate explicit control packets altogether. In this scheme, we 
include the prio and rand values in all data packets and use a 
timeout in place of an explicit end packet. The arbiters extend the 
stored records, to include the time that the most recent packet was 
received from that source. When a packet is handled, the arbiter 
first scans B ,  throwing out any entries that are too old. It then 
proceeds in the normal way to handle the burst. 

4. Conclusions 
In this paper, we have introduced the problem of access arbitration 
in tree-structured communication channels with long link delays. 
This is an interesting problem and one of some importance for com- 
munication networks supporting general multipoint communication. 
We have introduced two general approaches to solving the problem, 
and described five specific algorithms. We have omitted detailed 
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discussions of correctness and performance, as our primary purpose 
is to introduce the problem and survey several candidate solutions. 
We close with a few comments on the relative merits of these solu- 
tions. 

The token-based algorithms have a built-in latency associated 
with token circulation that limits their throughput. This is most 
problematical for traffic consisting of short bursts. The contention- 
based algorithms avoid this latency, but it’s not entirely clear if this 
translates into a real difference in throughput. 

All but Algorithm 3.1 can be implemented in a practical way. 
The critical dependence of Algorithm 3.1 on perfect transmission of 
control packets probably makes it unworkable in most practical set- 
tings. Algorithms 2.1, 3.2 and 3.3 admit simple hardware imple- 
mentations, while 2.2 is most reasonably implemented using a pro- 
grammable processor; while such an implementation is workable, it 
would be more costly and have limited throughput. There is a wide 
variance in the sensitivity of the various algorithms to the reliability 
of the underlying packet transmission. Algorithm 3.1 is the most 
delicate while 2.1 and 3.2 are the most robust, operating effectively 
even in the presence of fairly high packet loss rates. Algorithm 3.3, 
while not inherently robust can be made robust by transmission of 
multiple control packets or incorporation of control information in 
data packets along with introduction of timeouts. Finally, we note 
that of the contention-based algorithms, only 3.3 offers the full 
functionality of multiple transmitters, although 3.2 can be extended 
to accomodate this also. 

Based on this preliminary assesment, we conclude that Algo- 
rithms 2.1, 3.2 and 3.3 show the most promise and bear further 
study. There are several possible directions for future research. 
Perhaps the most important is to formulate a reasonable perfor- 
mance model to use in assessing the throughput and delay charac- 
tcristics of the token passing approach vs. the contention-based 
approach. In the case of token passing, one must consider alterna- 
tive token circulation strategies. In the case of contention-based 
algorithms, we need to distinguish different kinds of throughput; 
one that counts only bursts received by all terminals and another 
that gives “partial credit” to bursts received by some subset of the 
terminals. We note that in general, the most interesting perfor- 
mance questions arise in the context of short bursts. 
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