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Research Objectives

The Advanced Communications Systems Project is concerned with new com-
munication technologies that can support a wide range of different communication
applications in the context of of large public networks. Communication networks
in common use today have been tailored to specific applications and while they
perform their assigned functions well, they are difficult to adapt to new uses. There
currently are no general purpose networks, rather there are telephone networks,
low-speed data networks and cable television networks. As new communication
applications proliferate, it becomes clear that in the long term, a more flexible
communication infrastructure will be needed. The Integrated Services Digital Net-
work concept provides a first step in that direction. We are concerned with the
next generation of systems that will ultimately succeed ISDN.

The main focus of the effort in the ACS project is a particular switching tech-
nology we call broadcast packet switching. The key attributes of this technology
are (1) the ability to support connections of any data rate from a few bits per sec-
ond to over 100 Mb/s, (2) the ability to support flexible multi-point connections
suitable for entertainment video, LAN interconnection and voice/video teleconfer-
encing, (3) the ability to efficiently support bursty information sources, (4) the
ability to upgrade network performance incrementally as technology improves and
(5) the separation of information transport functions from application-dependent
functions so as to provide maximum flexibility for future services.
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1. Summary of Progress

This report covers work performed from September 1987 through August 1988.
This has been a productive year for us with substantial progress being made on
a number of different fronts. In particular, we have developed new ideas on the
design of practical switching systems that can support thousands of gigabit rate
transmission links. We have made a significant generalization of the classical theory
of nonblocking networks and have related it to the practical design of large scale
packet switching systems. We continue to make good progress on our prototyping
efforts with two new chip designs now complete and three others approaching
completion; in support of this effort we have developed several design tools that
represent significant contributions in their own right. We have studied a class
of algorithms for video coding that yield substantially better compression than
standard methods. And we have begun work on the problem of how to integrate
high speed communication networks into a heterogeneous environment. Details of
these and other efforts appear later in this report.

We continue to actively publish the results of our research. Papers have been
presented at several conferences and revised versions have appeared or are sched-
uled to appear in leading journals; several theses have been completed; one patent
has been awarded and an application for a patent on a hardware implementation
of a buffer management system has been filed. (See Figures 1.1,1.2 for details.)
Our work has generated a great deal of interest throughout the world, as evidenced
by the many speaking invitations that have been received during the past year.

We summarize our progress in the following paragraphs. More detailed accounts
of this work appear in later sections of the report.

Switch Architecture Studies

During the last year, we have been turning our attention to the architecture of
packet switching systems that can support transmission link speeds in excess of a

1
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Published Papers

“Fluid Flow Loading Analysis of Packet Switching Networks,” by Jonathan Turner.
Proceedings of the International Teletraffic Congress, June 1988. Also, submitted
to Computer Networks and ISDN Systems.

“Distributed Protocols for Access Arbitration in Tree Structured Communication
Channels,” by Riccardo Melen and Jonathan Turner. Proceedings of ICC 88, June
1988. Also, submitted to IEEE Trensactions on Communications.

“Design of a Broadcast Packet Switching Network,” by Jonathan S. Turner, IEEFE
Transactions on Communications, June 1988,

“Broadcast Packet Switching Network,” by Jonathan S. Turner, U.S. Patent
#4,724,907, March 1988.

Invited Lectures

Bell Northern Research, Research Triangle Park, North Carolina (8/88)
Timeplex, Inc., Woodcliff Lake, NJ (8/88)

NEC, Tokyo, Japan (7/88)

NTT, Tokyo, Japan (7/88)

CSELT, Turin, Italy (5/88)

Italtel, Milan, Italy (5/88)

Digital Equipment Corporation, Littleton, M A (3/88)

University of California, Davis (2/88)

Tutorial on “Integrated Networks for Diverse Applications,” at Globecom 88 and UCLA
Extension Short Course (2/88).

Program committee for Computer Networking Symposium, April 1988. Guest editor for
special issue of IFEE Journal on Selected Areas in Communications on broadband packet
communications

Filed patent application on buffer management system for multipoint packet networks
(3/88).
Figure 1.1: Publications and Related Activities

gigabit per second and which scale economically to very large configurations (thou-
sands or tens of thousands of transmission links). We have concentrated on systems
using CMOS integrated circuit technology with very wide internal data paths using
a bit-sliced structure. We have quantified the complexity advantages of bit-sliced
structures, developed practical solutions to the associated control problems, and
developed a fairly detailed paper design of a system that can support up to 32
thousand fiber optic links operating at speeds of 1.6 Gb/s using current CMOS
technology with 100 Mb/s clock speeds and 32 bit wide data paths. It appears
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“Design of Another visi Packet Switch Element,” by Einir Valdimarsson, WUCS-88-23.

“Improved Search Algorithms for Video Codecs,” by Shabbir Khakoo, Washington Uni-
versity Electrical Engineering Department, MS thesis, June 1988.

“A Circuit Generator for Synchronous Streams Processors,” by George Robbert, Wash-
ington University Computer Science Department, MS thesis, May 1988,

“Worst-case Performance of Rayward-Smith’s Steiner Tree Heuristic,” by Makoto Imase
and Bernard Waxman, WUCS-88-13.

“Towards a Framework for High Speed Communication in a Heterogeneous Networking
Environment,” by Guru Parulkar and Jonathan Turner, WUCS-88-7.

“Buffer Management System,” by Jonathan Turner, WUCS-88-6.
“Probable Performance of Steiner Tree Algorithms,” by Bernard Waxman, WUCS-88-4.

“Nonblocking Multirate Networks,” by Riccardo Melen and Jonathan Turner, WUCS-
88-2,

“Congestion Control in Fast Packet Networks,” by Shahid Akhtar, Washington Univer-
sity Electrical Engineering Department, MS thesis, November 1987.

Figure 1.2: Theses and Technical Reports

likely that with near term technology improvements, this approach can be extended
to handle speeds of 5-10 Gb/s. The details of this work appear in section 2.

Recently, we have also been exploring the problem of high speed switching
systems for connectionless networks. While most researchers in the telecommuni-
cations community believe a connection-oriented approach is the most appropriate
for high speed packet networks, there has not yet been a careful evaluation of
the relative merits of connectionless and connection-oriented operation in a high
speed networking environment. We are attempting to perform such an evaluation
in order to give a clearer picture of the trade-offs involved. We have found that
high speed connectionless networks are indeed possible, although they appear to
be more costly to implement. The costs appear primarily in the packet processors
that interface between the switch fabric and the transmission links. Connectionless
networks require large buffers with priorities, link level and cross-switch flow con-
trol, plus content-addressable addressing tables. We have quantified the associated
costs and estimate that a packet processor for a connectionless network might re-
quire about 20 chips to implement it (most being memory), as opposed to perhaps
4-5 for a connection-oriented network with comparable performance. While this
is a clear advantage for connection-oriented networks, in some environments that
cost may be less important than other factors.
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Nonblocking Multirate Networks

In the past year, we have generalized the classical theory of nonblocking networks
to cover switching systems in which a switch’s internal data paths are shared among
different connections. This theory is applicable both to multirate circuit switching
systems and packet switching fabrics in which all packets within a connection follow
the same path. We have derived conditions under which the Clos, Cantor and
Benes networks are strictly or rearrangeably nonblocking. In particular, we have
shown that for multirate traffic, an ¢ stage Bene$ network is strictly nonblocking
if the internal data paths are ¢ times faster than the external transmission links.
This is an important practical result since with 32 port switch elements we can
construct 1024 port switching fabrics in three stages. Given a 3:1 speed advantage,
such a network becomes strictly nonblocking, which is potentially important in an
environment where the distribution of connection bandwidths may vary widely.
Even for smaller speed advantages, we expect excellent blocking behavior and are
now beginning to study the blocking characteristics of such switches.

Recently, we have extended our work on nonblocking networks to networks
supporting multipoint communication. We have shown that classical results due
to Pippenger and Thompson can be extended to the multirate environment. We
have also shown that a pair of 7 stage Bened networks placed back-to-back forms
a wide-sense nonblocking network for multipoint connections if we have a speed
advantage of 7. This configuration, together with the routing algorithm used to
obtain nonblocking operation are both novel and we plan to recommend an appro-
priate patent filing.

Prototype Switch Design

Work on a laboratory prototype of our switching system has been progressing
well. Four integrated circuits implementing preliminary versions of the packet
switch element and broadcast translation circuits have been received back from
fabrication and have been tested. While we have had mixed results with these
chips, we have learned a great deal from this process and have incorporated the
lessons learned in the current versions, which have eight bit wide data paths and
can support substantially higher clock speeds. The eight bit version of the packet
switch element was submitted for fabrication at the end of July and is expected
back from fabrication at the end of September. In addition to the wider data paths,
this design incorporates architectural modifications in order to achieve higher clock
speeds. We have also completed and fully simulated the design of a general purpose
packet buffer, which will be used within the packet processor circuit. This chip will
be submitted for fabrication in the near future. Three other chips are now in the
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process of being designed. Two chips implementing parts of the packet processor
and one implementing the broadcast translation chip are now in fabrication. These
are being designed with the aid of a circuit generator written for that purpose. This
is making the design of these chips much more rapid and less error prone than it
would otherwise be,

Design Tools

In support of our prototyping efforts we have developed several supporting design
tools. The most ambitious is a circuit generation program that can be used to
quickly layout a large class of common circuits required within the packet proces-
sor, broadcast translation circuit and other common subsystems. This program
allows the user to specify a component of a system in a functional notation similar
to a conventional programming language. It then translates this specification into
a circuit satisfying the specification. This program has been written by George
Robbert as part of his masters thesis research [80] and is now being applied to de-
sign of several of the major components within the packet processor and broadcast
translation circuit.

We have also developed tools for generating packet buffers and lookup tables
of different sizes and configurations. These tools will also allow us to more rapidly
implement different components of our prototype system. Another tool that we
are using extensively is a program to generate control and timing circuits from a
high level specification. The circuits generate timing signals that can be qualified
by a set of control inputs. This program was written originally for use within
the circuit generator mentioned above but has been proven to be more generally
useful and is now being used within the packet switch element and packet buffer
chips. One of the more time-consuming parts of designing integrated circuits is
generating the test vectors needed for logic simulation. We have developed an
approach to generating these test vectors that allows us to generate both the
input test vectors and expected output vectors using a special-purpose test vector
generation program. We have developed such programs for both the packet switch
element and packet buffers and have found them extremely helpful, allowing us to
more thoroughly test these designs than we could have by manual methods.

Connection Management

Connection management refers to the collection of algorithms used to create and
maintain multipoint connections in a broadcast packet network. A multipoint
connection is intended to be a flexible mechanism that can support a wide variety
of different applications. In our last progress report, we described our approach
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for specifying general multipoint connections, an architecture for a connection
management software system and a set of protocols to implement that architecture.

We have completed development of an initial implementation of this connec-
tion management system in the form of a software simulation that allows us to
configure an arbitrary network, then set up and modify multipoint connections in
that network. Our implementation of multipoint connections inciudes a general
transaction mechanism for sequencing concurrent changes to a connection. The
software was implemented first on a VAX 11/750 and has since been ported to a
Sun workstation environment; in this new context, we are developing a graphical
user interface to allow simpler specification of network configurations as well as
better observation and control of connections in progress. We expect this graphi-
cal interface to form the basis of some graphical network management tools that
we hope to develop in the coming year. The simulation has proved very useful
in testing out our ideas on multipoint connection management protocols. Based
on experience obtained to date, we are now refining these protocols to make them
simpler and more consistent at both the network access level and the internal net-
work level. In the coming year, we will implement these refinements and add the
lower level software required to control the protoype system under development.

Multipoint Routing

The objective of the routing problem is to determine a set of network resources (pri-
marily trunk bandwidth) sufficient to support communication among a specified
set of users. Networks supporting multipoint communication channels of arbitrary
bandwidth raise a variety of new issues for routing algorithms. We have primar-
ily studied the formulation of the routing problem in which we seek to identify a
shortest subtree within the network that contains the endpoints to be joined by
a given connection and has sufficient bandwidth for the connection [102]. This
formulation leads to a Steiner tree problem, which is known to be NP-complete.

We have experimentally evaluated several approximation algorithms for the
Steiner tree problem. In the previous report, we described results for the so-called
minimum-spanning tree heuristic (MST) and a dynamic greedy algorithm. In the
last year, we have also evaluated an algorithm proposed by Rayward-Smith; we
have recently completed an analysis of this algorithm’s worst-case performance and
shown that it is no better than that of MST [42]. On the other hand, our analy-
sis has suggested a variation on Rayward-Smith that we expect may have better
worst-case performance; also, its average case performance (based on exerimental
evaluation) is somewhat better than MST, although both are very good. We have
also evaluated a weighted version of the greedy algorithm for the dynamic version
of the routing problem and have found that for appropriate choice of the weights,
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this algorithm gives better average performance than the simple greedy algorithm;
more significantly, the weighted algorithm is less subject to pathological behavior
than the simple one.

We have recently begun work on a simulation environment that will permit
us to evaluate our algorithms under more realistic conditions. In particular, this
environment will allow us to simulate a network involving multiple connections
and in which the routing algorithms are fully distributed. We expect to have
performance results based on these simulations in time for the spring progress
review.

Packet Video

Packetized transport of video signals raises a variety of important issues that we
have been exploring. One major effect of packet transport on video coding is to
eliminate the constraint of a constant bandwidth channel that currently drives
most work in video coding. A variety of techniques including transform coding,
motion compensation, differential coding and adaptive quantization are currently
used to reduce the required bandwidth for video signals. Existing systems use
buffering and variable rate coding, with the objective of achieving minimum image
distortion for a given, fixed channel bandwidth. In the context of packet transport,
we can exchange the objective function we seek to optimize with the constraint.
That is, we code to achieve minimum bandwidth subject to a given constraint
on distortion. This approach allows the bandwidth to vary across a wide range,
achieving low average bandwidths and high picture quality.

Packetized transport also raises the issue of picture quality in the presence of
packet loss. Common video coding methods rely heavily on state information that
can become inconsistent when data is lost. The impact of lost packets can be
reduced by interpolation schemes, in which a given block of information is split
across multiple packets, allowing partial recovery of lost information. We expect
that the use of such methods in combination with low rate transmission of complete
state information can maintain high picture quality in the face of substantial packet
loss rates and we are studying such methods to assess their potential.

Historically, video coding methods have been used primarily to produce mod-
erate quality video for conference applications. With high speed packet networks
it may also be advantageous to apply video coding methods to very high resolu-
tion signals; the objective becomes not bandwidth reduction but higher resolution.
In the last year, we have studied hybrid coding algorithms employing transform
coding, motion compensation and adaptive quantization. We have discovered that
the commonly used search algorithms for motion compensation perform poorly in
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the presence of moderate to high motion. While they work adequately in video
conferencing situations (which typically involve very little motion), they do poorly
in more general contexts. We have developed a new class of signature-based search
algorithms, which compute a concise signature for each position in the search space
and match the current sub-block against each signature. We have evaluated one
set of algorithms in this class and have found it increases the effective compression
by a factor of three or four during rapid motion [50].

High Speed Internetworking

In our earlier work, we have concentrated on high speed networking in the con-
text of a homogeneous environment. This is also typical of the approach taken
by other groups working on high speed communication systems, but is in some
ways unrealistic as it fails to explicitly take into account the diversity of existing
and future networks, and the resulting need for inter-operation among separately
administered and/or technologically dissimilar networks. In the last six months we
have begun work on a framework for allowing diverse networks to inter-operate,
while supporting both very high speed applications and multipoint communica-
tion [68]. This framework follows the general approach to interworking adopted
in the ARPA internet protocols, but extends it in several respects. First it adds a
connection-oriented transport service at the internet level, that can support ap-
plications with demanding performance requirements. Second it includes a more
general addressing scheme, to allow interworking among diverse subnets. Third,
it provides a framework for parametric description of subnet capabilities and con-
nection requirements, allowing the routing of connections through subnets with
appropriate capabilities in an application-independent fashion.

A connection-oriented transport service is important for several reasons. Per-
haps the most obvious is performance. Connection-oriented systems separate the
more complex control operations from data transfer, allowing simple and fast hard-
ware implementations of the data transfer. Connection-oriented networks are also
attractive because they allow the network to make explicit resource allocation de-
cisions when connections are established, and this in turn makes it possible to
offer far more predictable performance than in connectionless networks. Finally,
connection-oriented networks offer more generally useful methods of multipoint
communication than are possible in truly connectionless networks.

In our work we envision interoperation among a much wider class of networks
than envisioned by the current internet model. In particular, we would like to
support inter-operation between high speed packet networks, the current ARPA in-
ternet, X.25 networks and the public telephone network. Addressing is a key issue
in allowing this level of diversity. We have proposed an addressing scheme that
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would accommodate such diversity without requiring that the individual subnet-
works abandon their native addressing mechanisms.

Given the variety of capabilities of the subnetworks included in an extended
internet, we feel it is essential that the internet protocol include mechanisms for
describing the capabilities of subnetworks, so that routing decisions can be guided
by this information. For example, when selecting a route for a connection requiring
a bandwidth of 1 Mb/s it is essential that the route not traverse subnetworks in-
capable of supporting that bandwidth. Similarly connections requiring low packet
loss rates should not be routed through subnets that lose packets frequently.

Administrivia

In the past year, our research team has expanded with the addition of two new
faculty members. We now have three faculty members involved in the project, one
full-time staff person, one visiting research associate, ten graduate students and
two part-time undergraduate students. Guru Parulkar joined the Computer Sci-
ence Department in September 1987, after completing his PhD at the University
of Delaware. Dr. Parulkar’s thesis research focussed on the design and analy-
sis of highly reliable local area networks based on flooding protocols. He is now
concentrating on the problem internetworking of high speed packet networks. An-
dreas Bovopoulos is our most recent new faculty member, who has joined us from
Columbia University where he studied the performance of flow control and routing
protocols in networks. Riccardo Melen who was here as a visiting researcher in 1987
has returned to CSELT. His year here was a very productive one; he co-authored
two papers with Dr. Turner [59,60] and co-invented a novel multipoint switching
fabric. In March, Dr. Makoto Imase of NTT joined us for a one year visit. He has
begun working with Buddy Waxman on the multipoint routing problem and their
collaboration has already resulted in the solution of an important open problem
in this area; a paper describing this work has been submitted for publication.

Among the students participating in the project, several changes have taken
place. Four students have completed masters degrees. Shahid Akhtar graduated
last fall and is now working at Bell Northern Research, in Research Triangle Park,
NC, George Robbert graduated in May and is now with Hewlett-Packard in Fort
Collins, CO, Shabbir Khakoo graduated in June and is working for AT&T Infor-
mation Systems in Middletown, NJ and Mark Hunter who also graduated in June
is working for McDonnell Douglas in St. Louis. All four of these students made
strong contributions to the project and we wish them success in their future en-
deavors. We have several students who have joined the project in the past year.
Tony Mazraani joined the project in January and has been working initially on
several projects related to our prototype development effort. Gaurav Garg and
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Name Degree (exp. grad.) Research Area

Neil Barrett MS (5/89) memory use in fast packet switching
systems

Einir Valdimarsson MS (5/89) blocking probability in fast packet
networks

Bernard Waxman DSc (5/89) multipoint routing

Victor Griswold DSc (12/89) distributed program debugging

Tony Mazraani MS (12/89) communication circuit design

James Sterbenz DSc (12/89) interfacing computers to high speed
networks

Akira Arutaki DSc (5/90) switching architectures

Haifeng Bi MS (5/90) communication circuit design

Gaurav Garg MS (5/90) communication circuit design

Michael Gaddis DSc (5/91) connection management

Figure 1.3: Current Graduate Students

Name Degree Date Dept. Thesis Title

Shabbir Khakoo MS  8/88 EE Improved Search Algorithms for Video
Codecs

Mark Hunter MS 8/88 CS

George Robbert MS 5/88 CS A Circuit Generator for Synchronous
Streams Processors

Shahid Akhtar MS 1/88 [EE Congestion Control in Fast Packet
Networks

Rick Bubenik MS 8/85 CS  Performance of a Broadcast Packet Switch

Figure 1.4: Graduates

Haifeng Bi joined the project this summer and have also been involved in the
prototype efforts. Mike Gaddis has just joined the project this fall and will proba-
bly be working in the area of connection management and internetwork protocols.
We also have two part-time undergraduate students working on the project; Scott
Johnson started last fall and has designed several graphics programs and has been
assisting with some of the prototype design. Anne Reynolds started this summer
and has been working on integrated circuit testing, among other things.

Our funding picture is fairly healthy. Bell Northern Research joined the project
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in earlier this year, becoming our fourth industrial sponsor. Our support from the
National Science Foundation has remained stable, but we will have to apply for
new NSF funding this fall, as our current grant expires in June of next year. In
addition to the direct grant support, NSF provides access to MOSIS, their silicon
fabrication service which we are using heavily in our prototyping effort.

For administrative purposes, the ACS project operates within the Computer
and Communications Research Center directed by Professor Mark Franklin. The
Center has a central office suite housing professors Franklin and Turner, one tech-
nical staff person, plus seven graduate students, on the third floor of Bryan Hall,
across from our main laboratory facility. This laboratory houses most of our com-
puters, and a cluster of terminals and workstations for graduate student use and
also serves as an informal meeting room. We also have additional office and lab-
oratory space on the fifth floor of Bryan. Seven students and two additional staff
members are located in this area. While our space situation is adequate, it is some-
what cramped and is likely to remain so for the next 18 months, while construction
of a new 50,000 square foot research building is underway. When that building
is completed, it will mean substantial new space for the Computer Science and
Electrical Engineering Departments. We expect that at that point, we will move
into the fourth floor of Bryan Hall, consolidating our group in one area and giving
us additional space to work with.

The Center’s base of equipment includes a VAX 750, a MicroVax II/GPX and
a Sun workstation environment including a 3/280 file server, a 3/150 which will
interface to our prototype switching system, and six 3/50 diskless workstations.
In the last year a Sun 3/60 and a Sun 3/160 workstation have been added to
that configuration. The 3/60 has supported our integrated circuit design efforts
and the 3/160 will be used as the connection processor for our prototype switch.
We have also doubled the disk storage on our file server to over one gigabyte, in
response to the demands imposed by our VLSI design activities, The Center has also
acquired a 64 processor NCUBE parallel computer, which Professor Franklin will be
using to support his research in the area of design automation. We also anticipate
its possible use in our project. In addition we have about fifteen conventional
terminals, a PC/AT, another VLSI design station, several printers, and assorted lab
equipment including a Tektronix logic analyzer and IC tester.

We have been generally successful in expanding the Center’s space and facilities
to meet our needs. As we are not planning substantial additional growth in the
immediate future, we feel reasonably comfortable with the current situation. On
the other hand, space shortages may develop in the next year as the Computer
Science and Electrical Engineering departments continue to expand their faculties.
While the construction of the new building should provide ample space in the
longer term, there will be an intermediate period of limited space that will have
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to be managed carefully.
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The architecture of high speed packet switching fabrics is of course central to
the work of this project. While we are concentrating our efforts on a particular
design [93], we continue to evaluate alternatives, in order to identify possible im-
provements. In the past year, we have begun an examination of systems that can
support gigabit rate transmission using a bit-sliced internal architecture. Such
systems represent a substantial improvement in performance and economy of im-
plementation over current designs. We have also begun studies of global memory
organization in large switching systems, queueing and blocking behavior in such
systems and a study of switch design options for connectionless packet networks.
Finally, we have extended an earlier simulation program used to assess our current
design, by providing a graphical display that shows the status of the simulated
network and provides interactive control of traffic sources and monitoring.

2.1. Bit-Sliced Switch Fabrics

Packet switching fabrics employing parallel data paths can be organized in a couple
different ways. One possibility is the so-called word-serial approach, in which all
the bits in a given data path pass through the same physical components. Another
is the bit-sliced approach, in which the components making up the switch fabric
are “sliced” so that each bit of the data path passes through a different set of
components. An example illustrating these two approaches is shown in Figure 2.1.
In the figure on the left, each box corresponds to a single integrated circuit, as do
the rectangles on the right. Notice that each of these structures implements a 16

13
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Figure 2.1: Comparison of Word-Serial and Bit-Sliced Organizations
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Figure 2.2: Complexity of Word-Serial and Bit-Sliced Benes Networks

port switching fabric with 8 bit wide data paths and that the integrated circuits
in both cases require 32 signal leads. However, the word-serial structure requires
32 chips while the bit-sliced structure requires just eight. For large systems, this
advantage of bit-sliced structures becomes even more dramatic. Figure 2.2 plots the
chip count per port for Benes networks with several choices of the data path width.
N is the number of ports the switch fabric has, m is the data path width, ws stands
for word-serial and bs for bit-sliced. Notice that for the bit-sliced organization, we
can achieve data path widths of 32 at a cost of about five chips per port for switches
with between 2,048 and 32,768 ports.

Of course, on the other side, the word-serial organization is somewhat simpler
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Figure 2.3: Bit-Sliced Switch Element

to control. In the bit-sliced organization, each slice must make the same control
decisions for the packets it receives. This can be done either by replicating the
control information and sending it to each slice, or by having one slice decode the
control information, make the appropriate decisions and communicate the results
to the other slices. We examine the latter alternative and describe a practical
design of a packet switching element that implements it.

Figure 2.3 illustrates a design of a bit-sliced switch element with % input and
output ports and supporting m bit wide data paths. Typical values for k might
be 16 or 32. Values for m might range from 8 to 64. Packets enter on one of the
k upstream data lines at left, and the m bits of each packet are distributed across
m separate data slices (DS). The packets exit from the switch element on the
dounstream data lines at the right. The switch element contains sufficient internal
buffering to store several packets for each port and implements a simple hardware
flow control mechanism to prevent packets from overflowing these buffers. We will
describe three versions of the data slice; one with the buffering on the input side,
another with the buffering on the output side and a third with shared buffering.
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Figure 2.4: Data Slice with Input Buffering

The control slice shown at the bottom of the figure contains the circuitry used
to control the operation of the switch element. It receives a set of downstream grant
signals from the downstream neighbors and generates a corresponding set of up-
stream grant signals which are sent to the upstream neighbors. In general, a switch
element asserts an upstream grant signal ug; if it is prepared to receive a packet on
the upstream data lines ud;. The packets flowing through the switch element are
organized so that all the control information (in particular, the addressing infor-
mation) passes through the first data slice DSg. This allows the control circuit to
easily monitor the control information for all packets entering the data slice. Using
this information, together with the downstream grants and the internal status of
the switch elements, it makes control decisions and broadcasts those decisions to
the data slices. In addition, the first bit of the packet in every data slice is a control
bit indicating the presence or absence of a packet.

Figure 2.4 shows the organization of a chip implementing a data slice in which
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the buffering is placed on the input side. The chip contains one Input Circuit (I1C)
for each input. Each IC contains several buffers, each able to store a complete
bit slice of a packet. The buffers can be implemented as dynamic shift registers
with a feedback path used to recirculate a packet if it is unable to proceed during
a given cycle. The control circuit within the 1C, keeps track of which buffers
contain packets, detects the arrival of new packets and steers them to the first
empty buffer. During one operational cycle, the control slice sends each IC one
bit of control information for each buffer slot that the IC controls. If that bit
is high, any stored packet in the buffer is recirculated, if it is low, any stored
packet is transmitted from the buffer and the buffer becomes available to receive a
new packet. The data slice also contains a crossbar matrix which provides access
to the downstream data lines. During any given cycle, one crosspoint from each
column of the crossbar is closed. The selected crosspoint is determined by a control
register whose contents is determined by the control slice. Notice that the crossbar
organization allows a packet to be sent to multiple outputs during a given cycle,
permitting multipoint connections. Also notice that a packet that must be sent to
several outputs need not be sent to all outputs simultaneously. If not all outputs
are immediately available, it can be sent to the available outputs and recirculated
in the input buffer until the remaining outputs become available.

The control slice is shown in Figure 2.5. This chip does not include any data
storage; it merely monitors the bit slice containing the control information, makes
the appropriate decisions and transmits these decisions to each of the data slices.
The chip has an Input Control Circuit (icc) for each of the k inputs. It also
has a set of k downstream grants and k upstream grants. A downstream grant
is asserted by one of a switch element’s downstream neighbors if the neighbor is
able to receive another packet. Similarly, the switch element asserts its upstream
grant for each input that is able to receive another packet. The bit slice containing
control information enters the chip on the upstream data leads. Each Icc shifts
in the control information, latches it and decodes it. It is then stored in one of
several control registers corresponding to the data buffers in which the packet data
is stored. The control registers (CTL) independently contend for access to one or
more outputs by sending their requests to an arbitration circuit.

The arbitration circuit consists of an array of arbitration elements (AE) together
with an arbitration tree (AT) for each output. During a given operation cycle, a
control register transmits to one row of arbitration elements, the range of outputs
it requires access to; for example, it might request outputs 5-14. Each arbitration
element in the row decodes the requested range and determines if its associated
output has been selected. If so, it contends for the output by sending a request
to the arbitration tree. Each arbitration tree is structured as a simple binary
tree which accepts requests from the arbitration elements in one column of the
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Figure 2.5: Control Slice

arbitration circuit and selects one of the contending AEs. If the downstream grant
for that output indicates that the downstream neighbor is ready to receive a packet,
the winner of the contention receives an acknowledgement indicating that it can
transmit its packet. The output control circuits (OCC) at the root of the arbitration
trees send the identities of the winning contenders to the data slices, where they are
used to control the output crossbar. Each arbitration tree in fact makes its decision
based on a priority sent to it from the arbitration elements. The high order field
of the priority is the number of operation cycles that the contending packet has
been waiting; this ensures that packets following the same path through the switch
are served in first-in-first-out order and that no packet is kept waiting too long.
It’s of course also possible to implement more sophisticated priority schemes using
the same basic mechanism. If a packet is to be transmitted to multiple outputs
but does not receive access to all the required outputs on a particular cycle, the
arbitration elements inform the control registers of that fact, and re-contend on
the next cycle, continuing in this fashion until the packet has been transmitted
to all required outputs. When the control circuit is informed that the packet has
been transmitted to all outputs, it becomes available to receive a new packet.

Let Cy4(k, m) be the complexity of a data slice with k inputs and designed for
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an m bit wide network, and let C.(k) be the complexity of the control slice. Then,

Ca(k,m) = kLBz,/m + k*z, (data slice)
C.(k,m) = kz3 + k*Bz, (control slice)

where L is the total packet length in bits, B is the number of buffer slots per port,
7, is the cost per bit of memory, z, is the cost per crosspoint, z3 is the cost for one
IC plus one OC and z,4 is the cost for one AE plus one AT node. Based on preliminary
designs, we estimate x, at eight transistors, z; at 84 log,(1+ Bk) transistors, z3 at
1000 transistors and x4 at 200 transistors. If weselect L = 4096, B = 3 we have for
example, Cy(32,32) ~ 114,000 transistors and C.(32,32) ~ 646,000 transistors.
These estimates show that while the data slice is clearly feasible using 2 micron
CMOS technology, the control slice is at best marginal for 2 micron technology. It
could however be implemented in a 1 micron technology with no problem.

Another important parameter of the design is the amount of control information
that must be sent from the control slice to the data slices during each packet cycle.
If we let I(k, B) denote the amount of information required for a switch element
with k& ports and B buffers per port then

I(k, B) = kB + k[log,(1 + kB)]

The time needed to transmit the control information to the data slices puts a
lower bound on the length of a packet cycle. If » pins are used to carry the control
information, then the packet length should be at least mI(k, B)/r. For example,
if k= m =32, B=3and r = 8, we require a packet with at least 1280 bits.
A more realistic packet length is probably about twice this. For 64 bit wide data
paths, the required packet length would of course double.

Figure 2.6 shows an alternative design for a data slice in which most of the
buffering is placed on the output side. A single slot buffer is required for each
input to prevent packets from being lost. The control information for the 1cs, 0Cs
and crossbars is received from the control slice. The circuit complexity of the data.
slice is approximately equal to that for the input buffering case. The control slice
is perhaps a little more complicated as it requires a more sophisticated output
arbitration tree. The amount of information required to control the data slice is
given by

2k + k(B — 1)[log,(k + 1)]

In most cases, this is substantially higher than that required for the input buffered
data sliceed data slice.

Figure 2.7 shows a third design in which the buffering is shared equally among
the inputs and outputs. In this design, the packets enter at the top left, pass
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Figure 2.6: Data Slice with Output Buffering

through an input crossbar to a set of buffers, before being sent through an output
crossbar to the downstream data lines. The buffers and output crossbar are con-
trolled in exactly the same way as for input buffering. The input crossbar requires
no external control information. In this design, the complexity of the data slice is

approximately
kLBz;/m + k*(z3 + xs5)

where x5 is the complexity of an input crosspoint. If we estimate this at 50 tran-
sistors, the complexity of a switch element with & = m = 32, L = 4096 and B = 3
is approximately 165,000 transistors. The control slice is almost identical to the
input buffering case, as is the amount of information required to control the data
slice.

Based on this design we have estimated that a packet switching system com-
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Figure 2.7: Data Slice with Shared Buffering

prising a Bene$ network with 32 bit wide data paths and supporting 4096 fiber
optic data links would require about twelve standard equipment cabinets. Another
four cabinets would be required for the link interfaces and packet processors. If
such a system was operated with a clock rate of 100 Mb/s (an achievable rate even
with CMOS), its internal data paths would operate at an effective rate of 3.2 Gb/s,
which is sufficient to support external link speeds of 1.6 Gb/s. This represents
an order of magnitude improvement over the speeds being achieved by current
research prototypes. While there are limits to how far such techniques can go, it
appears likely that at least another factor of four is possible through a combination
of higher clock rates and greater parallelism.

2.2. Switches for Connectionless Networks

Most work on high speed packet switching has centered on systems that trans-
fer data using logical connections rather than datagrams. There are several good
reasons to prefer connection-oriented networks. First and most important, in a
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connection-oriented network it is possible to allocate resources to individual ap-
plications, allowing the network to provide a predictable performance level to an
application even when the network is heavily loaded. Because the network has
knowledge of the resource requirements of user applications, it can block new traf-
fic when it lacks the resources to support it. In a connectionless network, when the
network becomes overloaded all users experience degraded performance. A second
advantage of connection-oriented networks is that they are simpler to implement,
requiring only the simplest routing algorithms, no link level flow control and rela-
tively modest buffer requirements. Connection-oriented networks also permit the
implementation of general multipoint communication, something that is possible
in connectionless networks only by introducing the idea of a multicast address,
which is in fact nothing more or less than a connection by another name.

On the other hand, connectionless networks have their attractive points as well.
First, because there is no need to establish a connection, the use of connectionless
networks is much simpler. In particular, for many applications, determination of
resource requirements in advance is difficult or impossible. Since connectionless
networks don’t require such a determination they are easier to use. Also, the
design of network equipment is simplified somewhat by the elimination of con-
nection management. Second, connectionless networks are inherently more robust
than connection-oriented networks; because they lack the state information that
defines connections, they can recover from failures of switches and transmission
links without perceptible impact on users. Third, connectionless networks can dis-
tribute traffic more evenly, since packets are individually routed; of course this has
the drawback that packets can be delivered in the wrong order.

In this section, we examine the possibility of implementing switching systems
for high speed connectionless networks. Our objective is to get an understanding
of the complexity of such systems so that we can make comparisons between them
and systems for connection-oriented networks. We conclude that while high speed
switching is connectionless networks is more complex in some respects and offers
less predictable performance when heavily loaded, it is possible to build systems
that match the raw speed of connection-oriented networks. Such systems may
merit consideration in environments where the ease of use and inherent reliability
of connectionless networks offset their drawbacks.

We start with the issue of buffering and flow control in connectionless networks.
Because the flow of traffic in connectionless networks is unpredictable, flow control
appears to be required to prevent excessive loss of packets during local overloads
and to help steer traffic around congested areas. Flow control may be required
both across links and between the input and output ports of switching systems.

Flow control across transmission links can be readily implemented in hardware
so long as it is not coupled to error recovery as in conventional window-based
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protocols. Figure 2.8 illustrates the basic idea. At the receiving end of the link is
a buffer whose level is monitored at all times. When the level is above a threshold,
a flow control bit is set in all packets sent in the reverse direction. When the level
is below the threshold level, the flow control bit is cleared. When there are no user
packets to send in the reverse direction, dummy packets are sent with the flow
control information. In order to prevent buffer overflow and realize maximum link
throughput, the receiving buffer should have a storage capacity that is four times
that of the transmission link and the threshold should be set at the half full level.
The storage capacity of a transmission link is given by RL/c where R is the rate
bits are transmitted on the link, L is the length of the link and c is the propagation
speed of the signal, which is approximately 200,000 km/s for optical fiber. So for
example, a 1000 km link operating at a speed of 100 Mb/s has a bit capacity of 0.5
Mb, requiring a buffer size of 2 Mb. This goes to 20 Mb for a link operating at 1
Gb/s. Even a 20 Mb buffer could be reasonably constructed using video RAMS, or
similarly organized memories. Commercial video RAM chips are available in sizes
up to 1 Mb, so the 20 Mb buffer would require 20 memory chips meaning that a
packet processor containing such a buffer would probably consume a large fraction
of a circuit board and cost one to two thousand dollars. While this is higher than
comparable costs in connection-oriented networks, it may not be unreasonable in
certain environments. Also note that for short links (say 10 km), much smaller
buffers could be used, allowing inexpensive packet processors to be used in access
links where the cost sensitivity is highest.

Figure 2.9 illustrates how flow control can be performed across a switch using a
control ring that contains one bit of flow control information for each outgoing link.
In this example, the switching fabric is assumed to be a buffered Benes network
with flow control between switch elements. The outgoing packet processors (PP)
have buffers capable of holding say, 20 packets and when the buffer occupancy
exceeds a threshold, the PP sets the flow control bit. This prevents the input
PPs from sending more packets to the overloaded PP, although packets within
the switch fabric will still reach it. The use of flow control within the switch
ensures that packets are not lost. The flow control ring limits the size of the
switch somewhat. Note however that the ring need not make a full circulation on



24 ACS Progress Report (9/1/87 - 8/31/88)

flow control ring

pildgsticiiiiye
I

Figure 2.9: Flow Control Across a Switch

each cycle, and it can be made several bits wide if necessary. Switch sizes as large
as 256 ports can be easily accommodated if the packet cycle is at least 64 clock

ticks long.

We next consider the issue of routing packets in a datagram network. To
distribute traffic through the network, we need some method for selecting alternate
routes. However, the need for high speed routing translation means that only
fairly simple choices can be made on a per packet basis. We present a possible
approach that is well-suited to hardware implementation, and which together with
the flow control mechanisms described above could be effective. We assume that
each switch has a Control Processor (CP) that manages the overall operation of
the switch. In particular, the CP maintains a graph model of the entire network
including all switches, the capacities of interconnecting trunk groups and possibly
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Figure 2.11: Content Addressable Memory Cells

the addresses of all terminals associated with each switch. Using this, the CP can
compute for each destination, an ordered list of links that can be used to reach
that destination.

Each PP has an address translation table that it can use to translate a network
address to a list of links that can be used to reach that address. The content of
these tables is determined by the cP. The address translation is done before a
packet is placed in an incoming PP’s buffer, as shown in Figure 2.10. When the
packet reaches the front of the buffer, one of the outgoing links is selected, based
on the flow control information communicated through the control ring. That is, if
the first outgoing link in a packet’s list has not set its flow control bit, the packet
is sent to it. If it has set its bit, the second link in the list is tried, and so forth.
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There are two obvious approaches to address translation. One is to use a
hierarchical address based on physical location that can be translated in several
steps. A simple version of this is a two step hierarchy in which the first part of the
address identifies the access switch for a particular destination and the second part
gives a port number on that switch. In a network with a few thousand switches,
the required address translation tables would be small enough to fit readily in
a single integrated circuit. Another possibility is the use of a large flat address
space. If the address space is very large (say 32 bits), it is impractical to store
the translation information for every possible address. We can however reasonably
store in each PP the translation information for a few thousand addresses using a
content addressable memory (CAM). Figure 2.11 shows a storage cell and a key
cell for a CAM. The storage cell is a conventional six transistor memory cell. The
key cell contains additional circuitry that allows it to compare the stored bit with
the information on the data lines and signal a match using a common precharged
acknowledgement line. Notice that the key cell requires 11 transistors meaning
that a CAM with 1024 words including a 32 bit key and 32 bits of data would
require about 550 thousand transistors, for the main memory array. In one micron
CMOs this can be easily fit on a single integrated circuit.

Because a CAM-based address translator cannot store information about all
network addresses, we require a mechanism for handling packets for which transla-
tion information is not present in the CAM. One approach is to send such packets
to the CP. So long as these exceptions occur infrequently, the CP can route them
and at the same time update the CAM of the PP where the packet arrived, so that
subsequent packets to that destination can be handled by the PP. This of course
raises the issue of what happens when a PP’s CAM is full. In this case, the CP has
to discard one of the entries in the CAM in order to make room for a new one. To
determine which entry to discard, the CP needs a way of determining which en-
tries have been used recently. A possible solution to this problem is to supplement
each CAM word with a mark bit, which is set by the CAM whenever that word is
accessed. The CP can periodically (say every ten seconds) poll the status of all
mark bits in the CAM via a control packet and simultaneously clear the mark bits.
Using this information it can easily track the entries that have been most recently
used.

The use of flow control, large buffers and dynamic packet routing all imply that
delays can be large and vary widely when the network is heavily loaded. This in
turn suggests that priorities may be required to ensure satisfactory performance
for time-critical applications. This is particularly important in the large buffers on
the input side of the packet switches, which could have to store as many as several
thousand packets (20 Mb buffer with 5000 bit packets). A priority queue controller
for such a buffer can be implemented using a circuit similar to the buffer controller
described in [99]. We estimate that such a controller would require about 300-500
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transistors per packet stored, making a single chip implementation of a controller
for a 4096 packet buffer feasible.
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In this section we discuss a generalization of the classical theory of nonblocking
switching networks to model communication systems designed to carry connec-
tions with a multiplicity of data rates. The theory of nonblocking networks was
motivated by the problem of designing telephone switching systems capable of con-
necting any pair of idle terminals, under arbitrary traffic conditions. We extend the
classical model to switching systems in which the internal data paths carry mul-
tiplexed traffic in which individual user channels consume an arbitrary fraction of
the bandwidth, subject only to the constraint that the total traffic not exceed the
capacity of the data path. Our model is applicable in particular to packet switched
fabrics in which all packets in a given connection follow the same path through the
switching system. More details of this work may be found in [60)].

We start with some definitions. We define a network as a directed graph G =
(V, E) with a set of distinguished input nodes I and output nodes O, where each
input node has one outgoing edge and no incoming edge and each output node has
one incoming edge and no outgoing edge. We consider only networks that can be
divided into a sequence of stages. We say that the input ports are in stage 0 and
for ¢ > 0, a node v is in stage ¢ if for all links (u,v), u is in stage i — 1. A link
(u,v) is said to be in stage ¢ if u is in stage i. In the networks we consider, all
output ports are in the same stage, and no other nodes are in this stage. When
we refer to a k stage network, we generally neglect the stages containing the input
and output ports. We refer to a network with n input ports and m output ports as
an (n, m)-network. Welet X, ., denote the network consisting of n input nodes, m
output nodes and a single internal node. In this network model, nodes correspond
to the hardware devices that perform the actual switching functions and the links
to the interconnecting data paths. This differs from the graph model traditionally
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used in the theory of switching networks, which can be viewed as a dual to our
model.

When describing particular networks we will find it convenient to use a compo-
sition operation. We denote the composition of two networks ¥; and Y3 by Y; 0 Ya.
The composition operation yields a new network consisting of one or more copies
of Y; connected to one or more copies of Y5, with a link joining each pair of sub-
networks. More precisely, if ¥; has n, outputs and Y; has n, inputs, then ¥; 0 Y, is
formed by taking ny copies of ¥; numbered from 0 to n, — 1 followed by n, copies
of ¥z, numbered from 0 to ny ~ 1. Then, for 0 <i<ny —1,0< j < ny — 1, we
join Y3(7) to Ya(s) using a link connecting output port j of Y¥i(i) to input port 7
of Y3(7). Next, we remove the former input and output nodes that are now inter-
nal, identifying the edges incident to them and finally, we renumber the input and
output nodes of the network as follows; if v was input port ¢ of ¥;(), it becomes
input jni + ¢ in the new network; similarly if v was output port i of ¥5(5), it be-
comes output jn; +i. We also allow composition of more than two networks; the
composition ¥; o ¥; o Y3 is obtained by letting Z; = Y, 0Y; and Z; = Y, 0Y;, then
identifying the copies of ¥, in Z; and Z;. This requires of course that the number
of copies of Y, generated by the two initial compositions be the same. Note this is
not the same as (Y; 0 ¥;) 0 Ya.

A connectionin a network is a triple (z,y,w) wherez € I,y € Oand 0 < w < 1.
We refer to w as the weight of the connection and it represents the bandwidth
required by the connection. A route is a path joining an input node to an output
node, with intermediate nodes in V — (I U O), together with a weight. A route r
realizes a connection (z,y,w), if # and y are the input and output nodes joined by
r and the weight of r equals w.

A set of connections is said to be compatible if for all nodes £ € TU O, the sum
of the weights of all connections involving z is < 1. A configuration for a network
( is a set of routes. The weight on an edge in a particular configuration is just the
sum of the weights of all routes including that edge. A configuration is compatible
if for all edges (u,v) € E, the weight on (u,v) is < 1. A set of connections is
said to be realizable if there is a compatible configuration that realizes that set
of connections. If we are attempting to add a connection (z,y,w) to an existing
configuration, we say that a node u is accessible from z if there is path from z to
u, all of whose edges have a weight of no more than 1 — w.

A network is said to be rearrangeably nonblocking (or simply rearrangeable) if for
every set C of compatible connections, there exists a compatible configuration that
realizes C. A network is strictly nonblocking if for every compatible configuration
R, realizing a set of connections C, and every connection ¢ compatible with C, there
exists a route r that realizes ¢ and is compatible with R. For strictly nonblocking
networks, one can choose routes arbitrarily and always be guaranteed that any
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new connections can be satisfied without rearrangements. We say that a network
is wide-sense nonblocking if there exists a routing algorithm, for which the network
never blocks; that is, if we use the routing algorithm to select routes for each new
connection request, it is always possible to realize a new connection by adding a
route to the current configuration.

Sometimes, improved performance can be obtained by placing constraints on
the traffic imposed on a network. We will consider two such constraints. First,
we restrict the weights of connections to the the interval [b, B]. We also limit the
sum of the weights of connections involving a node z in I U O to 8. Note that
0 <b< B < B <1 Wesay a network is strictly nonblocking for particular values
of b, B and f if for all sets of connections for which the connection weights are in
[6, B] and the total port weight is 3, the network cannot block. The definitions
of rearrangeably nonblocking and wide-sense nonblocking networks are extended
similarly. The practical effect of a restriction on f is to require that a network’s
internal data paths operate at a higher speed that the external transmission facili-
ties connecting switching systems, a common technique in the design of high speed
systems. The reciprocal of § is commonly referred to as the speed advantage for a
system.

Two particular choices of parameters are of special interest. We refer to the
traffic condition characterized by B = §, b = 0 as unrestricted packet switching
(UPs), and the condition B = b = # = 1 as pure circuit switching (cs). Since
the CS case is a special case of the multirate case, we can expect solutions to the
general problem to be at least as costly as the CS case and that theorems for the
general case should include known results for the ¢s case.

3.1. Strictly Nonblocking Networks

A three stage Clos [16] network with N input and output ports is denoted by
CN,k,m, where k and m are parameters, and is defined as: Cnpm = XgmO0 XNy, Njk©
Xmk- A Clos network is depicted in Figure 3.1. The standard reasoning to de-
termine the nonblocking condition (see [16]) can be extended in a straightforward
manner, yielding the following theorem.

‘THEOREM 3.1.1. The Clos network Cyy ., is strictly nonblocking if

o

m > 2 max
b<w<B

where s(w) = max {1 — w, b}.
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Figure 3.1: Clos Network

Let us examine some special cases of interest. If welet b= B = 8 = 1, the
effect is to operate the network in ¢S mode and the theorem states that we get
nonblocking operation when m > 2k — 1 as is well-known. In the UPS case, the
condition on m becomes m > 2(8/(1 — 8))(k~1). So m = 2k —1 is sufficient here
also if 5 =1/2.

Using Theorem 3.1.1, we can construct a wide-sense nonblocking network for
unrestricted traffic by placing two Clos networks in parallel and segregating con-
nections in the two networks based on weight. In particular if welet m = 4k—1, the
network X; 50Cpk,m0Xs,; is wide-sense nonblocking if all connections with weight
< 1/2 are routed through one of the Clos subnetworks and all the connections with
weight > 1/2 are routed through the other.

A k-ary Bene$ network [6], built from % x k switching elements (where log, N
is an integer) can be defined recursively as follows: By = Xix and By =
Xk © Byyir © X (see Figure 3.2). A k-ary Cantor network of multiplicity m is
defined as Knjpm = X1,m 0 Byg © Xpn 1. The next theorem captures the condition
on m required to make the Cantor network strictly nonblocking.

THEOREM 3.1.2. The Cantor network Ky, is strictly nonblocking if

m> %(1 + (k= 1) log(N/k))
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When we apply the theorem to the cs case for k = 2, we find that the condition
on m reduces to m > log, N as is well known. For the UPS case with & = 2, we
have m > (8/(1 — B))log, N; that is, we again need a speed advantage of two

to match the value of m needed in the CS case.

We can construct wide-sense

nonblocking networks based on the Cantor network for # = 1 by increasing m.
We divide the connections into two subsets, with all connections of weight < 1/2
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Figure 3.3: Cantor Network

segregated from those with weight > 1/2. Applying Theorem 3.1.2 we find that
m > 4((k — 1)/k) log, N is sufficient to carry each portion of the traffic, giving a
total of 8((k — 1)/k)log; N subnetworks. Using the theorem, we can also obtain
the following corollary for the Benes network.

COROLLARY 3.1.1. The Benes network By is strictly nonblocking if

-1

B < | gy 1+ (k= Do (/)

So for example, in the UPS case we find that for an r stage Bene$ network we
require 8 < 1/r to get a strictly nonblocking network. For k£ = 32, a three stage
Bene$ network has 1024 inputs and outputs and requires a speed advantage of
three.

3.2. Rearrangeably Nonblocking Networks

As mentioned earlier, a k-ary Bene$ network [6], can be defined recursively as
follows: By = Xip and By = Xii 0 Bnjkx © Xkp. The Benes network is
rearrangeable in the CS case [6] and efficient algorithms exist to reconfigure it [57,
67]. In this section, we show that under certain conditions, the Benes network can
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be rearrangeable for multirate traffic as well. Our results rely on showing that the
graph coloring methods used to route connections in the Bened network for the
circuit switching case can be extended to the multirate case as well.

Our first theorem gives conditions under which this routing is guaranteed not
to exceed the capacity of any link in the network.

THEOREM 3.2.1. By is rearrangeable when

p< i+ 52 @monwin)|

As an example, if N = 1024, k = 32 and B = §, it suffices to have 8 < 1/2;
for N = 215, it suffices to have 8 < 1/3. We can improve on this result for binary
Benes networks by modifying the algorithm used to route connections.

THEOREM 3.2.2. By, is rearrangeable when

p<[1+3B/0nN]

Theorem 3.2.2 implies for example that if # = B = 0.2, a binary Benes network
with 2'¢ ports is rearrangeable. Theorem 3.2.1, on the other hand gives rearrange-
ability in this case only if 3 is limited to about 0.118. It turns out that we can
obtain a still stronger result by a more careful analysis of the original algorithm.

THEOREM 3.2.3. By is rearrangeable when
# < Imax {2,) — n| 3/BJ}]™*
where A = 2 + Inlog, (N/k).

So, for example if ¥ = 32, N = 2!° and B = B, we can have 8 = 0.37. We now
turn our attention to the Cantor network and give conditions for rearrangeability
in that case.

THEOREM 3.2.4. Let € > 0 and |5/B| < logi(N/k). Knxm is rearrangeable if
m 2 [(1+ €)% — In/B))] +2(2+ log, A + logy(B/c))
where A = 2 4 Inlog, (N/k) and c =1 — BA/(1 + ¢)() — In|B/B)).
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So for example, when k& = 32, N = 21® and B = 8 = 1/2, it suffices to have

= 10. The graph coloring methods used to route connections for By i can also
be applied to networks that “expand” at each level of recursion. Let Crrm = Xbk
and for N =k, i > 1, let Cem = Xiym © Cryp nji © Xomk- The followmg theorem
gives conditions under which C%, . is rearrangeable.

THEOREM 3.2.5. C}, ,, is rearrangeable if

m-~1B1-1/y|"
B1-1/y

g < [1/7°+
where v = m/k and ¢ = log,(N/k).

So, for example, C} ; o, is rearrangeable if B < 1/2.

3.3. Multipoint Networks

In this section, we describe two multipoint networks and give conditions under
which they are rearrangeable or wide-sense nonblocking. A connection in a multi-
point network is a triple (z,Y,w) wherez € I, Y C O and 0 < w < 1. We refer to
w as the weight of the connection and it represents the bandwidth required by the
connection. A route in a multipoint network is a tree whose root is an input node
and whose leaves are output nodes. A route r realizes a connection (z,Y,w), if z
and Y are the input and output nodes joined by r and the weight of r equals w.

A set of connections is said to be compatible if for all nodes z € TU O, the sum
of the weights of all connections involving  is < 1. A configuration for a network
G is a set of routes. The weight on an edge in a particular configuration is just the
sum of the weights of all routes including that edge. A configuration is compatible
if for all edges (u,v) € E, the weight on (u,v) is < 1. A set of connections is
said to be realizable if there is a compatible configuration that realizes that set of
connections.

A network is said to be rearrangeably nonblocking (or simply rearrangeable) if for
every set C of compatible connections, there exists a compatible configuration that
realizes C. A network is strictly nonblocking if for every compatible configuration
R, realizing a set of connections C, and every connection ¢ compatible with C, there
exists a route r that realizes ¢ and is compatible with R. For strictly nonblocking
networks, one can choose routes arbitrarily and always be guaranteed that any
new connections can be satisfied without rearrangements. We say that a network
is wide-sense nonblocking if there exists a routing algorithm, for which the network
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Figure 3.4: Recursive Construction of Py

never blocks; that is, if we use the routing algorithm to select routes for each new
connection request, it is always possible to realize a new connection by adding a
route to the current configuration.

The network Py, shown in Figure 3.4 has a set of N input crossbars, each having
one input and two outputs. These feed into a set of concentrators with N inputs
and N/2 outputs. The outputs of the concentrators then feed into recursively
constructed networks Ppy,. The base of the recursive construction is a 2 x 2
crosshar. We say that a concentrator with n inputs and m outputs (m < n)
is strictly nonblocking for point-to-point connections if given any configuration
in which all routes are paths and < m outputs are active, there exists a path
connecting any specified idle input to some (unspecified) idle output. We say that
such a concentrator is rearrangeable for point-to-point connections if given any set
of < m inputs, we can find a set of compatible routes connecting the given inputs
to some set of m outputs. Pippenger [71] first described this network in 1973 and
showed that if the concentrators used are strictly nonblocking for point-to-point
connections, then the network as a whole is wide-sense nonblocking for multipoint
connections. If Cantor networks are used for concentration, this yields a wide-sense
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nonblocking network for multipoint connections with O (N(log N)?) complexity.
Nassimi and Sahni [64], using the fact that a Banyan network is a rearrangeably
nonblocking concentrator for point-to-point connections [87], showed that Py is
rearrangeably nonblocking for multipoint connections when Banyan networks are
used for the concentrators. This yields an O (N(log N)?) complexity network. We
extend these results to the multirate case.

THEOREM 3.3.1. If the concentrator used to construct Py is strictly nonblocking
for point-to-point traffic, then Py is wide sense nonblocking for multipoint traffic.
If the concentrator used to construct Py is rearrangeably nonblocking for point-to-
point traffic, then Py is rearrangeably nonblocking for multipoint traffic.

COROLLARY 3.3.1. Ifthe concentrator used to construct Py is the Bened network
By then Py is wide-sense nonblocking if

5< [7;% 1+ (k1) logk(fv/k))}b

So for example in the UPS case, if we let k = 32, we can construct a wide-sense
nonblocking multipoint network if we have 8 < 1/3.

COROLLARY 3.3.2. If the concentrator used to construct Py is a Delta network
Dy, then Py is wide-sense nonblocking if 8 < 1/2

The corollary is proved by showing that the Delta network is a rearrangeably
nonblocking concentrator for point-to-point multirate connections when g < 1/2.

We can also obtain nonblocking networks by combining two nonblocking point-
to-point networks. For example, Thompson [87] has shown that cascading two
Banyan networks, yields a rearrangeable network (for the circuit switching case)
that can produce any desired number of copies of any specified inputs. If we follow
such a network with one that is rearrangeable for point-to-point connections, we
get a rearrangeably nonblocking network for multipoint connections. Figure 3.5
illustrates this idea, using a Bene$ network to route the copies to their final des-
tinations. The figure also shows how certain pairs of stages can be combined to
yield a network with (4log, N) — 3 stages. We call this network Ty ;.

We can obtain wide-sense nonblocking networks for multipoint connections in
the circuit switching case by cascading two networks that are strictly nonblocking
for point-to-point connections.
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Figure 3.5: Example of Routing in T2

THEOREM 3.3.2. A pair of cascaded Clos networks is wide-sense nonblocking for
multipoint circuit switched connections. A pair of cascaded Cantor networks is
wide-sense nondlocking for multipoint circuit switched connections.

To obtain nonblocking operation connections must be routed so that branching
is performed only in the second network of the pair. So long as this constraint
is satisfied, the overall network never blocks. We can extend these results to the

multirate case.

THEOREM 3.3.3. A pair of cascaded Clos networks (Cnjm) is wide-sense non-

blocking if
bsw<B | s(w)

A pair of cascaded Cantor networks (Kn i m) is wide-sense nonblocking if

Tny is wide-sense nonblocking if

5 [porgy 0+ (k= Dlog, (/)|
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Tny is rearrangeably nonblocking if
B < [max {2, —In|8/B]}]”"
where A = 2+ Inlog, (N/k).

So for example, if we take £ = 32 and N = 1024, T is wide-sense nonblocking
for multipoint connections if 8 < 1/3; for N = 2% we need 8 < 1/5. For
rearrangeable operation we need 8 < 2 for N = 1024 and 8 < .37 for N = 215,

3.4. Complexity of Multirate Networks

The traditional complexity measure for switching networks is crosspoint count.
This measure was motivated by early electromechanical space-division switching
systems in which the number of crosspoints in a system was a good indicator of
system cost. The technological changes of the last thirty years have led to net-
works implemented using specialized, high-density integrated circuits, and this
traditional complexity measure is no longer closely related to cost. In the current
environment, cost is largely determined by the number of integrated circuit com-
ponents required to implement a system, where the complexity of the components
is limited primarily by pin constraints, not by the number of elementary devices
within the component.

In the multirate environment, we have found that in order to achieve a certain
performance characteristic, it is often necessary to restrict 3 is some fashion. Prac-
tically, this means the data paths within the switch must operate at a higher speed
than the external links that the switch interconnects. We can obtain such higher
speeds either by increasing the internal clock frequency or by increasing the paral-
lelism in the data paths. If one is to compare the complexity of different networks
in order to assess design alternatives, one must assume that parameters such as
clock frequency are the same. Consequently, if one network requires higher speed
data paths than another, that higher speed must be obtained through parallelism.
Since the cost of the system scales fairly directly with the amount of parallelism,
we can account for differences in 8 by making our complexity measure inversely
proportional to £.

Based on these considerations, we define the complezity C of a network with
N input and output nodes to be the number of components required to construct
the network divided by BN, where the number of signal pins in each component
is limited to some constant £. For current technology, realistic values for & are in
the range of 50-100.
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For example, the complexity of By, is given by

C(Bnx) = (1/kB) log,(N/k)
If we take »

2 (1+ (k — 1) loge (NV/k))

< |2

S ks(B)

which gives strictly nonblocking operation and let b =0, B =8 < 1/2, we obtain
a complexity of at most

4

7z (1 + (k —1)logi(N/k)) logy(N/k)

To account for the pin constraint we take k = x/2. So for example, the complexity
of a strictly nonblocking Benes network with 1024 ports and « = 64 is .125 com-
ponents per port; that is, we can construct such a network with 128 components.
If we take N = 2'® we obtain 0.5 components per port. If we are interested only

in rearrangeably nonblocking operation we can take
B < [max {2,2 + Inlog,(N/k) — In|8/B]}]™
If we take b = 0, B = §3, the complexity is
(1/k) (2 + Inlog,(N/k)) log,(N/k)

If we take k¥ = £/2 = 32 and N = 1024 this is .0625 components per port. If we
take N = 2!* we have about .17 components per port.

For networks of restricted depth such as the three stage Clos network, the
situation is somewhat more complicated, since in this case we may have to construct
the basic switching elements from which such networks are constructed from many
smaller components satisfying the pin constraint x. We take the complexity of
a switching element with k; inputs and k; outputs where k; + k, > & to be
(4k1k2/x?) since we can construct such an element from this many components.
The complexity of the Clos network is then

im

C(CNpom) = T 2+ N/k?]

If we take let b = 0, B = # = 1/2, let m = 2k which gives strictly nonblocking
operation and k = /N/2, we obtain a complexity of ./N/2 If we take x = 64

and N = 1024, we obtain .35 components per port. If we take N = 215 we obtain
2 components per port.



42 ACS Progress Report (9/1/87 ~ 8/31/88)

C Cw g 261

14
KN.E,M /
e
7.4/ By s T
"
|

== T T
6 8

6 8 0 12 14 16 0 12 14 16
logaV logaV

Figure 3.6: Complexity of Multirate Networks: Benes is shown for rearrangeable
and strictly nonblocking case. § = 1/2 for Clos and Kantor.

For the Cantor network,
C(ENkm) = (2(m+1)/&) + (m/kB)log,(N/k)

Ifwelet b= 0, B = 8 = 1/2, let m be just large enough to give strictly nonblocking
operation, and k& = «/2 this becomes

(1/k) + (4/k%) (1 + (k — 1) log, (N/k)) ((1/2) + log,(N/k))
Taking £ = 64 and N = 1024 yields about .22 components per port. Taking
N = 2" yields about .65 components per port.

The plots in Figure 3.6 compare the complexity of several point-to-point net-
works across a range of sizes and for two different pin constraints.
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Considerable progress has been made on the Broadcast Packet Switch prototype
during the past year. The overall structure of the prototype packet switch is shown
in Figure 4.1. The Connection Processor (CP), shown at the top of the figure, is
a general purpose computer that provides overall control of the system, including
connection establishment. The heart of the system is an eight port Switch Fabric
(SF) comprising a Copy Network (CN), a set of Broadcast Translation Circuits (BTC)
and a Routing Network (RN). The CN and RN are composed of binary Packet Switch
Elements (PSE) that perform routing, traffic distribution and packet replication.
A set of Packet Processors (PP) provides the interface between the SF and the high
speed Fiber Optic Links (FOL) that are used to interconnect different switches. The
CP communicates with the rest of the system through the cp Interface (CPI). The
system is operated in a highly synchronous fashion, with global timing provided
by the single timing circuit shown at the top of the figure.

Custom integrated circuits are being designed for the PSEs, BTCs and PPs. The
BTC and PSE designs require one chip apiece, the PP requires four chips, meaning
that a total of 60 custom chips are needed to implement the prototype switch
module.

The first chips we designed, implemented the PSE and BTC using four bit wide
data paths. These chips have been fabricated and tested. Based on the results
of these initial designs we have made revisions that we expect will substantially
improve the performance, allowing us to meet our objective of supporting 150 Mb/s
transmission links. The design of the eight bit PSE chip has been completed and

43
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Figure 4.1: Prototype Switch Module

that chip is now being fabricated. The design of the packet buffers to be used in the
PP was also completed and these chips will be submitted for fabrication in the near
future. The design of a lookup table that will be used for logical channel translation
and broadcast channel translation has been completed. The circuit generator for
synchronous streams processors is being used to generate major portions of the PP
and BTC circuits and has allowed these designs to be generated in a fraction of
the time that would have been required using manual methods. The design of the
chips implementing these components should be complete before the end of this
year.

4.1. Packet Formats

This section describes the formats of packets used in the switch. There are two
primary packet formats: external and internal. Packets are carried in external
format on the fiber optic links connecting switches, and in internal format within
each switch. The PP translates between these two formats. Note that higher level
processes may define additional packet formats; this section details only those
fields that are of direct concern to the prototype hardware. Figure 4.2 depicts the
packet formats. A brief description is given below. Another representation of the
packet formats is shown in Figure 4.3. This shows the type definitions used by our
automatic circuit generator. This will be discussed in more detail below.
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Figure 4.2: Packet Formats
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External Packet Format.

Each external packet is organized as a sequence of 8 bit wide words. Each packet
contains exactly 76 words, the first 3 of which constitute the packet header. The
last word of the packet is used for a frame checksum. When transmitted on the
external transmission links, external packets are separated by a SYNC pattern that
allows the receiver to identify packet boundaries. The meanings of the external
fields are given below.

® Packet Type (PTYP). Identifies one of several types of packets, including
ordinary data packet (1), test packets (2) and control packets (4).

o External Logical Channel Number (ELCN). Logical channel numbers are used
to identify which connection a packet belongs to. For the prototype, 64
distinct logical channels are recognized.

o Information (I). Normally contains user information. In the case of control
packets, may contain additional control information. Individual words are
denoted I[0], 1[1], 1[2], ... with I[0] being the first word of the I field.

e Frame Check (FC). The frame check is used to detect errors in the packet.
A simple check sum over the first 75 bytes of the packets is used.

Internal Packet Format

Each internal packet is organized as a sequence of nine bit wide words, including
an odd parity bit. Each packet contains exactly 80 words, the first five of which
constitute the packet header. The meanings of the fields are given below.

¢ Routing Control (RC). This field determines how the packet is processed by
the switch elements. The possible interpretations are listed below.
0 Empty Packet Slot
1 Point-to-Point Data Packet
2 Broadcast Packet
4 Specific-Path Packet
e Operation (OP) This field specifies which of several control operations is to

be performed for this packet. The possible values of the field and the corre-
sponding functions are listed below.
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#define DATA 1
#define LTEST 2
#define CTL 4

#define IDLE 0
#define PPNT 1
#define MPNT 2
#define SPATH 4

#define PENDING 7

#tdefine VANILLA O

f#idefine RLCIT 1
#define WLCXT 2
f#idefine RBTT 3
#define WBTIT 4
#define STEST1
#define STEST2
#define STEST3

typedef struct
bit
bit
bit
bit

} ext_pkt;

typedef struct
bit
bit
bit
bit
bit
ext_pkt
} int_pkt;

5
6
7

/*
/*
S*
/*

/*
/*
/*
/=
/*
/*

/*
/*
/x
/*
/*
/*
/*
/*
/*

£i11[5];
ptypl3];
elcn[16];

external packet types */
ordinary data packet */
link test packet */
control packet */

routing control types */

unused packet slot */

point to point packet */

multipoint */

specific path */

waiting for logical channel translation #*/

internal packet op codes */

no control functions */

read LCXT entry */

write LCXT entry */

read broadcast translation table entry */
write broadcast translation table entry */
switch test, first leg */

switch test, second leg */

switch test, third leg */

/* external packet */

/* unused */

/* packet type */

/* external logical channel number */

infol72]{8]; /* information field */

opls];
rcl3];
fan_1ln[8]

/* internal packet */

/* op field =/

/* routing control field */
; /* fanout/ln */

ben_ilen[16]; /* ben/lcn */

src[8];
extp;

/* source of packet #*/

Figure 4.3: Packet Format Definitions
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0 Vanilla Packet. No control functions.

1 Read LCXT Entry. Directs PP to read a single entry block from the
Logical Channe] Translation Table. 1[0] specifies which block to read.
The data is copied into I[1]-1[4] and the packet is returned to the cP.

2 Write LCXT Entry. Directs PP to write a single entry to the Logical
Channel Translation Table. 1{0] specifies the block to write. The data to
be written is in 1[1]-1[4].

6 Read BTT Entry. Directs BTC to read and return a single entry from
the Broadcast Translation Table (BTT). 1[0] field specifies which block
to read. The data is copied into I[1]-1[4] and the packet returned to the
CP.

7 Write BTT Entry. Directs BTC to write information into a single entry of
the BTT. 1[0] field specifies which block to write. The data to be written
is in 1[1]-1[4].

5 Switch Test Packet, First Leg. When received by a PP is returned to the
SF with the RC field changed to 4 (specific path), the OP field changed
to 6 (for second leg) and a new routing field. The new routing field
is obtained by rotating bytes 1-4, by one byte position; that is byte 1
becomes byte 4, bytes 2-4 become bytes 1-3.

6 Switch Test Packet, Second Leg. When received by a PP is returned to

the SF with the RC field changed to 0 (vanilla), the oP field changed to
7 (for third leg) and the LN set to 0 (for the cP).

7 Switch Test Packet, Third Leg. A switch test packet being returned to
CP.

C-FF Reserved.

o Destination (DST). The interpretation of these three words depend on the
value of RC.

— Fanout (FAN). If RC = Broadcast Packet, the second word of the packet
is taken to be the fanout, that is the number of switch fabric output
ports that require copies of the packet.

— Broadcast Channel Number (BCN). If RC = Broadcast Packet, the third
and fourth words of the packet are taken to be the broadcast channel
number. All packets within a particular multi-point channel have the
same broadcast channel number. 64 distinct BCNs are recognized.

— Link Number (LN). If RC = Point-to-Point Packet, the second word of
the packet is taken to be the number of the outgoing link to which the
packet should be delivered.
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— Internal Logical Channel Number (ILCN). If RC = Point-to-Point Packet,
the third and fourth words of the packet are taken to be the internal
logical channel number. This will become the external logical channel
number when the packet exits the switch module.

— Specific Path Specification. If RC = Specific-Path Packet, the three
words of the DST field specify output ports for each of the three net-
works. The packet will be routed through each of these.

o Source (SRC). The number of the most recent PP through which the packet
has passed. For vanilla packets, this will be the number of the link on which
the packet entered the switch. For test packets it will be changed as the
packet passes through different PPs.

4.2. Timing

The system is operated in a highly synchronous fashion. All packets are the same
length and pass through the switch fabric in synchrony with one another. There
is a global packet cycle that determines the timing of all events within the system.
Incoming packets are received by the packet processors and synchronized to this
packet cycle. Each cycle is referred to as an epoch. The length of an epoch is 86
clock times. This allows time for one packet to be processed and leaves a guard
time of six clock periods between packets.

All the custom integrated circuits designed for the prototype use a two phase
non-overlapping clock. The two phases are called phil (¢;) and phi2 (¢;) and are
shown in Figure 4.4. For this prototype, the target clock period is 24 ns. The two
clock phases are asymmetric, as the various circuits are designed to gate signals
only on phil. As shown in the figure, there is a second set of signals phi1* and
phi2* that have the same pulse widths as the main clocks but skip every other
cycle. These clocks are used in the transmit portion of the packet processors. The
global timing generator provides the global clock signals that drive the system
plus a set of signals that define various instants within the global time reference.
The notation gtX is used to denote clock cycle X in the global time reference.
Figure 4.4 shows the waveform for a typical signal gt X. Note that the signal level
changes when phi2 is high and is stable when phii is high. By definition, gt0
is the time at which packets leave the packet processor on their way to the first
stage of the copy network. The nodes of the switch fabric delay packets passing
through them for exactly 24 clock ticks and the BTC delays packets for exactly 32
clock ticks. In addition, there are two clock ticks of delay whenever signals cross
between circuit boards. Figure 4.5 shows the times at which packets pass between
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Figure 4.4: Global Clock Signals

Figure 4.5: Global Timing Relationships

the various components of the system. In this diagram, the vertical lines indicate
circuit board boundaries.

The transmit portion of the outgoing packet processor requires one additional
signal, called even. This signal is asserted throughout every second epoch. That
is, it goes high just before gt0, stays high for 86 clock ticks and is then low for the
next 86 clock ticks. We extend our notation for global time instants as follows.
We define gt0* to be the clock ticks when gt0 and even are both high and we
define gt X+ to be clock tick X of the slow clock phi*. So for example gt3* occurs
whenever gt6 and even are both high. Similarly, gt80* occurs when gt74 is high
and even is low.

Every component in the system has a local time reference which is typically
synchronized to the point in the global time reference at which that component
can start to receive a packet on one of its input links. The notation t0 denotes
the starting point of the epoch for a particular component’s local time reference.
Each of these local time references is synchronized to the global time reference in
Figure 4.5. Because the timing circuits used to create the local timing signals have
an internal delay of two clock ticks, the synchronization signals that start their
local timing cycle must arrive two clock ticks before the logical t0 time. These
signals are usually called tm2, which stands for “time minus 2.”
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Figure 4.6: Block Diagram of Packet Switch Element Chip

4.3. Packet Switch Element

The Packet Switch Element chip (PSE) is the 2 x 2 VLSI switch element used in the
routing, copy and distribution networks. The PSE directs packets to one or both
outputs based on packet type (point-to-point, broadcast, or specific-path), switch
operation mode (routing, copy, or distribution), and the contents of the LN/FAN
field.

An eight bit version of the PSE has been designed during the past year. This
version eliminates constraints on the speed of operation of the PSE that were present
in the earlier four bit design. This improvement is due largely to changes in some
basic design decisions. The most important change was a modification of the way
grant propagation was handled. In the system as described in [93], grants are
propagated from the output of the routing network back through the inputs to the
copy network before packets can flow forward. This design makes best use of the
nodes’ internal buffers but places tight constraints on the number of clock cycles a
node can delay a packet. In the new design a node makes decisions on its upstream
grants independent of the status of the downstream grants. This change greatly
relaxes the constraint on the number of clock cycles a node can delay a packet,
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which in turn makes it possible to increase the speed of the clock. Because this
change reduces the effectiveness of node buffers, we have also decided to switch
from a design with a single buffer per input to one with two buffers per input.
The new design was completed in this summer and simulated at clock speeds of 40
Mb/s. Given the eight bit data path widths, this is fast enough to support data
rates of 320 Mb/s, which is slightly faster than needed for the prototype.

A single PSE circuit is used to implement the routing, copy and distribution
networks. Packets are handled based on the information in the packet headers and
either forwarded to the appropriate output (or outputs) or held until the required
output(s) is available. The grant signals are used by nodes to control the arrival of
packets from their upstream neighbors. In general, a node asserts a grant, allowing
a new packet to arrive if it has an available buffer in which to store the packet.
Each node can store up to four complete packets in its internal buffers.

PSE routing decisions are based on the operation mode and Rc field, as specified
below.

e For om =route; use bit sn of the LN field to select an output port, where sn
is the stage number.

¢ For om =copy; if RC is broadcast, and FAN exceeds 252, where sn is the stage
number, send copies of packets to both output ports. If RC is specific-path,
use bit sn of LN field to select an output port. Otherwise, distribute.

e For om =distribute; if RC is specific-path, use bit sn of LN field to select an
output port. Otherwise, distribute.

When arbitrary routing choices can be made, the following policies are used to
make decisions:

e Ties among input ports for a given output port are arbitrarily broken based
on the last input port favored, to avoid individual starvation.

o Packets that can proceed to either output are uniformly and arbitrarily
distributed (all packets in distribution network, point-to-point packets and
broadcast packets not replicated in copy network).

e Packets requesting both outputs in the copy network are favored over packets
requiring only one.

e Packets requesting a specific output are favored over packets which can use
either.
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The clock period during which the first word of a packet appears on the up-
stream data leads is called t0 and in general, the clock period during which word i
appears is called ti. The delay through a node is 24 clock ticks. So, if an incoming
packet can be switched through a node without buffering, the first byte will appear
on the output at t24. Each node makes its upstream grant signals available at t18
in the node’s frame of reference and holds the grant leads in that state until t18 of
the subsequent cycle. Consequently, the grant signal is available to the upstream
neighbor any time after t42 in the neighbor’s frame of reference.

A block diagram of the PSE appears in Figure 4.6. The major components are
described below,

e Output Conirol Circuit (0cC). The ocC arbitrates access to the two output
ports, based on the downstream grant signals and port requests received
from the input circuits. The port requests are given in the form of three bit
request vectors, rA and rB; a value of 101 requests access to output port 0,
110 requests output port 1, 111 requests both output ports and 100 requests
a single output port, with either one being acceptable. The individual bits
of these three bit codes are assigned the names rn, rl, and r0 with the suffix
A or B included when necessary to designate a specific side. The response is
given in the form of two bit enable vectors enA and enB; a value of 01 grants
access to port 0, a value of 10 grants access to port 1 and a value of 11 grants
access to both. The individual bits have the names enl and en0.

o Input Port Circuits (IPCA,IPCB). There is one input circuit for each input
port. Each IPC includes two buffers large enough to hold a single packet,
plus control circuitry to extract information from the packet header, generate
the request vector for the 0CC and use the resulting enable vector to make
decisions on the disposition of the packet. It also modifies the packet header
when necessary.

o Timing and Control Circuit (TCC). This circuit generates signals of the form
tz and ti:j, for various values of ¢,j. Signal tz is high during clock period
t: of the epoch; in particular it goes high during phi2 of the preceding clock
cycle and goes low before phi2 goes high again. Signal ti:j is similar; it is
high during t: and stays high through tj.

4.4. Packet Processor

The Packet Processors (PP) form the interface between the external fiber optic
links and the switch module’s internal data paths. They perform all the link
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Figure 4.7: Packet Processor Block Diagram

level protocol functions, including the determination of how packets are routed.
A block diagram of the PP appears in Figure 4.7. The major components are
described briefly below.

e Buffers. The PP contains four packet buffers. The Receive Buffer (RCB) is

used for packets arriving from the FOL and waiting to pass through the SF.
The Transmit Buffer (XMB) is used for packets arriving from the SF that
are to be sent out on the FOL. The Link Test Buffer (LTB) and Switch Test
Buffer (STB) provide paths for test packets used to verify the operation of
the FOL and SF respectively. The RCB and XMB each have a capacity of 32
packets. The LTB and STB can each hold two packets. Together, the four
buffers require a total of about 46 Kbits of memory.

Receive Link Interface (RLI). Converts the incoming optical signal to an eight
bit electrical format, and provides a clock recovered from the incoming data
stream.

The Receive Circuit (RCV). Checks incoming packets for errors, adds parity,
strips off FC, routes test packets to the LTB and other packets to the RCB.

Output Circuit (OUT). Adds five bytes of header information to the front of
each packet received from the RCB. Performs logical channel translation and
sends packets to the SF. Also reads switch test packets and LCXT read/write
packets from the STB and processes them appropriately.
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Figure 4.8: Packet Processor Signals

e Logical Channel Translation Table (LCXT). Lookup table used to translate
an incoming logical channel number to the routing information needed by
the switch fabric.

¢ Input Circuit (IN). Routes internal data packets to the XMB, removing the
first five bytes of header information and routes all other packets to the LTB.

e Transmit Circuit (XMIT). Takes packets from the XMB, adds the SYNC field,
strips parity and computes the frame check. Also processes test packets from
the LTB.

o Transmit Link Interface (XLI). Converts from eight bit electrical format to
optical format.

Note that the figure also shows how the components are divided among the different
integrated circuits. The RCV and XMIT circuits, together with the LTB will be
placed on the PP1 chip, the RCB and XMB each consist of a PP2 chip and the IN
and OUT circuits together with the STB and LCXT will be placed on the PP3 chip.
The RLI and XLI are being implemented using standard components. The buffers
are described in some detail in the next section. Details of the PP1 and PP3 chips
appear below.
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The processing of packets by the PPs is determined by the PTYP field for exter-
nal packets (received from FOL) and by the OP field for internal packets (received
from SF).

External Data Packet. Converted to internal format, with the routing field
determined by a lookup in an internal Logical Channel Translation Table
(LeXT). The packet is then transmitted to the switch fabric.

Ezternal Link Test Packet. The PTYP field is changed to external control
packet, and the packet is returned on the outgoing FOL.

External Control Packet. Converted to internal format, with the LN field set
to 0 and the RC set to ordinary data packet. Transmitted to SF.

Internal Data Packet. Converted to external forrhat, with contents of internal
LCN field transferred to external LCN field. Transmitted to FOL.

Switch Test Packet. The processing is described above under packet formats.

Figure 4.8 shows the signals connecting to the PP and between its different
parts. The major external signals are summarized briefly below.

Upstream data from SF (sf_ud). Data from switch fabric. Nine bits wide
including parity.

Downstream data to SF (sf_dd). Data to switch fabric. Nine bits wide
including parity.

Downstream grant from SF (sf_dg). When asserted, allows PP to transmit
packet in subsequent epoch.

Upstream grant to SF (sf_ug). Asserted by PP to allow SF to transmit packet.
In prototype, always asserted.

Data from link (1i_ud). Data stream from FOL. Eight bits wide.

Incoming Link framing (1i.ut0). Link framing signal. High when first byte
of packet is sent.

Link clock (1i_theta). Clock signal recovered from link.
Data to link (1i_dd) Data stream to FOL. Eight bits wide.

Outgoing Link framing (1i_ut0). Outgoing link framing signal. Held high
during transmission of a packet.
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e PP identifier (pp_id). Eight bit number identifying PP,

o Reset (res). Resets the entire PP when it is asserted, causing any packets
stored in the PP to be discarded.

o Soft reset (sr). Resets PP error flags.

o PP1 buffer overflow (ppi-bo). Asserted whenever a packet is discarded by
PP1 due to buffer overflow.

o PP3 buffer overflow (pp3.bo). Asserted whenever a packet is discarded by
PP3 due to buffer overflow.

e FC error (ppl_fcerr). Asserted when the PP receives a packet containing a
bad frame check field.

e Parity error (ppl_perr, pp3.perr). This signal is asserted whenever the pp
detects a parity error.

o Fuven epoch (even). Asserted during every other global epoch.

A block diagram of the PP1 chip appears in Figure 4.9. Packets from the
incoming link are checked for framing errors and steered by the RCV circuit to
either the LTB or RCB. The XMIT circuit takes packets from either the XMB or LTB
and forwards them to the outgoing link. The control and timing circuit (CTL/TIM)
synchronizes the various components. The RCV circuit and the input half of the
LTB operate using the clock recovered from the incoming fiber optic link. The
internal portion of the LTB operates using the main system clock (gphi) and the
output portion of the LTB along with the XMIT circuit use a half speed version of
the main system clock (gphi*).

Figure 4.10 shows a program that specifies the functions of the RCV circuit.
A similar specification has been written for the XMIT circuit. The synchronous
streams processor compiler (sspc) produces a circuit from such a specification.
The area of the circuits generated for the RCV and XMITcircuits is 3 mm? and 2
mm? respectively (in 2 micron cM0s). The control and timing circuit will also be
generated using a circuit generator that was developed for this purpose, as will the
LTB. Because the major components of the PP1 can all be generated automatically,
we anticipate the layout of this chip to be completed by the end of October and
that the chip will be ready for fabrication before the end of the year.

Figure 4.11 is a block diagram of the PP3 chip. Packets entering the chip
from the RCB, pass through the OUTI circuit, a delay line and the OUT2 circuit
before passing on to the switch fabric. When such a packet passes through the
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Figure 4.9: PP1 Block Diagram

OUTI1 circuit, its logical channel number is passed to the LCXT, which extracts
the selected entry and delivers it to the OUT2 circuit in time to be inserted into
the packet. This division of the ouput processing functions into two parts was
necessitated by limitations in the current implementation of sspe. The 0UTI and
OUT2 circuits also cooperatively process switch test packets and LCXT read and
write packets. Packets coming from the switch fabric pass through the ING circuit
and are steered to either the STB or XMB. Packets going to the XMB are stripped
of the additional header information added when the packet was first received.
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rcve8s{ port([s]

ext_pkt <li_ud@0

port[8] ext_pkt >rcb_de4;
port[1] bit >rcb_wd80;
port[1] bit <rcb_f00;
port[8] ext_pkt >1tb_de4;
port[1] bit >1tb_ws0;
port[1] bit <1tb_£4Q0;
port[1] bit <fcerr®75;
port[1] bit >boflo@20)
{
boflo = 0;
rcb_w = 0; rcb_d = 1li_ud;
l1tb_w = 0; 1tb_d = li_ud;
if 1i_wud.ptyp == LTEST ->
ltb_d.ptyp = CTL;
if 1tb_f == 1 & fcerr
boflo = 1;
| 1tb_f == 0 & fcerr
ltb_w = 1;
fi;
| 1i_ud.ptyp == DATA | 1li_ud.
if rcb_f == 1 & fcerr
boflo = 1;
| reb_f == 0 & fcerr
rcb w = 1;
£i;
£i;
}

/*

/%
/*
/*

Vi
Vi
/*

[*
/*

ir
1}
o

ptyp

data from link interface */

data to rcb
rchb write signal
rch full signal

data to 1ltb
1th write signal
1tb full signal

frame check error
buffer overflow

== CTL -—>
>

->

Figure 4.10: SSP Program for Receive Circuit
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*/
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*/
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*/
*/
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Figure 4.11: PP3 Block Diagram
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out1086 (port[8]
port[1]
port[1]

port[8]
portl1]
port[1]

port[8]
port[8]
port[8]
porti1]
port[1]
dd.rc

rchb_a
stb_a

lext_w =

lext_a

lext_di:

n

ext_pkt
bit
bit[16]
int_pkt
bit
bit[16]

int_pkt

bit[8]

<rcb_deo; /*
<rcb_el0; /*
>rcb_ads; /*
<stb_dao; /*
<stb_e0; /%
>stb_al8; /*
>ddo4; /*
>lcxt_a®12; /*

bit[4]1[8] >lecxt_di@i3; /#

bit[16]

bit

'
e

>lcxt_wd6; /*

<sf_dg00) /*

stb_d.extp.info[0];

(0..31)

= stb_d.extp.info:(8..

if sf_dg == 1 & rcb_e == 0 & stb_e ==

dd.extp
rcb_a =

= rcbod;
Oxf£f{f;

if rcb_d.ptyp == DATA ->

dd.rc = PENDING;

data from rcb
rch empty signal
rchb ack signal

data from stb
sth empty signal
atb ack signal

downstream data
lcxt address lines

lext data lines
lcxt write signal

*/
*/
*/

*/
*/
*/

*/
*/

*/
*/

grant from switch fabric */

39);

61

/* start logical channel */

/* translation

lext_a = rcb_d.elen:(0..7);
| rcb_d.ptyp != DATA ->

dd.rc = PPNT;
dd.fan_ln = 0;

fi;
| sf.dg == 1 & sth_e == 0 ->
stb_a = Oxffff;

fi;

if stb_d.op == RLCXIT ->

dd = stb_d;

| stb_d.op == WLCXT ->

lext_w = Oxffff;

*/

/* route non-data packets */

/* to CP.

/* start lcxt read */

/% write lcxt */

| stb_d.op == STEST1 | stb_d.op == STEST2 ->
/* out2 does rest */

£i;

dd = stb_d;

Figure 4.12: SSP Program for Outl Circuit

*/
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Figure 4.12 gives the specification defining the functions of the OUTI circuit.
Similar specifications have been written for the OUT2 and INC circuits. The area
of the generated circuits is 2.4 mm?, for the ING circuit, 6.6 mm? for the OUT1
circuit and 4.4 mm? for the OUT2 circuit. The STB LCXT DELAY, and CTL/TIM
circuits are all being created using circuit generators that have been developed for
that purpose. We anticipate that layout of this chip will be completed by the end
of October and that it will be ready for fabrication by the end of the year.

4.5. Broadcast Translation Circuit

The Broadcast Translation Circuit (BTC) provides unique addresses for each of the
copies of a broadcast packet replicated by the copy network. A block diagram of
the BTC is shown in Figure 4.13. The major signals interfacing to the BTC are
described briefly below.

o Upstream data leads (ud) Incoming data from upstream neighbors. Nine bits
wide including parity.

o Downstream data leads (dd) Outgoing data to downstream neighbors. Nine
bits wide including parity.

 Reset (res). Resets the entire BTC when it is asserted, causing any packets
stored in the BTC to be discarded.

e Soft reset (sr). Resets BTC error flag.
¢ Parity Error (perr). Asserted when the BTC detects a parity error.

e Start of epoch (gtma). Goes high four ticks before the first byte of packet is
present on udleads.

The BTC’s operation depends upon the type of packet passing through it.
¢ Ordinary Data Packet. These packets are passed straight through the main
shift register unchanged.

® Broadcast Data Packet. The routing field is replaced with a new field selected
from an internal Broadcast Translation Table (BTT). The new field is selected
using the BCN of the packet.

® Read/Write BIT Entry. This two packet types are used for updating the
BTT and for reading it for auditing and testing purposes.
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Figure 4.13: Block Diagram of Broadcast Translation Chip

The internal components that make up the BTC are similar to those in the PP.
In particular, the BTC can be described as two SSPs along with a lookup table.
This structure is illustrated in Figure 4.13. Specifications of the input and output
SSPs have been written and the generated circuits have areas of about 4 mm? each.
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The implementation of the prototype packet switch for the ACS project requires
several custom integrated circuits. In the past year, we have designed preliminary
versions of two chips and gained considerable insight into both the impact of low-
level design issues on architecture and on the design process itself. In this chapter,
we review our work on constructing special purpose tools to reduce the amount of
manual effort associated with the design of integrated circuits. Our most ambitious
effort in this area is the design of a circuit generator for a particular class of circuits
that arise frequently in 6ur work and which we refer to as synchronous streams
processors. We have also developed a number of other tools to automate various
design tasks.

5.1. Synchronous Streams Processors

Many of the circuits required in a fast packet switching system contain a large
number of functional modules that accept packets on one or more input ports,
modify the packet headers and transfer the packets to one or more output ports.
The various modules operate in tight synchronism because of the use of fixed length
packets. We have come to view each of the specific modules as special cases of a
generic synchronous streams processor or SSP.

65
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Figure 5.1: Generic Synchronous Stream Processor

An SSP, is a module with one or more typed input and output ports, a local clock
synchronized by external timing signals and a function which can be described in
a style similar to a conventional programming language (see Figure 5.1). The local
clock is set to 0 when the external synchronization signal start_time is received,
and is then incremented on every tick of the global system clock ¢. The period
between successive start_time signals is referred to as an epoch and all events
happen at specific times during an epoch.

Each port has a type associated with it. The base type is bit and complex
types can be constructed using arrays and structures. In addition to its type, a
port has a start time and a width. The start time defines at what point in each
epoch the data item defined for that port begins to appear on the port. The width
of the port defines the number of bits available to carry the data. These pieces of
information are sufficient to define when in an epoch and where on a port, specific
items of data appear. This allows a designer to describe the function of an SSP in
terms of actions on port fields, ignoring the details of timing and bit location.

We now turn to a simple example to illustrate how an SSP can be described.
Our example is a 2 x 2 unbuffered switch element that could be used in a self-
routing switching network. A block diagram of the switch element is shown in
Figure 5.2. The headers of the incoming packets have a type field (ptyp) and
an address field (addr). Each switch element uses the first (low order) bit of the
address to select which port to output the packet on. The switch element also
rotates the bits of the address to place the next address bit in the correct place for
the next switch element to use in routing the packet. It may occur that both input



5. Tools for Design of Communication Circuits 67

0—o
ing B out,
outconfl
in 1 O o— Outl
0—o

Figure 5.2: Unbuffered Switch Element

H delay —I—-
E— ——
| tnee |—o
Output

[nput g .
E
» —d ; A
expression| °* g
regs . -
Ports * . evaluation ] ., g . Ports
— ] S
_— g _—
guard n'
Te8% | evaluation o
T 11
@ —e
control/timing
start_time——e

Figure 5.3: Target sSSP Architecture

packets to the switch element request the same output port. If one of these does
not contain useful data (ptyp = PT_NONE), no problem exists since that packet is
dropped anyway. However, if both packets contain valid data (ptyp = PT_PPOINT),
the “straight through” packets are given priority. That is, if both packets request
output 0, the packet on input 0 is passed on and the packet on input 1 is discarded.
Whenever a packet containing valid data is discarded, an error signal is asserted.
The specification of this circuit is shown in Figure 5.5.

The initial struct declaration defines the packet format. The #define lines
define constants and simple macros. The Shipout macro, when given the name
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of an input and an output port, transfers a packet from the specified input to the
specified output, while performing rotation of the address field. The first part of the
router module definition specifies the module’s input and output ports. Port[8]
specifies that the following ports are eight bits wide. The symbols ‘<’ and >’
specify the direction of the port with ‘<’ for input and >’ for output. The number
following the ‘@’ specifies the time at which data starts to pass across the port. The
if statement specifies five different conditions or guards. Notice that the guards
are not mutually exclusive. When multiple guards are simultaneously satisfied,
the actions associated with all of them are carried out. If two simultaneously true
guards contain assignment statements giving a value to the same outgoing field,
an arbitrary choice is made. The simple paradigm of typed, synchronous ports can
also be used to define control signals that must be exchanged between different
modules. This allows us to define more complicated interfaces such as are required
in the packet processor.

$SPs that perform simple functions, as are typical in the packet processors,
fit nicely into a common architecture illustrated in Figure 5.3. This architecture
supports several input and output ports of varying widths. Input ports connect to
a common input bus and outputs to a common output bus. Between these are a
set of processing elements (PE). Each processing element has data registers which
latch selected input fields. The guard evaluation logic in addition, contains the
combinational logic to evaluate the conditions in if-statements. The ezpression
evaluation logic evaluates expressions on the right side of assignments. The delay
lines are used to delay the passage of certain fields to the output bus in order to
satisfy timing constraints. The control and timing element provides timing signals
for latching input data and controlling access to the output bus.

We have developed a circuit generator that takes a high level description of
an SSP and creates a circuit implementing it, by tailoring the target architecture.
We have divided the translation into several parts as illustrated in Figure 5.4.
The compiler takes the high level module description and translates it to a simple
register transfer language. This is further processed by an Ssp assembler which
translates it further to a PE description language. This is further processed by
a PE assembler which generates the actual mask-level description of the module,
using a library of standard cells and a set of PE generators, which include existing
tools such as PLA generator.

Figure 5.6 shows the intermediate specification produced by the compiler. The
first few lines specify the name of the module, the module’s ports including their
names and widths and the maximum time that must be tracked by the module.
The condition lines specify the conditions given in the guards of the if statement.
The outmux lines specify the contents of each bit of each output port. The general
form is
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( module description )

Silicon Compiler

( register zfer lang )

SSP Assembler

L PE description lang )

PE Assembler

PE Gen [-:| PE Gen

(cenntiv ) ( cetttiv )
3

( mask description )

Figure 5.4: Structure of sSSP Generator

outmux output condition first_bit number_of_bits source

When the specified condition is satisfied, the specified group of bits on the specified
output port is obtained from the specified source. The source may either be a
constant or the name of an input port along with a first bit on that input port. In
these statements the bits are numbered serially, igrioring the port width (so bit 3
of the fourth word on a five bit wide port would be referred to as bit 22). So for
example,

outmux _out0 1 0 32 0

specifies that bits 0 through 31 of port _out0 are assigned the value 0, while
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typedef struct {

bit ptypl[2]; /* packet type x/

bit addr[6]; /* destination address */

bit data[72] [8]; /* data in packet */
}packet;

/% various packet types %/
#define PT_NORE 0 /# no data in this packet */
#define PT_PPOINT 1 /* point-to-point packet #*/

#define Shipout(in,out) \
out = in; \
out.addr[5] = in.addr[0]; \
out.addr:(0 .. 4) = in.addr:(1 .. 5);

router (port[8] packet

<in0@0, <inio, /* input data ports %/
>out0Q4, >outiQ4:; /* output data ports */
portl1] bit >outconfle4) /* output conflict #*/
{
outconfl = 0;
if (in0.addr[0] == 0 && inO.ptyp !'= PT_NONE) ->
Shipout(in0,out0);
| (inl.addr[0] == 1 && ini.ptyp !'= PT_NONE) ->
Shipout(ini,outi);
I (in0.addr[0] == 1 &%
(ini.addr[0] != 1 || inl.ptyp == PT_NONE)) —>
Shipout(inQ,outl);
[ (inil.addx[0] == 0 &&
(in0.addr[0] != O || inO.ptyp == PT_NONE)) ->
Shipout(ini,out0};
| (inO.ptyp != PT_NONE && inl.ptyp != PT_NONE &&
((in0.addr[0] == ¢ && inl.addr[0] == 0) ||
(in0.addr[0] == 1 &% ini.addr[0] == 1}}) ->
outconfl = 1;
fi;
}

Figure 5.5: Specification of Unbuffered Switch Element
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name router
output _outl 8
output _outd 8
input _ini 8
input _in0 8
output _outconfl i
maxtime 77

condition €0 (!_ino[2]&'('_ino[1]&!_in0[0]))

condition €1 {(_in1[2]&'('_in1[1]&'_ini[0]))

condition €2 {_in0[2]&(!_in1[2]1(_in1[1]&!_in1[0])))

condition €3 (!_ini1[2]&('!'_ino[2]1('_ino[1]&!'_in0[02)))

condition €4 ((?(!_in0{1]&! _inofo1)&!(!_in1[1]&!_in1[0]))E&
(' ino(2]&! _in1[2]) 1 (_in0[2]&_in1[2])))

outmux _out) 1 0 32 0
outmux _outld 1&1(colc3) 32 584 0
outmux _outo cog!(C3) 32 2 _in0:0
outmux _outl cog!(C3) 34 5 _in0:3
outmux _out0 COk!(C3) 39 1 -in0:2
outmux _out¢® cog'(C3) 40 E76 .in0:8
outmux _outo Cc3 32 2 _in1:0
outmux _out0 c3 34 5 ~in1:3
outmux _outd c3 39 1 _in1:2
outmux _outl c3 40 B76 ~ini:8
outmux _outl 1 ¢ 32 0
outmux _outl 1g1(ci1ic2) 32 584 0
outmux _outi c2 32 2 ~in0:0
outmux _outl c2 34 5 _in0:3
outmux _outl c2 39 1 _ind:2
outmux _outi c2 40 B76 _in0:8
outmux _outl cig! (C2) 32 2 _ini1:0
outmux _outi cix!1(C2) 34 & ~in1:3
outmux _outl cig'(c2) 39 1 _ini:2
outmux _outl ci1g!(c2) 40 576 _ini:8
outmux _outconfl 1 0 4 0
outmux _outconfl 1 3 72 0
outmux _outconfl 1&!(C4) 4 1 0
outmux _outconfl C4 4 1

Figure 5.6: Intermediate Specification of Unbuffered Switch Element
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outmux _out( cox!(Cc3) 34 5 _in0:3

specifies that when condition CO is true and C3 is not, bits 34 through 38 are
assigned the value of bits 3 through 7 on port _ino0.

The assembler phase of the compiler produces a file that contains specifications
of the input and output buses and processing elements required for the circuit. In
the case of the router, this file specifies six bus lines on the input side in addition
to those required by the input ports. These six lines include one for latching
input signals and five for carrying the values of the guard conditions. The file also
specifies 12 extra bus lines on the output side. These are used for gating various
values onto the output buses. The specification of the guard evaluation logic
requests a PLA with six inputs and five outputs. The delay specification requests
a total of eight delay lines, each with an auxiliary output allowing the delayed
value to be used for either of the two output ports. The delay line specification
also includes specifications for several constants. The specification of the control
and timing circuit requests 13 timing signals, one for latching input values and the
remainder for controlling the timing and conditions under which values are gated
onto the output bus.

The circuit generated from this specification contains about 2700 transistors
and occupies an area of 3.7 mm? in two micron cM0s. Of this, roughly 59% is
routing, 22% is the control and timing circuit, 16% is the delay lines and 3% is the
guard evaluation logic. While the fixed floorplan results in circuits that are not
terribly area efficient, the savings in design time more than compensates for the
area usage which in typical applications represents a small part of the total area
of chips in which $SPs are used.

The current version of the circuit generator sspc was written by George Robbert
for his master’s thesis. Since George graduated in June, the program has been
ported to the Sun workstation environment, several bugs have been fixed and
some simple optimizations added. It is now being used to generate circuits needed
within the packet processor and broadcast translation circuit.

5.2. Memory Generators

A packet buffer is a first-in-first-out buffer for storing packets. During a given
packet cycle or epoch, one packet can be written to the buffer and one read out.
The overall structure of a typical packet buffer is shown in Figure 5.7. Its external
interface includes upstream and downstream data ports and several control and
status signals. The memory array is split into multiple bit planes and uses static
memory; dynamic memory was avoided to reduce control complexity and because
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Figure 5.7: Packet Buffer
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simulation studies indicated that the required refresh intervals might prove difficult
to achieve. Incoming packets enter input shift registers at the top of each memory
array and after the packet has been shifted in, it is transferred into the memory
array. Qutgoing packets are read from memory to an output shift register and then
shifted out. The control section includes input and output pointers and a counter
that keeps track of the number of packets in the buffer.

The packet buffer is designed to support different clock speeds on the input
and output sides and asynchronous input. This is accomplished by having three
distinct clocks. The internal clock determines the basic operating cycle of the
buffer. During one of its internal cycles the buffer may be read once and written
to once. The output clock may operate at the same rate as the input clock, or
some integral divisor of the internal rate (typically half). During each output cycle
the packet that is currently the first one in the buffer is read and shifted out on the
downstream data lines (dd). If the downstream device acknowledges receipt of the
packet at the appropriate time in the packet cycle, the control circuit updates the
output pointer and packet counter appropriately. Note that while the output clock
may operate at a different rate from the internal clock, the operation of the buffer
on the output side is fully synchronous. On the input side however, asynchronous
operation is allowed. In particular, a separate input clock is provided to control the
input shift register and synchronization register. The write signal determines when
data is transferred from the input shift register to the synchronization register.
This signal can arrive at an arbitrary moment. The write signal sets an RS flip
flop, which is latched at a fixed time in the buffer’s internal cycle. The output of
the synchronous latch is used only after it has ample time to settle. At this time,
an incoming packet is transferred from the synchronization registers to an input
latch. The only constraint placed on the input side when operated asynchronously,
is that the input clock rate be no more than about half the internal clock rate. The
input side may also be operated synchronously with the internal clock, in which
case it may operate at the same rate as the internal clock.

We have written a program that will take as input a specification of a particular
packet buffer. Parameters that the user can specify include the size of the packets,
the number of packets stored in the buffer, the data path widths and the target as-
pect ratio. The packet buffer generator is being used to construct all the buffers in
the prototype packet processor. Integrated circuits containing large packet buffers
for use in the XMB and RCB have been designed and submitted for fabrication.

A similar program has been written to generate lookup tables. A lookup table is
a memory for storing a table of data. The entries in a lookup table can be accessed
randomly, using an externally supplied address. As with the packet buffer, they
can be read or written just once per packet cycle. At the start of each epoch the
address and write signals are latched and data begins to enter. The table is read
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condinps CO C1 C2
muxouts o0 ol o2 o3
regouts o4 o6
cntsize 7

cntmax 90

cntena --- §4<MAY>
sigset 001 30 o0
sigrst ~—— 32 o0
sigset ——1 27 ol
sigrst -10 32 o1l
sigset --1 38 ol
sigrst -10 45 ol
sigset -—— 2 02
sigrst -1- 70 o2
regclk --- 34 o4
regclk 111 56 ob

Figure 5.8: Control and Timing Example

or written on every cycle. On write cycles, data appears on the output ports at a
specific time in the cycle. The program for the lookup table takes as parameters
the number and size of the table entries, the data path widths and the target
aspect ratio.

5.3. Control and Timing

All the circuits used in the prototype require control and timing circuits to syn-
chronize various operations. A program to generate control and timing circuits
was written initially for use in the synchronous streams processor generator, but
we have found it useful in a variety of other contexts as well. The circuit generated
provides two types of signals; laich signals are high during a single phil pulse and
enable signals are held high for multiple clock ticks. Enable signals change level
while phi2 is high. Both types of signals can be modified by a set of conditional
inputs.

An example of a specification of a control and timing circuit appears in Fig-
ure 5.8. The condinps line lists the conditional inputs, the muzouts line lists the
enable signals, and the regouts line lists the latch signals. The size of the timer reg-
ister is seven bits and the maximum value that need be stored is 90. The cntena
line specifies a condition and time at which counting should be disabled. In this
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case, no condition has been specified, so the counter always stops at a value of 84.
The remaining lines specify the various control signals. For example, the lines

sigset 001 30 o0
sigrst ~-- 32 o0

specify that the enable signal 00 is to be high at time 30 if CO and C1 are both
false and C2 is true, then reset at time 32 independently of the various conditions.
The resulting pulse will be low during phil of time 32. Note that enable signals
may be asserted several times during an epoch with different conditions.

The circuit generated by the program is a dynamic PLA with a counter to
perform the timing function and a set of flip flops which control the enable signals.
The circuit generated by the example above has an area of 0.3 mm? in 2 micron
CMOS.

5.4. Test Vector Generation

One of the most time-consuming parts of designing an integrated circuit is simu-
lating the circuit to verify its operation. This is particularly true for circuits like
the packet switch element which must be simulated over several packet cycles in
order to verify correct operation under the variety of conditions possible. Since
each packet cycle (or epoch) is 86 clock ticks long and each tick of a two phase
clock must be simulated by eight simulation steps, a five epoch simulation run
comprises over 3,000 simulation steps. For each simulation step, roughly 30 input
pins must be specified and another 30 or so monitored. Consequently, typical sim-
ulation input files are about 100K characters long and output files over twice that
length.

Needless to say, generation of such large input files by manual methods is both
time-consuming, tedious and error prone. Consequently, we have developed tools
for automating much of this process. We briefly discuss one program that was
developed for generating the test vectors for the packet switch element. A typical
test specification for the packet switch element is shown in Figure 5.9. The first
two assignment statements specify the operation mode (om) and stage number
(sn) of the chip. Then, there is a sequence of assignments that specifies what is
to happen on subsequent cycles. In these statements, udA and udB refer to the
upstream data ports of the switch elements. Notice that the assignments specify
the values in various fields of the incoming packets; rc stands for routing control,
for example. The downstream information field (.1i) is specified as a sequence of
fields each containing three characters; the first two are interpreted as the contents
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# operation mode = copy network , stage number = 1
om = 3
sn =1

# packet cycle 1

udd.rc = 2
udh.op = 0
udA.ln = 09
udd.becn = 1
udd.i = aal 551
udB.rc = 1
udB.op = 0
udB.1ln = 00
udB.bcn = 0O
udB.i = £01 0f1
dgo = 1
dgi = 1
go 1

# packet cycle 2
udd.rc = 1
udA.1ln = 02
udA.bcn = 0
udi.i = 111 881
udB.rc = 1
udB.1ln = 02
udB.i = 661 991
dgli = 0
dgd = 0
go 1

# packet cycle 3
udd.r¢ = 4
udA.1ln = 00
udd.i = ££f1 £f1
udB.rc = 0
udB.1n = 00
udB.i = 001
dgt = 1
dgl = 1
go 1

Figure 5.9: Example Test Vector Specification

77
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sn=1 om=3 dg0=1 dgi=1 ugi=1 ugB=1
400 200 400 400
091 001 040 051
001 001 001 001
010 001 010 010
aal f01 aal aal
5561 0f1 851 551
aal f01 aal aal

sn=1 om=3 dg0=0 dgi=0 ugh=1 ugB=1
200 200 001 001
020 020 001 00%
001 001 001 001
001 001 001 001
111 661 001 001
881 991 001 001
111 681 001 001

sn=1 om=3 dgl=1 dgi=1 ugd=1 ugB=0
800 001 200 200
001 001 020 001
001 001 001 001
001 001 001 001
11 001 111 £01
£f1 001 881 0f1
f£1 001 111 f£01

Figure 5.10: Example Qutput

of an information byte in hexadecimal notation, the last is the incoming parity
bit for that byte. This allows parity errors to be specified. If only a few fields
are given, the information field is filled with repeated copies of the specified bytes.
The downstream grants (dg) may also be specified, allowing one to specify tests
which cause packets to be buffered in the switch element’s internal buffers. The go
statement causes the simulation to advance the specified number of epochs using
the values specified above.

The program simulates the operation of the packet switch element at a func-
tional level and produces three output files. One is a documentation file that
specifies the input vectors and expected outputs in an easily understood form. A
portion of the documentation file for the example is shown in Figure 5.10 The four
columns specify the packets on the upstream data lines udA, udB and downstream
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data lines dd0, dd1. The second file contains test vectors for the logic simulator,
estm and the third contains the expected output from esim. For this example,
both of these files are over 2000 lines and 100,000 characters long.

The program described was used to generate the vectors for the packet switch
element, greatly simplifying the process and allowing more thorough testing than
would otherwise have been possible. Similar programs have been developed for
the packet buffer and lookup table. We plan to write still others for the PP1, PP2
and BTC chips. Our longer term goal is to develop more general methods that will
allow automatic generation of test vectors for a wide class of circuits.

We have also developed another tool to enhance our existing logic simulator.
The current simulator expects input data to be presented in a so-called horizontal
form, where each input signal is one horizontal line in the input file. This is
inconvenient for long simulation runs. We have written a program called VESIM
that takes data organized in a vertical fashion, reformats it for use by the simulator
then takes the resulting simulator ouput and formats it again into the vertical
format. This facilitates long simulation runs comprising thousands of simulation
steps. It also gives us a format that is fully compatible with the test equipment
that we are using to verify operation of the actual chips.

5.5. Register Generator

A simple program called mkreg has been written to assemble commonly needed
registers and counters. Mkreg can generate registers ranging from simple latches,
to up-down counters with both serial and parallel inputs and high drive or tri-state
outputs. The user specifies the required options and the number of bits and a file
is created containing layout of the specified register. For example,

mkreg -n4 -o exl.mag
specifies a simple four bit static latch and
mkreg -ISE -n4 -ri2 -o ex2.mag

specifies an up-counter (I for increment), with parallel and serial loading (S for
shift), tri-state outputs (E) and reset on a value of 12. This last option means that
when the value of the register reaches 12, the next increment signal will give it a
value of 1.

The registers are assembled from a collection of standard cells that have been
designed to interface compatibly with one another. The program merely assembles
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title = Sample Timing Diagram
xlabel = 1 unit = 5 ns

units 10

signal phil

init value 1
start at 3

duty cycle .25
period 4

signal phi2
initial value 1
duty cycle .5
period 4

start at O

signal sigl

init value 1

at time 2 level =
at time 3 level =
at time 6.5 level
at time 9 level =
sigral sig2

init value 0

at time ,25 level =
at time 2 level = 0
at time 4 level = dc
at time 5.75 level = 1
at time 7.25 level = dc¢
at time 8 level = 0

at time 9.75 level = 1
signal sig3

init value 0

at time O level = 1

at time 2 level = 0

at time 9.25 level = 1

dc

O Il = O

Figure 5.11: Example Input to Timing Diagram Generator
bit slices of the cells implementing the specified options, along with the requisite
control circuitry. This program has been used to generate registers used in the
packet switch element and packet buffers.

5.6. Timing Diagram Generator

We have developed a program to create timing diagrams from a text specification.
The program creates a sequence of AutoCad commands that can be executed using
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Figure 5.12: Generated Timing Diagram

the script command. Customization of the resulting diagrams is then possible
within AutoCad. An example specification is shown in Figure 5.11 The signal
lines introduce the specification of a new signal. Note that clock signals are easily
specified and that signals may have don’t care conditions. The timing diagram
generated by this specification is shown in Figure 5.12.
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6. Multipoint Routing

Faculty Jonathan Turner
Research Associate Makoto Imase
Graduate Student Bernard Waxman

In a packet switched network which uses virtual circuits, the primary goal in
routing connections is to make efficient use of the network resources. For example
we favor an algorithm which can handle the largest number of connections for
a given set of network resources. In a point-to-point network, routing is often
treated as a shortest path problem in a graph. Here the network is modelled as
a graph G = (V, E) where the nodes of a graph represent switches and the edges
represent links. In addition we have two functions cap: F ~ R* and cost: E — R+
which give us the bandwidth and cost of each edge (link). In this model we equate
cost and edge length. At the time a connection is established, a shortest path
connecting the pair of endpoints is selected. Of course only paths consisting of
edges with sufficient unused bandwidth may be chosen.

Routing of multipoint connections may be modelled in a similar way. In the
multipoint problem we wish to connect a set D C V. Instead of the shortest path,
one is interested in the shortest subtree which contains the set D. Finding the
shortest subtree connecting a set of points is a classical problem in graph theory
known as the Steiner tree problem in graphs [32). This problem has been shown
to be NP-complete by Karp [61] in 1972. Consequently one is forced to consider
approximation algorithms which are not guaranteed to produce optimal solutions.

In previous reports we have described results of empirical comparisons of several
known approximation algorithms for the Steiner tree problem, including the MST
heuristic {52] and an algorithm due Rayward-Smith [76]. Our results indicate that
both algorithms yield near-optimal solutions most of the time, with Rayward-
Smith giving slightly better performance than MST. Until recently however, the
worst-case performance of Rayward-Smith has remained open. We have recently
proved that Rayward-Smith’s algorithm has the same worst-case performance as
MST. That is, it never produces solutions with cost more than twice optimal and

83
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Figure 6.1: Worst-Case Example for Rayward-Smith’s Algorithm

furthermore it can be off by as much as a factor of two. An example of a graph
demonstrating the worst-case behavior of Rayward-Smith is shown on the left in
Figure 6.1. In this example, the vertices to be connected appear at the bottom of
the figure. Rayward-Smith’s algorithm joins these vertices with the edges along
the bottom, whereas the optimal solution uses the “tree edges.” Note that the sum
of the lengths of the bottom edges is almost twice that of the tree edges. The right
hand side of the figure shows a general recursive construction for the worst-case
example.

We are currently studying several algorithms which we believe may have worst-
case performance better than two times optimal. One group of algorithms is based
on the technique proposed by Rayward-Smith. These algorithms consider only
those subtrees with more than two endpoints while contracting subtrees created
at each stage of the algorithm to single nodes. Empirical data on one algorithm in
which subirees are restricted to three or more endpoints indicates that it yields a
small improvement over Rayward-Smith’s algorithm. A second group of algorithms
uses MST to generate an initial solution and then in the second stage modifies that
solution in an attempt to produce a solution of lower cost.

The classical approximation algorithms for the Steiner tree problem assume
that the problem is static and can be solved in a centralized fashion. In a large
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Figure 6.2: Empirical Performance of Weighted Greedy Algorithm

network one must rely on distributed algorithms in which no individual processor
has global knowledge. In addition one cannot expect to know in advance all of
the nodes that will be in a given connection. Thus, in their present form the MsT
and Rayward-Smith heuristics are most useful as tools against which the perfor-
mance of more realistic algorithms can be measured. In previous reports we have
described a simple greedy algorithm for the dynamic version of the multipoint
routing problem and have reported on empirical studies of its performance. We
have recently studied a weighted version of the greedy algorithm which has bet-
ter average performance and is less susceptible to pathological behavior than the
unweighted algorithm.

The basic greedy algorithm adds new endpoints to a connection by using the
shortest path from the endpoint to a node already in the connection. Nodes are
removed from the connection by deleting that branch which serves only the node
to be removed. This algorithm can perform reasonably well, yielding solutions that
are typically within about 30% of MST. On the other hand, its performance can
degrade relative to MST when several endpoints drop out of a connection. This
degradation is in part inherent in the fact that the algorithm simply prunes the
connection when nodes drop out, but is exacerbated by the greedy way in which
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endpoints are added in the first place. The weighted greedy algorithm attempts to
improve the performance by making the choice of path to a new endpoint dependent
not only on the length of the path, but also on the length of the path from the
“junction point” to the “owner” of the connection. For our purposes, the owner
0 18 just a distinguished endpoint which cannot be removed during the life of the
connection. In the weighted algorithm, a node u is added to a connection by the
shortest path from it to a node v, in the connection that minimizes the function
w
W(u,v) = (1-w)d(u,v) + wd(v,o)

where 0 < w £ 0.5. When w = 0 this version is equivalent to the basic greedy algo-
rithm. If w = 0.5 a node u is added to the connection by the shortest path to the
owner o. Our experimental results indicate that a value for w in the neighborhood
of 0.3 yields the best results. See Figure 6.2.

At the present time we are considering the worst case performance of several
algorithms which may be implemented in a distributed fashion. For the greedy
algorithm we know that the worst case performance is unbounded in the general
case. In the case where we only add endpoints to the connection we have derived
a bound of log k where £ is the number of endpoints in the connection. We are
also studying an algorithm for modifying an existing connection in a distributed
fashion which we believe has a worst case performance within a factor of two times
optimal.

In order to collect additional data on the performance of network routing algo-
rithms we are now implementing a network simulator, which will generate multiple
dynamic connections. A user will provide the simulator with a description of a
network, a list of connection types, and a routing algorithm. The description of a
network will include the network topology in the form of an undirected graph, with
capacity and cost for each link. In addition a weighting factor for each node in the
network will be used to indicate the relative frequency with which each node is
included in a connection. The description of a connection type will include band-
width, average duration, type (e.g. point to point or multipoint), average size,
and relative frequency. Under a given load the simulator will yield information
on carried load, blocking probabilities, and the costs of connections. Note that
the definition of load is complicated by the fact that we must consider multipoint
connections. We plan to use two definitions of load. In the first case we define
the load induced by a single connection to be the bandwidth of the connection
multiplied by one less than the number of endpoints. Under this definition the
load for a point to point connection is just its bandwidth. In the second case we
define the load induced by a connection to be the product of the bandwidth of the
connection and the cost of an optimum route. Thus for point to point connections
the cost will be the bandwidth of the connection multiplied by the cost of a short-
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est path connecting its endpoints. For a multipoint connection the load will be the
bandwidth multiplied by the cost of a minimum Steiner tree. Here we will make
use of MST to approximate the load induced by a multipoint connection.

In our earlier work, we have studied the expected performance of various algo-
rithms using empirical methods. In the last year, we have begun analyzing these
algorithms in a probabilistic setting. Such studies require appropriate probability
models and a detailed understanding of their behavior. The primary model for
our studies is one in which nodes are distributed randomly on a unit square (or
alternatively a unit sphere), and links are created between nodes probabilistically.
The probability that two nodes are joined by an edge depends on the Euclidean
distance between the two nodes, with nearby nodes having a higher probability of
being joined than distant nodes. More specifically, for each pair of nodes u, v, an
edge is created with probability

)6 ed( wv)fal

where d(u,v) is the normalized Euclidean distance from « to v and « and 8 are
parameters of the model which control the preference for short edges and the overall
edge density. We have derived several basic results concerning the behavior of this
and other related models. For example, for the spherical version of this model, we
have derived the threshold function for connectivity.

5 = 2C(r%a?+1) Inn
T w202(e Ve 41) n
When C > 1 graphs are almost always connected and when C < 1 the graphs are
almost always disconnected. In other words, as the the number of nodes n grows

the probability that a random graph in this model is connected (disconnected)
goestolif C'>1 (C<1)

We have also looked at a simpler model of a random graph in which all edges
have unit cost and the probability of an edge is uniform for all pairs of nodes. For
a constant edge probability we know that almost all graphs have a diameter of
2. As a result, we have been able to show that for a small subset of graph nodes
S, Rayward-Smith’s algorithm will almost always find the optimal solution while
MST will not always find an optimal solution with this model. For example with an
edge probability of 0.2 and |S| = 10, MST is expected to find an optimal solution
approximately 50% of the time.

More recently we have been looking at the diameter of random graphs where
the edge probability is a decreasing function of n and is not bounded below by any
positive value. We know from the work of Bollobas [8] that if the edge probability
is given by

Cnlnn)'/?
sy = (Cnlan”
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then almost all graphs have diameter d for C' > 2. If we let k(n) = |D|, where D is
the set of nodes to be interconnected, we have shown that MST and RS will almost
always produce solutions of identical cost when k(n) < n(t=9/d(d+1) for 0 < ¢ < 1.
In addition if

ent/HHY) < k(n) < nln)t-9/2d

we have shown that Rayward-Smith’s algorithm almost always produces a solution
with cost less than that of MsST.
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The use of packet networks for carrying video signals raises a variety of new
research issues, which we have begun to investigate in the last year. We see three
major sets of issues. The first set concerns the application of video coding to a di-
verse application environment. The second concerns the effect of packet transport
on performance of coding algorithms and the design of protocols to limit undesired
effects. The third concerns the implications of multicast communication for video
coding. Each of these areas is reviewed briefly in this section.

7.1. Video Coding in a Diverse Application En-
vironment

Currently, high compression coding techniques have been applied primarily for
video conferencing, in order to reduce the bandwidth to the range of a few hun-
dred Kb/s. While most of these techniques make use of motion compensation
algorithms, they perform poorly in the presence of even moderate amounts of mo-
tion. We have investigated these algorithms, have determined the reasons for this
poor performance and have devised a class of algorithms capable of far better
performance in the presence of substantial amounts of motion. We believe that
these algorithms will yield substantially better performance in a diverse application
environment.

Most high compression video codecs in common use today are based on trans-
form coding. First, an image is broken into sub-blocks of (typically) 16 by 16
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pixels and then for each sub-block, a two-dimensional transform such as the 2D
discrete cosine transform (DCT) is computed giving a 16 by 16 matrix of trans-
form coefficients. The transform coefficients form an alternative representation of
the initial sub-block, which has the advantage that the perceptually important
information is concentrated in a relatively small number of transform coefficients.
Consequently, one can transmit a fraction of the transmit coefficients (or transmit
them with varying precision) and recreate the image from those few coefficients
without significantly degrading the image.

If one is transmitting a sequence of similar images, as in a video sequence,
additional compression can be obtained by maintaining a copy of the previous
image and transmitting the difference between the current image and the previous
one. Typically, each sub-block to be transmitted is compared to the corresponding
sub-block in the reference image, a difference sub-block is calculated and the DCT of
the difference sub-block is computed and sent with varying precision. This can be
improved further through a form of motion compensation called block matching.
This involves comparing the sub-block not just to the corresponding sub-block
in the reference image but to all sub-blocks of the reference image within a given
distance of the sub-block to be transmitted. The coder then identifies the sub-block
of the reference image that differs least from the given sub-block and transmits the
difference information relative to that sub-block, along with the identity of the
selected reference sub-block. See [65,66] for additional details.

A key element in the performance of a block matching codec is the algorithm
used to identify the sub-block of the reference frame that is most similar to the
current sub-block. To compare two sub-blocks, one typically computes the sum
of the squares of the differences between corresponding pixels. For 16 by 16 sub-
blocks this requires 256 multiplies and 512 additions. To compare a given sub-block
to every reference sub-block within say eight pixels in any direction, requires 289
comparisons or a total of about 220,000 arithmetic operations. Since in a 512
by 512 pixel image, this must be done 1024 times per frame, the computational
requirements are pretty clearly prohibitive for real-time coding.

Consequently video codecs that employ block matching don’t attempt to con-
sider every sub-block in the region. Rather they try to find the best match using
some form of local search. Such techniques can work well if there are no local
minima in which the search algorithm can get stuck. We have found however that
for many typical images, local minima are common, and that the local minima are
typically not nearly as good as the global minimum. Consequently, conventional
search techniques often fail to achieve the highest possible compression rates.

We have devised a class of search algorithms that attempts to solve this prob-
lem. It is based on the idea of computing a concise signature for each sub-block
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Figure 7.1: Compression Rate Comparison

in the search region and then comparing the input sub-block to the reference sub-
blocks on the basis of their signatures. The signatures must be quickly computable
and small enough that it’s reasonable to perform an exhaustive comparison of the
signatures. Then several sub-blocks with closely matching signatures are compared
to the input sub-block using the squared-difference measure and the best match
selected. We have evaluated one version of this technique in which the signatures
are selected coeflicients of a one-dimensional DCT, computed over the sum of the
pixel values in each row of a sub-block. Figure 7.1 shows the results of one of our
experiments. This plot shows the average number of bits per pixel for a sequence
of frames starting from no motion, increasing to a panning motion of eight pixels
between successive frames and then decreasing to no motion. The curves labelled
Rao and Jain give the performance for two popular algorithms that are commonly
used in video conferencing codecs [44,83). The curve labelled exhaustive gives the
performance obtained by exhaustively searching for the best match and the three
other curves give the performance of three variations of our signature-based algo-
rithm. The parameter N refers to the number of sub-blocks with closely matching
signatures that were selected for the final comparison. Notice that the signature-
based algorithm gives compression rates of three to five times that achieved by the
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other algorithms in the presence of substantial amounts of motion. More detailed
results may be found in [50].

The signature-based search algorithms promise far better performance in the
presence of motion than conventional algorithms. This should allow them to oper-
ate successfully in a diverse application environment including video sources with a
wide variety of different statistical characteristics. Another important issue in such
an environment is the need for a variety of video formats. In a ubiquitous public
network, it would be desirable, for example, to support video signals with a range
of different resolutions, in order to allow individuals to purchase displays that suit
their needs and budget. An equally important consideration is that technologi-
cal improvements will continue to make higher resolution displays more affordable
and as this happens, it should be possible to incorporate them into the network
smoothly with a minimum of disruption. Finally, video will be applied increas-
ingly to computer-based applications in which the signal is sent to a window on a
computer workstation. The size and resolution of this window should be variable,
so that the user can adjust them to suit his needs.

These considerations suggest the need for a video coding standard that works
well across a wide range of resolutions. Such a standard would specify the signal
resolution (and possibly other parameters) as a variable whose value is specified
only as part of the actual signal. This would allow a transmitter to change its
resolution as appropriate to a given situation. The coding standard should be
designed to permit economical implementation of decoders that take a signal at an
arbitrary resolution and display it at the available display resolution. This requires
that information at different resolutions be easily separable, a property that of
course is inherent to popular transform coding techniques. Given such a coding
standard, a signal from a given source can be broadcast to a collection of receivers
which can each display the signal at the local display resolution. Furthermore, if
the fine resolution information is transmitted in separate channels, the network
can deliver it only where needed.

It may also be useful to consider varying temporal resolution in addition to
varying spatial resolution. This is already used in vidéo conferencing codecs which
typically transmit 7.5 video frames per second as opposed to the standard 30
frames. Security applications are an example of situations where even slower rates
would be useful. Faster rates may also be important in certain high performance
applications. While there are no great conceptual difficulties to providing variable
frame rates, a standard format that supports it is needed to make it viable.
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7.2. Packet Transport of Video Signals

When video coding is used in conjunction with a fixed rate communication channel,
it 1s necessary to suppress the natural variability in the codec’s bit rate. This is
handled in two ways. First, a rate-equalizer buffer is placed between the output
of the codec and the channel, so as to absorb short term variations in coding
rate. During periods of rapid motion, the buffer can become full, necessitating
a reduction in the coding rate. Several methods [65] of optimizing the feedback
mechanism for maximal picture quality within a given bandwidth budget exist
(typically these involve changing the criteria used by the quantizer), but large
variations in quality are unavoidable, especially at high compression rates.

Packet switching systems, on the other hand, needn’t constrain the codec to
a constant bandwidth channel. Rather, the coding rate can vary in a relatively
unconstrained fashion. Where the conventional codec attempts to maintain a
constant or nearly constant data rate, while minimizing distortion subject to that
constraint, a packet video codec can seek to minimize the number of bits per frame
subject to a constraint on distortion. The ability to transmit at high rates for short
periods makes possible substantially better quality in periods of rapid motion.
This is particularly important for applications involving scene changes, where it
is necessary to transmit a completely new image in short period of time. Given
the ability to transmit at high rates during rapid motion, codecs operating in a
packet environment can be designed to minimize the average data rate rather than
the peak. This is a significant advantage, since studies of the statistical properties
of video signals show that even signals characterized by lots of motion, are very
asymmetric in the sense that the high motion segments constitute a fraction of
the total [46]. At the same time, the data rate variations can’t be completely
unconstrained as the degree of burstiness does have an impact on the amount of
statistical bandwidth sharing possible in the network. While our work on buffer
and bandwidth management provides some insight into how bursty sources affect
queueing in the network, more detailed studies of the statistics of video sources are
needed in order to to develop an understanding of the interactions between coding
methods and network performance.

Packet transport of video signals also raises some new concerns, since lost
packets can degrade the quality of the received signal. Coding algorithms that
exploit temporal redundancy are especially sensitive to packet loss, since it can lead
to inconsistent reference data between transmitter and receiver and if uncorrected,
to gradual degradation of the image. As an example, for a standard resolution
signal with 16:1 compression, one lost packet with 4096 data bits affects 32 of 1024
sub-blocks. Consequently, the effect of the lost packet can be significant. On the
other hand, if the loss rate is low enough, packets are rarely lost. For example, for
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a loss rate of 10~%, one packet is lost about every 15 minutes. Of course, this is
just a single example. In general, increasing the resolution of the signal decreases
the impact of a lost packet on the image but increases the frequency. Increasing
the compression ratio has the opposite effect.

There are several options for reducing the impact of packet loss. One possi-
bility is to use interlaced coding and transmission. That is, the video signal is
organized as two interlaced fields and these fields are separately coded and trans-
mitted, allowing lost information to be recovered by interpolation from the other
field. Another useful technique is background updating; during each frame period
a certain fraction of the sub-blocks can be transmitted in uncoded form, allowing
inconsistencies between transmitter and receiver to be corrected. If for example,
one sub-block in 64 is transmitted without coding in each frame period, the entire
image would be sent roughly every two seconds, while the extra overhead is small
enough to be negligible. If the loss rate is low enough, on-demand retransmission
may be viable; the objective would be primarily to maintain long-term consistency
between the transmitting and receiving frame buffers. Another variation on the
background updating scheme is multi-resolution updating. In this scheme, a low
resolution version of the image is sent without coding on a fairly rapid basis (per-
haps two to four times a second), while higher resolution information is filled in on
a slower time scale. This technique is similar to progressive transmission of still
images [25).

7.3. Implications of Multicast Environment

The multicast environment provided by a broadcast packet switching network cre-
ates several new issues relating to video coding. One such issue was mentioned
earlier. When a video signal is being sent over a multicast connection to receivers
with differing display resolutions, it’s possible for the network to optimize band-
width use by delivering the high resolution portion of the signal only to those
endpoints that require it. This requires only that the high resolution informa-
tion be carried in a separate sub-channel of the multipoint connection; given this
separation, it is a simple matter for the network to provide it only where needed.

Another situation where the multicast environment raises new issues is in ap-
plications with many video sources that are to be combined to produce a display.
One example is a teleconference with several participants at different locations. If
simultaneous display of all the participants is desired, we have the issue of how
to format and transmit the information without excessively loading the internal
links of a multipoint connection. One possibility is to have each participant’s
codec transmit at the ultimate display resolution rather than the source resolu-
tion. With this approach, the network need only provide sufficient bandwidth for
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one source rather than all sources. Another option is to transmit high and low
resolution information in packets of differing priority. The network would deliver
all the traffic if enough bandwidth is available but would preferentially discard low
priority information in the event of congestion. If several priority levels are used,
the network can adaptively accommodate changes in the number of transmitters,
making it unnecessary for the transmitters to explicitly change their coding rate
in response to the number of participants in the conference.

Another issue that arises in a multicast environment is the problem of cutting
into a video signal that is already in progress. There are many applications where
it will be important to allow receivers to join a multicast connection at arbitrary
times. However, if coding algorithms that exploit temporal redundancy are used, a
receiver joining a connection will lack the reference information needed to properly
interpret the coded video stream. This is essentially a more severe version of
the problem of packet loss. It is more severe because it can happen frequently
and because all of the reference information is missing, rather than just a small
part. One solution is, low speed transmission of the uncoded image. To achieve
acceptable subjective quality, this is likely to require transmission of the high
resolution information at a higher rate than the low resolution information. As
an example, if we transmit a 512 by 512 pixel signal four times per second at one
eighth resolution, once per second at one fourth resolution, every four seconds at
half resolution and every eight seconds at full resolution, we use less than 1 Mb/s
for this background information. This allows a receiver breaking into an ongoing
connection to produce a subjectively satisfactory image within a second or two.
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In this section we address the issue of high speed communication in an environ-
ment comprising a mix of subnetworks with widely varying characteristics. The
work of the ACS project and other research organizations is expected to lead to the
development of large public networks capable of supporting applications ranging
from low speed data to voice, high speed data and video. If such networks are to
realize their full potential, they must be designed to operate in an environment
that includes networks with widely varying characteristics.

Since the early seventies, much of the work on computer communication has
been directed toward the development of protocols that allow interworking among
computers, operating systems and communication subnetworks of different types.
These efforts have culminated in the ARPA Internet Protocol Suite which has in-
troduced a number of ideas of fundamental importance. Since the development
of the internet protocols, the technological context in which we find ourselves has
changed dramatically. The development of high speed LANs and workstations, and
the growing role of supercomputers in scientific computing have led to new and
largely unfulfilled requirements for high speed computer communication. These
needs have been difficult to satisfy for a combination of reasons. First, existing
wide-area computer networks have been unable to support the data rates required
and second, the existing host computers are unable to deliver the data to the
application at those rates.

On the other hand, fiber optic transmission systems are being introduced
rapidly into the national communications infrastructure offering vast amounts of
bandwidth at fairly modest costs. Several research groups at industrial and aca-
demic laboratories around the world have demonstrated that new high speed packet
switching techniques can make these resources available in a flexible fashion, but
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up to now these groups have failed to consider the need to operate in a complex net-
working environment consisting of autonomous and/or technologically dissimilar
subnetworks. We feel that it is important to recognize that this kind of heteroge-
neous environment is here to stay and if we are to make the best possible use of
new developments in networking, we need to establish a framework that supports
such diversity.

8.1. Elements of an Extended Internet Model

The ideas developed in the ARPA Internet protocols are important ones, because
they demonstrate that it is possible to build systems that support interworking
across independently administered and technologically dissimilar subnetworks. We
believe that the existence of such subnetworks is a fact of life and that continu-
ing technological change and organizational imperatives will ensure their future
proliferation.

Given then that future networks will operate in a heterogeneous environment,
how must we extend current internet concepts to take advantage of the high speed
communication technologies now under development? We feel that the internet
model must be extended in three major ways. First it must support a connection-
oriented transport service at the internet level that can support applications with
demanding performance requirements. Second it must support a more general
addressing scheme, to allow interworking among diverse subnets. And third, it
should provide a framework for parametric description of subnet capabilities and
connection requirements, allowing the routing of connections through subnets with
appropriate capabilities in an application-independent fashion. These elements are
discussed briefly below.

A Connection-Oriented Transport Service

One common element in most work on high speed networks is the use of connection-
oriented packet switching. There are several reasons for this. Perhaps the most
obvious is performance. Connection-oriented systems separate the more complex
control operations from data transfer, allowing simple and fast hardware imple-
mentations of the data transfer. This is an important issue both within switching
systems and within the various devices that communicate across the network., We
feel that this separation of control and data will also be important in delivering high
performance to computer applications, since it will facilitate the development of
hardware-based mechanisms for speeding data transfers into and out of computer
systems.



8. High Speed Internetworks 99

A second reason that connection-oriented networks are attractive is that they
allow the network to make explicit resource allocation decisions when connections
are established, and this in turn makes it possible to offer far more predictable
performance than is possible in connectionless networks. Such predictable per-
formance, while not always essential, is necessary for applications like interactive
voice and video. Such resource allocation decisions must be made using some form
of rate specification that describes the amount of bandwidth the user requires. For
applications that don’t have hard requirements, one can have “soft specifications”
that give a range of acceptable possibilities, and allow the network to make its
resource allocation decisions relative to other traffic. This can be extended fur-
ther; we can include connections with “degradable specifications,” and allow the
network to take resources away from such connections in order to accommodate
new traffic,

Finally, connection-oriented networks offer more generally useful methods of
multipoint communication than is possible in truly connectionless networks. Con-
nectionless networks can support multipoint communication in one of two ways;
transmission of packets with a list of destination addresses or by transmission to a
multicast address. The first mechanism is useful only for multicasts with a small
number of endpoints and the second is essentially a form of connection, since it
must be possible to associate a given set of endpoints with a given multicast address
and these associations can be expected to change over time.

The arguments given above imply that an extended internet model should in-
clude a connection-oriented service. We refer to the connection-oriented service as
ICP for internet connection protocol. This would not replace the existing connec-
tionless service but would likely be the method of choice for applications that are
connection-oriented at a higher level. ICP would support connections with resource
requirements described by a general rate specification and would support multi-
point connections. It would not provide perfectly reliable connections; that is it
could deliver packets out of sequence or not at all. It would be designed to support
very high speed connections and in particular would be structured to allow data
transfers to be handled by simple hardware.

A Flexible Internet Addressing Scheme

One of the key requirements for an internet that can support communication across
diverse subnetworks is a flexible addressing scheme that allows one to specify ter-
minal devices that may be located in any of the subnetworks. Some of the specific
objectives we have in mind are listed below.

¢ We want a scheme that allows us to address devices on existing subnet-
works as diverse as current telephone networks (both public and private),
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the ARPAnet, X.25 data networks and local area networks. Note that these
networks currently use completely different forms of addressing and it is un-
realistic to expect them to change.

o The addressing scheme should support a hierarchical organization of the ad-
dress space, allowing the separate entities responsible for various subnetworks
to manage their portions of the address space independently of the others.

e In order to support very large networks the addressing method must support
routing methods that are not dependent on detailed global knowledge of
network topology or traffic.

¢ The addressing method should allow for devices that have an identity in-
dependent of their current network location, facilitating the relocation of
terminal devices and communication among mobile devices that may not
have any fixed location.

None of the addressing schemes currently in use provides the level of flexi-
bility needed in a general internet environment. In particular, none allows for
operation in an environment that includes subnetworks with their own addressing
schemes that may be very different from one another. We next outline a frame-
work for addressing that would allow co-existence of such diverse subnetworks.
Our framework is driven be our desire to support interoperation among existing
and future subnetworks, without imposing the unrealistic requirement that their
native addressing methods be abandoned. Our framework supports a hierarchical
organization that allows routing to be carried out without the need for detailed
global information. We envision this hierarchy to be based on routing knowledge
rather than on physical connectivity. The proposed form of an address in our
framework is as follows:

OBJ :: DOM; :: DOM, :: DOM3 :: ...

OBJ denotes an object, which can designate a physical terminal device or some
other entity within a terminal. Object identities must be unique across the entire
network, a requirement that can be fulfilled by having the identity incorporated
into a device at the time of its manufacture. DOM denotes a domain, which is either
a subnetwork or a subnetwork together with the address of some entity within
the subnetwork, where such an internal entity is identified using the subnetwork’s
native addressing scheme. Subnetwork identities are globally unique, a requirement
which implies the existence of an organization or organizations to assign them.

To be useful, the particular sequence of domains in an address must tell us
something about routing. We require only that DOM; have a mechanism for deter-
mining how to reach DOM;_;. This allows (but does not require that) the “path”
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implicit in the address to be used for routing. In general, when a route is required
for a given address, local routing information would be used at various switching
systems and gateways to find a short path. So for example, if a path to the device
specified by OBJ were known by a particular switching system, that path could be
used, ignoring the remainder of the address. Similarly, if a given gateway knew
how to reach DOMj,, it would not be obliged to go through DOMs. Note that there
is no requirement that DOM; be physically connected to DOM;_;, only that it be
able, using whatever internal mechanisms it has at its disposal, to find DOM;_;.

The OBJ portion of the address is optional, allowing for anonymous objects
identified only by their location. This is needed for interworking with networks
that support only anonymous devices (such as telephone networks), and relieves
simple devices of the requirement for explicit identities. As indicated above, DOM;
may specify either a subnetwork or an entity within a subnetwork. The appropriate
form would be determined by the subnetwork. For example in a subnetwork in
which every switch/gateway knows how to reach every other, DOM; could specify
just the subnet, rather than a particular entity on it. On the other hand, in
a large wide area network where individual switches/gateways have only partial
knowledge, DOM; might specify both the subnetwork and the identity of a gateway
that joins the subnetworks of DOM; and DOM;_;. Alternatively, DOM; might give
the identity of a routing processor within the subnetwork. The case of the first
domain, DOM, is a little special; in particular, when no explicit object identity is
provided, DOM; must include the address within the subnet of the object.

This kind of a framework allows for the interoperation of existing networks,
including some very dissimilar ones. For example it allows a telephone call to
be placed from an appropriately equipped personal computer located on a local
area network, to an ordinary telephone on the existing telephone network. It also
allows connections between LANs to be routed using switched connections in the
telephone network, if appropriate. It supports flexible routing for private wide
area networks, allowing for example, that routes enter the private network at the
most convenient gateway, rather than requiring (as with current private wide area
telephone networks) that they enter at a particular place. This in turn allows
transparent movement of devices within such subnetworks.

Parametric Description of Subnet Capabilities

Given the variety of capabilities of the subnetworks included in an extended in-
ternet, it is essential that the internet protocol include mechanisms for describing
the capabilities of subnetworks, so that routing decisions can be guided by this
information. For example, when selecting a route for a connection requiring a
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bandwidth of 1 Mb/s it is essential that the route not traverse subnetworks inca-
pable of supporting that bandwidth. Similarly connections requiring low packet
loss rates should not be routed through subnets that lose packets frequently.

The following list gives a few of the parameters that might be included as part
of a subnet description. A few of these parameters are given relative to a “standard
reference path,” which for example might be a path carrying heavy traffic between
devices that are say 1000 km apart.

o Bandwidth options. This specifies the various connection bandwidths that
the subnet can support. It may be specified as a few discrete values or ranges
of values.

e Bandwidth allocation option. This specifies the type of bandwidth allocation
that the subnet can support. Options include peak bandwidth allocation, in
which bandwidth is dedicated to a connection and cannot be statistically
shared with other connections; statistical allocation, in which connections
with varying instantaneous data rates can statistically share bandwidth, but
with explicit allocation provided to ensure predictable performance; and no
bandwidth allocation, in which no performance guarantees are provided.

o Packet loss rates. This specifies the frequency of packet loss on a standard
reference path.

e Packet misordering separation. This specifies the time between transmission
of packets on a standard reference path at which the likelihood of packet
misordering exceeds some threshold (say 10~3).

o Packet delay. Specifies delay on a standard reference path (perhaps average
and ninety-ninth percentile).

¢ Multipoint capability. The ability to support multipoint connections.

e Transit traffic. This specifies a subnet’s willingness to carry transit traffic,
that is traffic that crosses the subnet but does not terminate at some device
on the subnet.

The parameters listed above are envisioned as static. It may also be useful to allow
more dynamic traffic information to be included and updated periodically. Using
these parameters and possibly others together with knowledge of individual con-
nection requirements, it is possible for the ICP protocol entities to make informed
decisions when routing connections.
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Figure 8.1: Connection Across a LAN

8.2. Design and Implementation Issues

In the previous section we have presented a number of ideas that we believe should
be included in an extended internet model. We have also begun to explore some of
the resulting design and implementation issues. In particular, we have considered
the issue of how one supports the ICP protocol across a connectionless subnet, the
converse problem of how one supports a connectionless service across a high speed
connection-oriented subnetwork and the issue of how the host architecture can be
modified to exploit the separation of data transfer from control provided by the
ICP protocol so as to achieve very high performance.

Consider Figure 8.1. How should we implement a connection across the LAN
which has no concept of connection? There are two major issues involved. First,
how is a connection established and second, once it is established, how are packets
transferred from the gateway to the appropriate host and vice-versa. One possibil-
ity is to include the connection establishment functions within the gateway; that
is hosts requiring connections would exchange control messages with the gateway
at the time of connection establishment, and the gateway would in turn exchange
control messages with the connection-oriented network (N2) to complete the con-
nection. Assuming the connection can be established, the gateway and H1 must
agree on a way to identify packets belonging to the new connection. Then during
the data transfer phase, the main gateway function would be to perform a rout-
ing translation; that is when a packet is received from N2 on the logical channel
selected during connection establishment, it would be reformatted to include the
address of H1 and whatever local identifier agreed upon by H1 and the gateway;
in the other direction a similar translation would be performed.
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One of the gateway’s functions would be to monitor the usage of resources on
the access link to N2, rejecting new connections that would overload it. In addition,
the gateway should ideally monitor the LAN traffic and take it into account when
accepting new connections. The monitoring function is not difficult to implement if
one takes advantage of the broadcast nature of most LANs. On the other hand since
much of the traffic on the LAN is not under the control of the gateway, resources
available at connection establishment may not continue to be available later. How
serious this issue is clearly depends on the proportion of the traffic that is subject
to explicit resource allocation.

We note that the connection establishment functions need not be built into the
gateway device. Any host on the LAN could implement these functions, allowing
the gateway to be implemented as a relatively simple and fast hardware device.
It’s functions would in this case be reduced to packet relaying, using information in
control tables that can be updated by the controlling host. This example illustrates
some of the issues associated with operating connection-oriented and connectionless
internet protocols within an environment comprising subnetworks with limited
capabilities. Other cases are considered in [68]

We now briefly discuss some of the host interface issues. A typical networked
host, is structured with a network interface sitting on the host’s primary bus and
effecting communication by transferring information to and from memory under
control of the processor. When an incoming packet is transferred to memory,
the processor is interrupted and subsequent processing typically involves a few
decapsulations of the packet, scheduling of a few processes, processing of a few
interrupts, and maybe copying the packet a couple of times[13]. All this processing
essentially translates to throughput which is much lower than the raw data rate. A
number of optimizations have been suggested to make these steps efficient within
the host’s operating systems in order to achieve higher throughput [14,15], but
these must be viewed as stop-gap measures that cannot be expected to provide
the order of magnitude improvements needed to take advantage of the high speed
networks becoming available.

We propose a modified host architecture shown in Figure 8.2. Important as-
pects of this model are summarized below:

e The model includes a separate network bus which is used for getting packets
into and out of the host, and thus, relieves the processor bus of this traffic.

e We propose that there be several transport level protocols optimized for
different classes of applications. These protocols can be part of the network
bus interface of various devices connected to the network bus, and thus can be
optimized to the applications using those devices. For example, a transport
protocol for the frame buffer can be optimized for video applications.
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Figure 8.2: Proposed Host Interface Architecture

® Depending on application, the interaction between a user process running
on the processor and the transport protocol can be such that most of the
per-packet processing is done by the transport protocol on the interface in
hardware and data copying is avoided by allowing the interface to deliver
data directly to the application.

For example, in a high speed file transfer protocol, application level entities
would initially negotiate name, type, and place of the file with options and
pass this information to the transport protocol. But during an actual data
transfer, the transport entities would retrieve and store the data as fast as
possible without any intervention from the software. The blocks that are
received with error or not received at all will be noted but retransmission
will be done only at the end in a second round, thus not throttling the
sender and the receiver with the error control mechanisms. (Some of these
issues are discussed in more detail for a similar environment in [15].)

We note that our model also includes the current approach of delivering data to
memory where further action is taken by software processes. This option would be
exercised for example where the data requires additional processing or where the
need for flexibility is more important than the need for high performance.
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