Advanced Networks Grbup

Research Summary, 1989

J.
L1

Computer and Communications Research Center
Washington University, St. Louis

The Advanced Networks Group

The Advanced Networks Group (ANG) of the Faculty

Computer and Communications Research Jonathan Turner
Center (CCRC) is concerned with new Andreas Bovopoulos
communication technologies that can support a Guru Parulkar

wide range of different communication
applications in the context of large public
networks. Fast packet or ATM networks promise
a far more flexible communications
infrastructure than is currently available. The
Advanced Networks Group is in particular Bernard Waxman
concerned with systems that are capable of
supporting ubiquitous multicast
communication, suitable for applications such
as video distribution, voice/video
teleconferencing and LAN interconnection. We
are developing an experimental switching
system supporting links operating at 100 Mb/s
and have devised economical switch
architectures that can support link speeds in
excess of a gigabit per second and having total
throughput exceeding a terabit per second.

Doctoral Students
Akira Arutaki
Victor Griswold
James Sterbenz

Masters Students
Hai Feng Bi
Charles Cranor
Gaurav Garg
Tony Mazraani
Einir Valdimarsson

Our work spans a variety of topics including
switching system design and analysis,
performance evaluation of switching systems
and networks, multicast connection
management, algorithms for multicast routing,
buffer and bandwidth management in the
presence of bursty traffic, internetworking of
high speed networks, image and video
compression and design of specialized
computer-aided design tools. Our research
program includes a strong experimental
component, which currently centers on the
development of our prototype fast packet
switching system. We have developed several
integrated circuits to be used in this prototype
system and plan to assemble a network of four
switches to demonstrate applications of fast
packet switching. The experimental work is a
crucial element of the overall research program,
exposing detailed issues not apparent in higher
level studies and providing a strong focus for
the other activities.

Related Activities

The Computer and Communications Research
Center also carries out research activities in’
parallel computer architecture, parallel
algorithms, design automation and performance
analysis and modeling. Recent activities have
centered on the application of parallel
computers to logic simulation and the
associated problem of task allocation. This has
included development of parallel simulated
annealing algorithms and their application to
task allocation for logic simulation.

The Center is headed by Dr. Mark Franklin
and includes Dr. Roger Chamberlain, Dr. Ken
Wong and several graduate students in addition
to those in the Advanced Networks Group. The
Center’s facilities include three Sun file servers
and over a dozen workstations, a variety of
software for VLSI circuit design, software
development and performance modeling. In
addition, a 64 processor NCUBE multiprocessor
is available for work on parallel algorithms and
a well-equipped electronics laboratory provides
facilities for assembly and testing of systems.

The Computer Science Department’s Applied
Research Laboratory is a closely allied
organization that carries out projects with the
objective of transferring faculty research results
into industrial practice. ARL currently has a
full-time engineering staff of six, and is engaged
in a project whose objective is to demonstrate
the potential of the broadcast packet switching
technology, developed by the Advanced
Networks Group. The project involves
construction of a network of four switches at
different locations in the St. Louis area, and
demonstration of their use in support of video
and medical imaging applications. The project
also has a research component centering on
algorithms and systems for video and image
compression, and a second research component
centering on image workstations for medical
applications. Faculty and graduate students in
Computer Science, Electrical Engineering and
the Mallinkrodt Institute of Radiology are

involved in various aspect of these activities.
The project lS supported by Southwestern Bell
Corporation and NEC America.

ARL Staff

Jonathan Turner

Neil Barrett
Rick Bubenik
Pierre Costa
John DeHart
Mike Gaddis
Randy Richards

Industrial Partnership Program

The Industrial Partnership Program (IPP)

provides a mechanism for research interactions

between the staff of the Advanced Networks

Group and interested industrial organizations.

Members receive technical reports and
publications and have opportunities to meet

with the research staff in person to discuss their
activities. The program provides three levels of

membership to meet the differing needs of
program members.

Associates pay an annual fee that is currently

$40,000 and receive the following benefits.

¢ Timely access to all technical

developments, including one copy each of

technical reports and annual progress
reports produced by the Advanced
Networks Group.

e The right to send two representatives to

annual progress review meetings.

o A royalty-free license for internal use of all

patents, software and hardware designs
developed by the Advanced Networks
Group and the right to commercially
license patents and other technical

developments of the Advanced Networks

Group.

o A 20% discount for attendance at short
courses offered by the Center.

o The right to send visitors to work at the

Center for an additional annual fee of
$20,000 per visitor.

e The opportunity to meet with and observe
outstanding graduate students who may be

candidates for industrial employment.

Program Supporters pay an annual fee of

$60,000 and receive, in addition, the following

benefits.

e The right to send two representatives to

semi-annual progress review meetings.

e The same licensing rights as above with
the additional extension of such rights to
Supporter’s affiliates and subsidiaries.
Furthermore, Supporters receive a credit
against future royalty payments for all
research funding.

e A 40% discount for attendance at short
courses offered by the Center.

e The right to send visitors to work at the
Center for an annual fee of $10,000 per
visitor.

Program Sponsors pay an annual fee of $80,000
and receive the above benefits plus:

o The right to specify a mailing list of up to
ten individuals who will receive all
technical reports and annual progress
reports produced by the Advanced
Networks Group.

¢ The right to send any number of
representatives to semi-annual progress
review meetings.

e A 2:]1 credit against future royalty
payments for all research funding.

o A 60% discount for attendance at short
courses offered by the Center.

e The right to send visitors to work at the
Center with no annual fee.

e One 1-2 day consulting visit per year at
Sponsor’s location by Center staff.

Program members can reduce their annual fees
by $10,000 per year by making a two year
commitment to remain in the program.

Companies currently supporting the work of
the Advanced Networks Group include:

Bell Communications Research
Bell Northern Research

Ttaltel SIT

Nippon Electric Corporation

Program Overview

The research program of the Advanced
Networks Group includes a blend of
experimental, analytical and theoretical work
with a strong systems focus. We are sirongly
committed to the proposition that successful
engineering research requires an intimate
knowledge of the practical issues involved in
building complex systems, as well as strong
analytical capabilities. We find that theoretical
research, in the absence of a strong connection
to practical concerns, too easily drifts into
activities of interest only to an ingrown research
community, and is ultimately sterile and
unprofitable. On the other hand, experimental
work that is uninformed by a deeper
understanding of fundamental issues, can have
only limited and short-term value. The
program we have constructed, is based on this
commitment to both engineering science and
practice, and is unusual among university-based
research programs in this regard.

Over the past several years, we have engaged in
research activities focussing on packet switching
systems operating at link speeds of about 100
Mb/s. This work has included the design and
implementation of integrated circuit
components and their use in experimental
switching systems; performance evaluation of
switching systems from a variety of different
points of view; design of connection
management protocols for multicast networks;
design of multicast routing protocols; high
speed internetworking and host-network
interfaces; buffer and bandwidth management;
distributed debugging systems; special purpose
computer-aided design tools; and video coding
algorithms. These activities are described
briefly in the short articles that follow and
more fully in the references. A prime
distinguishing feature of our research activities
has been our focus on the problem of multicast
communication. The experimental switching
system we are constructing will be one of the
first high speed packet switching systems in the

world that is capable of supporting large
amounts of multicast communication and our
research directed to understanding how to
efficiently operate such systems is unique.

Our research agenda is now directed
increasingly toward the design and analysis of
switch architectures capable of supporting
gigabif transmission rates. We are designing
architectures capable of supporting such speeds
using very wide internal data paths and
moderate speed circuit technology. We are also
interested in switching systems suitable for high
speed datagram switching, and in particular,
the integration of datagram switching in a
system supporting point-to-point and multicast
connections. Another key element of our
evolving research agenda is the application of
high speed networks to computer-based
applications, particularly those involving high
resolution images and multimedia workstations.
This work involves the design of high speed
connection-oriented internet protocols, and the
design of host interfaces and gateways capable
of implementing them. We also have a
continuing interest in the network control and
optimization problems associated with emerging
high speed networks. In particular, we continue
to work toward better methods for bandwidth
allocation and management in fast packet
networks, as well as more efficient distributed
algorithms for multicast connection routing.

Some of our maturing activities have been
recently spun off to a new project being carried
out by the Computer Science Department’s
Applied Research Laboratory. This project will
demonstrate the application of fast packet
technology to support visual communication
applications, in particular video applications
and medical imaging. The project is headed by
Dr. Jerome Cox and includes the construction
of a demonstration network of four fast packet
switches supporting multicast connections.
This effort is being carried out by the Applied
Research Lab’s full-time professional staff, in

collaboration with the Advanced Networks
Group. The demonstration network will
provide a testbed that will be used to support
research on applications and network control
and operations, and will play a central role in
our continuing research.

The program provides ample opportunities for
discussion and collaboration with IPP members.
In addition to providing members with timely
access to technical reports and publications, our
regular progress review meetings are designed
to stimulate interaction between members and
ANG’s faculty and students. Through these
discussions, members have the opportunity to
point out new research directions and help
guide the research activities in order to ensure
its practical relevance. Interactions with
students and staff can also be promoted
through extended visits by ANG staff to a
member’s location or by extended visits by
member personnel to Washington University.
Such interactions have been a crucial part of
our research program with several of our
visitors being key collaborators who played a
strong role in our program, while providing
their companies with deeper insight and
understanding of ANG’s research activities.

Design and Analysis of Switching
Systems

Experimental Switching Systems

Neil Barrett, Hai Feng Bi, Pierre Costa, Gaurav Garg, Tony Mazraani,
Randy Richards, George Robbert, James Sterbenz

The Advanced Networks Group is developing a
prototype fast packet switching system
supporting link speeds of 100 Mb/s and a
general multicast capability, which we call the
Broadcast Packet Switch. The organization of
the switching system is shown in Figure 1. The
system consists of several major components, a
set of Packet Processors (PP) which provide the
interface between the core of the system and
the transmission links, a Control Processor (CP)
which configures connections in response to
signaling messages received from users and
other switching systems, a Copy Network (CN)
which performs the packet replication required
for multicast applications, a set of Broadcast
Translation Circuits BTC which perform a
second stage address translation, a Distribution
Network (DN) which provides a load balancing
function and finally a Routing network (RN)
which guides packets to the appropriate
outgoing links.

The operation of the system is best illustrated
by considering the flow of a packet through the
system. When a packet is received at an
incoming Packet Processor, the packet’s logical
channel number (which is stored within the
packet’s header) is extracted and used to select
an entry from a routing table within the Packet
Processor. The entry includes a fanout which
specifies the number of outputs the packet is to
be sent to and a secondary identifier called the
Broadcast Channel Number. The fanout is used
by the Copy Network to control the packet
replication process. As the packet passes
through the Copy Network it is replicated at
various points and the fanout values in the
replicated packets are halved. The replication
process delays replication of a packet as long as
possible to reduce loading in the early stages of
the network. At those points where replication
is not required, the packet is routed arbitrarily
to one of the two outputs.

When the multiple copies of a packet reach the

Broadcast Translation Circuits, the Broadcast
Channel Number is used to extract an entry
from a secondary routing table. This table
provides an outgoing link number for the packet
which is then used by the Routing Network to
guide the packet to its ultimate destination.
The contents of the routing tables in the Packet
Processors and the Broadcast Translation
Circuits are determined by the Control
Processor, which can modify specific entries by
means of control packets sent through the
switching network. Control Processors in
different switching systems can exchange
signaling messages with one another to request
establishment or modification of a user
connection.

Integrated circuits have been designed to
implement the various elements of the
architecture described above. Each Packet
Switch Element used within the Copy,
Distribution and Routing Networks is a single
integrated circuit designed in a 2 gm CMOS
process; the number of transistors is
approximately 45,000. Each one implements a
two input, two output switch with eight bit
data paths and hardware flow control. The
same chip can be used in any of the three
networks by means of two external
configuration pins. A clock rate of 25 MHz
provides a data path speed of 200 Mb/s, which
will support link speeds of 100 Mb/s without
internal congestion. Each Broadcast
Translation Circuit is implemented as a single
chip with approximately 25,000 transistors.
The Packet Processors include four chips each,
one interfacing to the transmission link and
providing both bit and packet level
synchronization, another interfacing to the
network and providing the routing translation
function, and two others which buffer packets
waiting to be sent to the copy network or the
transmission link. These circuits have
complexities ranging from about 40,000

CcP
n 3/110)

(Su
Ethernel : T
] i=in iﬁ
== =H .
= = ==
HHE = ==
== = ==
=S8 = p=rs
== Tl 1=

- Copy Network

Figure 1: Broadcast Packet Switch Architecture

transistors o over 200,000.

Our experimental 16 port switch will consist of
a total of eight circuit cards. The network cards
will contain a complete 16 port switch with 32
packet switch elements. The physical
organization of the system uses a conventional
backplane configuration with high density
connectors providing about 800 pins on each of
the network boards. Each network board has
32 input and output links comprising 10 signals
each, including parity and flow control. This
gives 320 signal pins and another 320 signal
grounds at the backplane connector.

See references (2, 26, 34, 36, 54, 48, 49] for
further details.

Routing Network

Performance of a Broadcast Packet Switch

Rick Bubenik, Jonathan Turner

We have made an extensive performance study
of the broadcast packet switch architecture. We
have developed analytical methods which allow
us to assess the worst-case loading conditions
for a wide variety of specific architectures of
which the broadcast packet switch is
representative. We have also used simulation to
evaluate a variety of design trade-offs in detail.
Some of these results are summarized below.

Our simulations indicate that the overali
performance of the system is determined
primarily be the routing network. We have
shown that a system with six stages of binary
switch elements, each containing two buffer
slots per input, can achieve a throughput of
about 55%; this is more than adequate, given a
2:1 speed advantage over the external
transmission links. With a single buffer slot the
maximum throughput is about 50% and with
four slots it is about 60%. We have investigated
the improvement obtainable using larger switch
elements. Surprisingly, a reduction in
throughput is observed when FIFO queueing is
used in the switch elements, as a consequence of
head-of-line blocking effects. When bypass
queueing is substituted, we see a substantial
improvement in throughput for both binary and
larger switch elements, and the expected
advantage for larger switch elements.
Specifically, throughputs of about 63% can be
achieved with binary switch elements and two
buffer slots per switch element input;
throughputs of 75% can be achieved using four
port switch elements with comparable buffers.

The switch elements used in the broadcast
packet switch employ cut-through switching, in
which a packet is passed directly from the input
to an output if the output is idle when the
packet arrives. Our simulations show that that
this yields about a 10% improvement in
throughput, relative to the no cut-through case.
More important, cut-through reduces the delay
through the system substantially. For the
broadcast packet switch, the delay through the

copy, distribution and routing networks is
about 3 packet times under normal operating
conditions, with cut-through and about 20
packet times without it.

In the Copy Network, congestion is caused by
packet replication and is hence primarily
dependent on fanout and the number of inputs
generating traffic. We find that when all inputs
are busy and fanouts are assigned randomly,
the maximum throughput generally improves as
the average fanout increases. This is due to the
reduction in packet arrival rate required by
increasing fanout in order to accommodate the
limited capacity of the output links.
Throughput reaches its lowest point when only
a few adjacent inputs generate all the traffic.
For deterministic fancuts a striking dependence
emerges. Throughputs of 100% are achieved
whenever the fanout is a power of two, then
decreases sharply as the fanout increases past
that point. This is attributable to the binary
structure of the Copy Network which makes it
most efficient when the fanout is a power of
two, These results are illustrated in Figure 2.

We have developed an analytical method for
evaluating the worst-case loading for
architectures similar to the broadcast packet
switch. For example, we have shown that an
extended delta network with & distribution
stages and d port switch elements requires a
speed advantage of dl*+%)/2) where £ = log,n
in order to handle all possible traffic
configurations. As a corollary, we have that an
ordinary delta or banyan network requires a
speed advantage of /n if log; n is even and
Vn/2 if loggn is odd. Also, we have that a
Benes network requires no speed advantage.
The result quantifies the improvement
obtainable by adding distribution stages,
allowing a designer to engineer the system to
meet his needs without adding more
distribution stages than necessary.

Our method applies to networks that perform

10

1.0

0.9

0.8

carried
load

0.7

0.6

0.5

packet replication, as well as point-to-point
networks. One surprising result is that the

-] 1 1 i [] 1

0 10 20) 30 40 S0 60
fanout

70

1.0

09

0.8

carried
load

0.7

0.6

0.5

nsre=2

30 40 50 60
fanoul

Figure 2: Copy Network Throughput for Random and Deterministic Fanouts

worst-case performance of a copy network can

deteriorate as the size of the switching elements

is increased. In particular, the required speed

advantage for a copy network with delta or
banyan topology using d port switch elements is
d + 1. However, this can be reduced to less
than two by making appropriate choices for the
broadcast channel numbers and adding a single

distribution stage.

See references [18, 19, 49] for further details.

11

70

Design of Gigabit Switching Systems

Jonathan Turner

The broadcast packet switch architecture as
described above is most suitable for systems
with up to about 100 ports. As the architecture
is scaled to larger configurations the copy,
distribution and routing networks become the
dominant cost components. The number of
chips required for these elements on a per port
basis is 1.5 log, 1, where n is the number of
ports; so for example in a system with 1024
ports, the number of chips required is 15 per
port, plus four in the packet processor and one
in the Broadcast Translation Circuit. The
complexity of this architecture can be reduced
by using larger switch elements organized in a
bit-sliced fashion. Using such an organization,
the chip count for the copy, routing and
distribution networks becomes 3(m/d)log;n
where d is the size of the basic switch element
and m is the data path width. If welet m = 8
and d = 32, which is a feasible choice, the chip
count for the 1024 port system becomes 1.5
chips per port. Systems with up to 32 thousand
ports require only 2.25 chips per port as
opposed to 22.5 for a switch constructed from
binary switch elements.

Figure 3 illustrates a design of a bit-sliced
switch element with d input and output ports
and supporting m bit wide data paths. Typical
values for d might be 16 or 32. Values for m
might range from 8 to 64. Packets enter on one
of the d upstream data lines (ud;) at left, and
the m bits of each packet are distributed across
m separate data slices (Ds). The packets exit
from the switch element on the downstream
data lines (dd;) at the right. The switch
element contains sufficient internal buffering to
store several packets for each port and
implements a simple hardware flow control
mechanism to prevent packets from overflowing
these buffers.

The control slice shown at the bottom of the
figure contains the circuitry used to control the
operation of the switch element. It receives a
set of downstream grant signals (dg;) from the

downstream neighbors and generates a
corresponding set of upstream grant signals
(dg;) which are sent to the upstream neighbors.
In general, a switch element asserts an
upstream grant signal ug; if it is prepared to
receive a packet on the upstream data lines ud;.
The packets flowing through the switch element
are organized so that all the control
information (in particular, the addressing
information) passes through the first data slice
DSg. This allows the control circuit to easily
monitor the control information for all packets
entering the data slice. Using this information,
together with the downstream grants and the
internal status of the switch elements, it makes
control decisions and broadcasts those decisions
to the data slices. In addition, the first bit of
the packet in every data slice is a control bit
indicating the presence or absence of a packet.

There are several options for the organization
of the data slices. The buffering can be located
on either the input or output side or it can
placed centrally and shared by all the inputs
and outputs. This last configuration provides
by far the best performance for a given amount
of buffering. It requires input and output
crossbars and a set of buffers, each large enough
to hold one slice of a packet. The buffers can be
implemented as dynamic shift registers with a
feedback path used to recirculate a packet if it
is unable to proceed during a given cycle. The
output crossbar allows a packet to be sent to
multiple outputs during a given cycle,
permitting multicast connections. Also, a
multicast packet that must be sent to several
outputs need not be sent to all outputs
simultaneously. If not all outputs are
immediately available, it can be sent to the
available outputs and recirculated in the buffer
until the remaining outputs become available.

The control slice contains no data storage but
makes decisions regarding how the packets
passing through the data slices are to be
routed. The key element of the control slice is

12

DS(m-1)
——ipy
| DS(2)
s -

d(o L Ds(0) = dd(0
ﬂdgls L - Z, - ddm
ud(2 £ - £ > dd(2)

ya
ud(d-1) £ L - dd(d-1)
4
1 y ¥

ug(0) -—— a—— dg(0

ve(1) 2 De—

ug(2) Control e
ug(d—1)-a—» re— dg(da-1)

Figure 3: Organization of a Bit-Sliced Switch Element

an arbitration circuit which receives requests
from each of the d inputs, and grant signals
from the downstream outputs and makes the
necessary control decisions. The key design
challenge is to orchestrate the decision-making
in parallel so that all the required decisions can
be carried out in a single operation cycle.

Preliminary designs of the bit-sliced switch
element indicate that a 32 port switch element
with 32 bit wide data paths, shared buffering,
4096 bit packets and three buffer slots per port
requires a data slice chip with about 220,000
transistors and a control slice of about 410,000
transistors. While the data slice can be handled
using two micron CMOS, the control slice
probably requires 1.6 micron technology.

Another important parameter of the design is
the amount of control information that must be
sent from the control slice to the data slices
during each packet cycle. This has implications
for the minimum packet length. In particular, a
32 port switch element with three buffer slots
per port requires 320 bits of control

information. If this information is carried on
eight pins, the packet cycle time must be at
least 40 clock ticks. Allowing time for control
processing, this increases to perhaps 64 ticks.
With a 32 bit wide data path, the resulting
minimum packet length is 2048 bits.

See reference [50] for further details.

13

Nonblocking Multirate Networks

Riccardo Melen, Jonathan Turner

This research extends the classical theory of
nonblocking networks to switching systems in
which the internal data paths carry multiplexed
traffic in which individual user channels
consume an arbitrary fraction of the bandwidth,
subject only to the constraint that the total
traffic not exceed the capacity of the data path.
This model is applicable to multirate circuit
switches and to packet switched networks in
which all packets in a given connection follow
the same path through the switching system.
The new theory has immediate application to
several experimental switch architectures now
under development around the world.

An important parameter affecting the blocking
characteristics of a given switching network is
its speed advantage, which is defined as the
ratio of the network’s internal data path rate to
the rate of its external transmission links. We
have shown that any multirate network that has
only a 1:1 speed advantage must have ©(n?)
complexity in order to be strictly nonblocking.
Given an appropriate speed advantage, many
classical results can be generalized to the
multirate environment. For example, we have
shown that a multirate version of the three
stage Clos network is nonblocking for exactly
the number of middle stage switches as in the
single rate case if the speed advantage is at least
two. Similarly, the number of planes required to
make the Cantor network strictly nonblocking
is exactly the same as for the circuit switching
case when the speed advantage is two.
However, in multirate networks, we have the
possibility of trading off the speed advantage
against the network’s topological complexity.
Hence, a Benes network, which can be viewed
as a single plane Cantor network, is strictly
nonblocking if we employ a speed advantage
approximately equal to the logarithm of the
number of inputs and outputs. In particular, an
r stage Benes network is strictly nonblocking
when operated with a speed advantage of . So
for example, a three stage network comprising

32 x 32 switch elements which has 1024 inputs
and 1024 outputs is strictly nonblocking with a
3:1 speed advantage. We have also determined
the conditions under which various networks
are rearrangeably nonblocking. As an example,
the three stage Bened network mentioned above
is rearrangeably nonblocking when the speed
advantage is at least two. In general the speed
advantage required for rearrangeable operation
is proportional to loglogn, wher » is the
number of inputs and outputs.

This work also extends to multipoint networks,
that is switching systems that distribute a
signal from an input to multiple outputs. We
have derived the conditions that lead to
nonblocking operation for single rate networks
due to Ofman and Thompson and Pippenger.
The three stage Benes network, when used for
multipoint traffic, requires a speed advantage of
approximately +/n in order to be nonblocking;
the situation is even worse for five stage
networks. This has serious implications for
several experimental systems now under
development which use a Beneg topology. Such
systems are likely to experience high blocking
probabilities in the presence of substantial
amounts of multipoint traffic if operated with
little or no speed advantage. We have shown
however that the blocking characteristics of a
Benes network with respect to multipoint
connections can be improved by adding extra
distribution stages. In particular, a pair of
Benes networks cascaded together are wide
sense nonblocking with respect to new
multicast connections.

See references [29, 30] for further details.

14

.

HER

X=X

7!1

\

EEE]

/

]I\H

L4 1]

S

PiE=
T

BN

Figure 4: Nonblocking Multipoint Network

15

Blocking in Multirate Networks

Einir Valdimarsson

While nonblocking networks allow us to avoid
blocking completely, they do so only at the
expense of a potentially large speed advantage.
This can substantially increase system cost and
may not always be justified. For this reason, we
are interested in determining the likelihood of
blocking in multirate networks.

Blocking probabilities in circuit switching
networks have been well studied, but very little
work has been done on examining blocking in
the multirate environment where connections
share the internal data paths of the switch. We
have developed an analytical method to
evaluate the blocking probability in multirate
systems. The method is based on the
well-known static models of Lee and Pippenger
for space division networks. In these models, we
let p be the probability that one of the switch’s
internal data paths is busy; Lee assumes that
the busy/idle probabilities for different links are
corapletely independent, while Pippenger
assumes independence for network inputs and
outputs and assumes random routing, but
correctly accounts for the dependencies among
links incident to a given switch within the
network.

In a multirate network, a switch’s internal data
paths are not simply busy or idle but may have
some fraction of their bandwidth in use. We
extend Lee’s and Pippenger’s models by
assuming a link occupancy distribution and
letting ps be the probability that a link’s
occupancy exceeds 1 — é. Using ps in place of p,
we can apply Lee or Pippenger’s method to
multirate networks to determine the probability
that a connection of weight § will block. We
currently obtain an approximate link occupancy
distribution from a given connection bandwidth
distribution by solving a single link blocking
problem. This technique is computationally
straightforward and useful for comparison
purposes, but does tend to overestimate the
probabilities of high link occupancies.

We have also performed a simulation study
assessing blocking in multirate Benes networks.
Our dynamic simulator model uses exponential
interarrival times and exponential holding times
for connections. It also allows for several
different connection classes and routing
algorithms. As one would expect, the blocking
increases with increasing offered load in the
network, and the blocking causes the carried
load to deviate from the offered load. For high
load, links are usually not fully utilized, and
fragmentation occurs.

We have found our results on how blocking is
affected by network parameters such as switch
element size, number of inputs and number of
stages, very interesting. Blocking is reduced
drastically by increasing the size of the switch
elements but it is surprisingly unaffected by
increased number of inputs or stages. By
operating with a speed advantage compared to
the external communication links, we can
reduce the load and therefore the blocking in
the network. Melen and Turner [29] have shown
that Bene& networks are nonblocking with a
speed advantage which is a logarithmic function
of the number of inputs. Our simulations have
shown that if we are willing to accept some
small but nonzero blocking probability we can
get by with a substantially smaller speed
advantage and one that is virtually independent
of the network size.

The bandwidth distribution has an impact on
the blocking. Apparently large connections are
more likely to block than small ones since the
large connections need more resources. This
behavior is seen in Figure 5 which shows
interactions between two different connection
classes. The two connection classes both have
deterministic bandwidth requirements that are
varied between 0 and 1. The probability of
blocking for class A is shown. Notice how as
the bandwidth of class A increases, the blocking
probability also increases. Increasing the
bandwidth for class B connections also

16

Blor.kl'n:j
Ptobob(h’i‘y
of A

7% 'vix\vi;\'fiiii; ﬁi\“"i"ikwav

IAVIA\VA\YIA\AWMM‘\V

/r I l SEaRY,
v)\::m::vzs:tv"&
J— ’=2— “'I I A,”A\‘ IIIII ,II F 0.01
aoo1 "” ﬂ 7/‘\‘V/Ia ‘Vl L 0.00!
0.0001 > y I I ‘/f(/’ :.z':\l | 0.000t
A\ ’ 1

‘I‘

4, ‘o q

) ‘o::::'
4, e, ’
=

0.0
Figure 5: Blocking Probability for Mixed Traffic

increases the blocking probability for A but not expense of a small bandwidth class. Our

as dramatically. The blocking probability map preliminary conclusion for this portion of the
shows several plateaus with steep transitions in research is that a simple packing algorithm
between. The shapes of the plateaus are offers the best overall performance. Segregation
determined by the fragmentation caused by the of different bandwidth classes can work well in
bandwidth distributions. For example, the top some cases but does not usually perform as well

plateau is bounded by the bandwidth as packing. Reserving bandwidth for large
combinations that allow at most one connection bandwidth classes has little effect unless a lot of
on a switch’s internal data paths. bandwidth is reserved, leading to unacceptably

In a mixture of connections of different high blocking for the other classes.

bandwidth we found that the usual blocking
probability can be misleading as it neglects the
bandwidth differences among blocked
connections. Consequently, we have adopted a
new measure called the weighted blocking
probability. If p(w) is the density function for
the probability of connections of weight w and
b(w) is the density function for the probability
of blocking connections of weight w then the
weighted blocking probability is defined by

'/01 wp{w)b(w)dw.

We have tried using several routing algorithms
to reduce the overall blocking and also to
equalize the blocking for different bandwidth
classes. The idea of equalization is to reduce
the blocking of a large bandwidth class at the

17

Control of Multicast Networks

Connection Management in Multicast Networks

Mike Gaddis, Victor Griswold, Kurt Haserodt, Mark Hunter, Jonathan Turner

Connection management refers to the collection
of algorithms, data structures and protocols
used to create and maintain connections among
users. In conventional networks, connections
join two endpoints. In multipoint networks,
connections may join an arbitrary number of
endpoints. Several types of connections appear
to be useful, including point-to-point
connections and simple broadcast connections
having one transmitter and many receivers.
Connections in which all participants can both
transmit and receive are also useful for
conferencing and LAN interconnect applications
among others.

As one considers applications of multipoint
communication, one soon realizes that what is
needed is a general multipoint connection
capability that realizes point-to-point,
broadcast and conference connections as special
cases. We illustrate this method by describing a
simple one-way broadcast connection, shown in
Figure 6. The connection has a single
transmitter G and receivers C, D, F and J.
The internal nodes in the diagram represent
switching systems. At various internal nodes,
the stream of packets originating at G is
replicated and forwarded to the appropriate
destinations. The connection induces a tree in
the network, in much the same way that a
point-to-point connection induces a path in a
conventional network. The table in the upper
right-hand corner of the diagram summarizes
some global information describing this
connection. The G7 at the top is the connection
identifier, which is a globally unique name
identifying this connection and distinguishing it
from all other connections in the network; the
motivation for having a connection identifier
will be explained below. One simple way of
providing such an identifier is to use the
address of the owner of the connection together
with an integer distinguishing this connection
from others that the owner may also be
participating in. The owner of the connection is

just that termination that is responsible for the
connection and controls access to it. This
scheme has been used in the example, implying
that G is the owner, as well as the only
transmitter in the connection. The 50M
denotes a rate specification of 50 megabits per
second. In a real network, a more complex rate
specification is required, allowing specification
of peak rate, average rate and some measure of
“burstiness,” but we will ignore this issue here.
Each endpoint participating in the connection
can have transmit-only permission, receive-only
permission or transmit/receive permission. The
permission concept provides the basic
mechanism needed to allow the specification of
general multipoint connections, that can be
tailored to different applications. The network
uses the permission information to allocate
resources, (primarily link band width)
appropriately. The R at the bottom of the
table defines the default permission to be
receive-only, meaning that whenever an
endpoint is added to the connection it is
initially assigned receive-only permission; this
can of course be changed by the owner if some
other permission is required.

The example illustrates a connection that

might be appropriate for distributing an
entertainment video signal. To establish such a
connection, G would send a control message to
the network, describing the type of connection
required. At that point it could begin
transmitting on the connection, but initially
there would be no one to receive the signal.
Endpoints can be added to the connection in
one of two ways. First G, as the owner, can
send a message to the network asking that a
particular endpoint be added. In response, the
network would send a connection invitation to
the specified endpoint and if the endpoint
agrees (by exchange of control messages) to join
the connection, the network would allocate the
necessary resources to include the new endpoint
in the connection. For entertainment video

19

G7,0
50M

Figure 6: One-to-Many Connection

signals, a more appropriate way of adding an
endpoint is at the endpoint’s request. That is,
an endpoint could send a control message to
the network, requesting that it be added to a
specified connection. To make such a request,
the endpoint must specify the appropriate
connection identifier. For entertainment video
signals, this information would typically be
widely available and could be built into
terminal equipment, or programmed in, as
appropriate. In response to such a request, the
network would first search for the nearest place
that the specified connection is available and
then attempt to add the new endpoint by
creating a branch at that point.

Addition of new endpoints from “outside” the
connection raises the need for some form of
authorization. In the example, the O at the top
of the table specifies that this connection is
open, meaning that anyone who wishes to join
the connection may do so without explicit
authorization from the owner. This would
probably be the appropriate specification for a
commercial video broadcast. QOther options
include closed, meaning that no one can join
from outside and verify, meaning that outsiders
may join, but only after getting explicit

permission from the owner.

The highly dynamic nature of large multipoint
connections makes it necessary to use control
protocols that allow concurrent changes in
separate portions of a large connection.
However, changes that affect data at common
points in the network must be sequenced
carefully to ensure that the distributed
database describing the connection
configuration does not become inconsistent. We
have developed a simple transaction-based
protocol that supports highly dynamic
multipoint connections using a three phase
request-acknowledge-commit protocol.

See references [21, 44] for further details.

20

Routing of Multipoint Connections

Makoto Imase, Bernard Waxman

In a packet switched network which uses virtual
circuits, the primary goal in routing
connections is to make efficient use of the
network resources. For example we favor an
algorithm which can handle the largest number
of connections for a given set of network
resources. In a point-to-point network, routing
is often treated as a shortest path problem in a
graph. Here the network is modeled as a graph
G = (V, E) where the nodes of a graph
represent switches and the edges represent
links. In addition we have two functions

cap:E — R* and cost: E — R+ which give us
the bandwidth and cost of each edge (link). In
this model we equate cost and edge length. At
the time a connection is established, a shortest
path with sufficient available bandwidth
connecting the pair of endpoints is selected.

Routing of multipoint connections may be
modeled in a similar way. In the multipoint
problem we wish to connect a set D C V.
Instead of the shortest path, one is interested in
the shortest subtree which contains the set D.
Finding the shortest subtree connecting a set of
points is a classical problem in graph theory
known as the Steiner tree problem in graphs.
This problem has been shown to be
NP-complete by Karp. Consequently one is
forced to consider approximation algorithms
which are not guaranteed to produce optimal
solutions.

There are several polynomial time
approximations algorithms for solving the
Steiner tree problem, which we have used as a
starting point for work on multipoint routing.
The minimum spanning tree heuristic (MST)
produces solutions whose costs are never worse
than twice that of an optimal solution. Our
experimental evaluations of MST indicate that it
typically yields solutions that are within five
percent of optimal. Figure 7 illustrates an
example of the application of MsST. Here we are
asked to connect the set of four nodes

D = {a,d,e,g}. The first step of the algorithm

involves constructing a derived graph G[.D].
This graph is a complete graph on the four
nodes in D), where the length of each edge
corresponds to the length of the shortest path
in the original graph G. The second step
involves finding a minimum spanning tree for
G[D). This can be done using one of several
polynomial time algorithms. Finally the edges
of the minimum spanning tree for G[D] are
mapped back to paths in the original graph,
taking advantage of path overlap. Note that the
solution here has cost two units more than
optimal.

We have studied a more sophisticated algorithm
for the Steiner tree problem known as
Rayward-Smith’s algorithm and have shown
that it also produces solution that are no worse
than twice optimal, and surprisingly, that it can
produce solutions that are that bad. We have
devised a generalization of Rayward-Smith’s
algorithm which we conjecture produces
solutions that can be arbitrarily close to
optimal, at the cost of increased, but still
polynomial running time. We have also
developed iferative versions of MST and
Rayward-Smith’s algorithm which while they
have the same worst-case performance as the
ordinary versions give slightly better
performance in practice.

We have studied a dynamic version of the
Steiner tree problem that more closely models
the behavior of communication systems in
which endpoints are added and removed from a
connection over time. In particular, we have
shown that if no rearrangements are allowed,
the best possible solutions can be about
(1/2)1og, n times the cost of solutions
obtainable with unlimited rearrangement.
Furthermore, a simple greedy algorithm
produces solutions that are never more than
about log, n times that obtainable with
unlimited rearrangement. When limited
rearrangements are allowed, solutions with cost
no more than eight times that of an optimal

21

a S d
T 4
€ g
4
A minimum spanning tree for G[D] Basic MST solution, cost = 13

Figure 7: An Example of the Application of MST

solution are possible, but the number of
rearrangements is large, (approximately the
square root of the number of endpoints).

Probabilistic analysis has also been applied to
compare the performance of the various
algorithms for the Steiner tree problem. These
results show for example that both MsT and
Rayward-Smith’s algorithms produce optimal
solutions with high probability in large
networks with large multicast connections. If
the size of the connection is small,
Rayward-Smith’s algorithm still yields optimal
solutions with high probability but MsT
generally yields suboptimal solutions.

See references (22, 23, 55, 56, 57, 58, 59] for
further details.

22

High Speed Host Interfaces and
Internetwork Protocols

High Speed Internetworking

Guru Parulkar, Tony Mazranni, Charles Cranor

We have proposed a very high speed internet
abstraction (called vHsI} which can efficiently
support guaranteed levels of performance for a
variety of applications, and can cope with the
diversity of underlying networks. Important
components of this abstraction are shown in
Figure 8. It resembles the existing internet
abstraction in rudimentary ways. For example,
the internet level protocol in the vHsI also
interfaces with transport protocols and
underlying networks, uses transport facilities of
the subnetworks to forward packets, and uses
gateways to switch packets between
subnetworks. However, there are significant
differences between the vHsI and existing
internet abstractions as outlined in the
following paragraphs.

MCHIP. McHIP is a novel multipoint
congram-oriented high performance internet
protocol, equal in status to IP in terms of the
protocol hierarchy. For applications, such as
multimedia conferencing and interactive remote
visualization that require strict performance
guarantees, MCHIP establishes a congram and
makes explicit resource reservations. For
applications, such as file transfer and electronic
mail that can tolerate loose performance
guarantees, MCHIP uses a congram that can
multiplex traffic from multiple application
conversations and that does not make resource
reservations for each individual conversation.
Thus, the congram service primitive aims at
combining the strengths of both classical
connection and datagram approaches.

Resource Server. The vasI abstraction provides
performance guarantees to applications by
preallocating resources to congrams, based on
the application needs. However, a number of
networks do not do resource management on a
per congram basis, and therefore the vHsI
abstraction includes resource servers to provide
this functionality.

Router. The vHsI abstraction includes

appropriate routing functionality for the intra-
and inter-autonomous region routing, with due
considerations to the policy and access
constraints of autonomous regions.

Gateway Architecture. In order to keep up with

very high data transmission rates of

communication links, it is essential that packet
processing and forwarding be simplified. The
solution used in the VHSI involves separating
critical and noncritical paths, and simplifying
the critical path as much as possible. It is
important to note that the critical path is
simplified by caching the state information
about application conversations; this is
naturally achieved in MCHIP with congrams.
Depending on the gateway platform and
performance requirements, the critical path can
be implemented using a general purpose
processor, a special onboard processor, or
custom vLSI. We believe that the division of
functionality into critical and noncritical paths
is the key to achieving high-speed and
high-performance gateways.

The vHsI research is in its early stages, and
considerable work is necessary to demonstrate
viability of the proposed approach and
understand associated tradeoffs. We have have
developed the outlines of the vHSI approach,
and have identified and begun work on several
research and prototype subtasks that are
detailed below.

¢ Design and specification of MCHIP. We
have completed specification of a simplified
version of MCHIP. The specification
includes packet types, sequence of packet
exchange, and representative scenarios, and
is reported in [27].

¢ Implementation of MCHIP under Unix on a
workstation. We want to create a separate
socket address family under Bsp Unix for
MCHIP — similar to IP and XNs address
families. Applications would use the

24

-

Q O jTrangpor_tJ
== Applications

I
oS
Yy ¥
» ; Router
MCHIP R
Tesnspor k==
Facility VHSI
1 Resource
< | Server
L [
V4
NET1 NET2 NET3 Networks

Figure 8: VHsI Abstraction

standard socket interface with socket type
MCHIP to use MCHIP services. MCHIP will
be interfaced to the standard network
device drivers. This implementation will
also be partially useful for the gateway as
described below.

Effectiveness of a resource server on a
broadcast local area network. We are
working on a simulation of a csma/cp
network with a number of hosts and a
resource server. The resource server keeps
track of all active congrams, their resource
usage, and the network utilization. Hosts
can generate both congram and datagram
traffic. In the case of a congram, the host
first checks with the resource server to
determine if adequate resources are
available for the congram. Thus, a
congram is established only if its resource
needs can be met, otherwise, it is blocked.
The resource server can throttle datagram
sources if they consume more than their
fair share of resources. The purpose of the
simulation is to understand what kind of
performance guarantees can be made to
congram traffic at a given network
utilization using a central resource server
and in the presence of datagram traffic.

e Implementation of a BPN-FDDI gateway.

We have started working on a two port
BPN-FDDI gateway which will use MCHiP
(with other hosts) as the internet protocol.
The gateway implementation consists of
two parts; G, is responsible for all MCHIP
congram management and G for
per-packet processing and packet
forwarding between networks. G, would be
a slightly modified version of the host
MCHIP implementation. G, involves
designing a microprocessor controlled
board with an FDDI interface (using an
FDDI chip set or existing controller), BPN
access chips, and appropriate glue logic.

Further details may be found in {32, 33, 27].

25

The Axon Host-Network Interface Architecture

Guru Parulkar, James Sterbenz

The research and development of high speed
switching systems and networks will result in
the ability to construct networks and
internetworks that support data rates up to a
few Gbps. We refer to this as the vHsI (very
high speed internetwork). Similarly, processor
and workstation power and functionality is
rapidly increasing which make network
applications, such as distributed scientific
computation and visualization, video
distribution on demand, multimedia
conferencing, and remote imaging possible. For
such applications to fully utilize VHSI
performance and functionality, however, the
host-network interface architecture must be
capable of delivering the high bandwidth to the
applications with minimum latency.

The Axon architecture satisfies this need by
providing (1) an integrated design of host and
network interface architecture, operating
systems, and communication protocols stressing
both performance and the required
functionality for demanding applications such
as visualization and imaging, (2) a proper
division of functionality in hardware and
software for optimal performance, (3)
reorganization of end-to-end protocols to take
advantage of the increased functionality of
emerging high speed networks. The overall
Axon architecture is described in [40].
Significant features of the Axon architecture are
summarized below, and presented in Figure §.

System level IPC support and NVS. The
system level support for the various application
level interprocess communication paradigms is
provided by two components: Nvs and NMP.
Nvs (network virtual storage) is the system
level shared memory interface for shared
variables, GRPC (generalized remote procedure
call), and segment streaming. NMP (network
message passing) is the system level message
passing interface. NMP performs a relatively
straightforward transformation of program
(send, receive) primitives to corresponding

transport protocol message-object transfer
calls. Nvs extends the typical virtual storage
mechanisms to include systems throughout the
VHSI. A segmented programming model is used,
with underlying paging to facilitate storage
management, as in the Multics operating
system.

Transport protocol. At the transport level,
applications using the VHSI are best supported
by a set of simple ALTPs (application-oriented
lightweight transport protocols) for various
classes of applications. Key issues in the design
of an ALTP are the implementation of critical
functions in hard ware, rate based flow control,
application-oriented error control, and
structured collections of packets.

ALTPs have their critical path functions
implemented in vLSI hardware. The critical
path consists of the data path, and routine
control functions allowing data to flow at peak
network rates, once a transport operation has
been initiated. By optimizing the critical path
functions, and by processing multiple packets in
a single transport level operation, the per
packet processing can be performed in real time
at the full sustained data rate. For the protocol
to be efficiently implemented in hardware, the
protocol, hardware design, and host operating
system should be well integrated.

Host and network interface architecture.
The Axon architecture interfaces the cMP
{communications processor) to the back end of
a special dual-ported cMM (communications
memory module). The CMM has a conventional
random access port which appears like any
other memory bank to the processor-memory
interconnect. The second port is a high speed
serial access interface to the cMP.

The goals for the design of the cMP include the
ability to perform critical path functions in real
time, with no packet buffering, and the ability
to incorporate the necessary functions in VLI

26

Host CPU+M

[

5

y 3 %

P

P p f 2 £

datay pipe TR R TR R AT

.
i

internet link

/-_"N\
(aux store

slots

0S sched
A CMP
ALTP
host [=34———-»{ | ALTP
T critical
Y !
o Vs
tables T] T
real
storage »
frames 1/0
Hprog
L P 1
I
,, 7
5 - .
G = buffer[™
IOP

(T

Figure 9: Axon Architecture

The cMP implementation consists of a pipelined
set of datapath modules and control modules.

Work is in progress on analytical and
simulation models to evaluate the associated
tradeoffs more rigorously, on a detailed design
of the communication processor, and a
prototype implementation of the architecture.
Successful completion of this effort will result in
the following:

e Demonstration of viable Axon design
(functional, performance) from the design
specifications, implementations, and overall
simulations. This provides the proof of
concept.

o Determination of function that is part of
the critical path, as data rates scale above
1 Gbps, based on the time-space
complexity analysis.

e Specific solutions for the network-host
object mapping, determination of

27

components to be included in the critical
path, 0s interaction, and determination of
whether implicit or explicit mapping is
better.

Understanding of relationship between
latency and memory requirements in terms
of locality and working sets, based on
latency, processor performance, and
network bandwidth, with respect to the
incorporation of function in the critical
path.

Prototype implementation of an Axon
interface and demonstration of a number of
target applications, especially medical
imaging and distributed solid modeling.

Axon: Network Virtual Storage Design

Guru Parulkar, James Sterbenz

This note presents an overview of the design of
network virtual storage (Nvs) in the Axon host
communications architecture for distributed
applications. Nvs extends segmented paged
virtual storage management and address
translation mechanisms to include segments
located across an internetwork. This provides
the ability to efficiently use the shared memory
paradigm in non-local environments, as well as
the support for a very high speed end-to-end
data path between demanding applications such
as scientific visualization and imaging.
Additionally, segments that are transported
across the VESI are mapped into the address
spaces of processes by Nvs. This eliminates the
need to copy segments from intermediate
system buffers into the process address space,
resulting in lower latency and system overhead.

Data structures. Addressing of a segment
resident on a non-local host is accomplished by
including a host id field in either the virtual
address, or in the segment descriptor table
(sDT) entry. When a segment fault occurs for a
nonlocal segment (indicated in the segment
descriptor), the dynamic address translation
facility invokes the transport protocol
(ALTP-OT) to get a copy of the segment from
the appropriate system. As the segment is
returned, the appropriate page and segment
descriptor presence bits are set, so that program
execution can resume with the normal fault
recovery mechanisms. The address translation
data structures are presented in Figure 10.
Address pointers are represented by arrows on
solid lines, the movement of data/requests is
represented by arrows with dashed lines.

The local storage management data structures
are extended to allow the addressing of
segments on other hosts. This is accomplished
by adding a host id field to the known segment
table (ksT), which holds the symbolic segment
bindings. This is an index into the per process
known host table (KHT), which holds the
symbolic host name to address/path bindings.

This binding is resolved by searching the host
address table (HAT) for each host, which gets
its binding by invoking an internet name server,
using the host name database (END). There are
also tables (not shown in the figure) to assist in
n-way IPC using multipoint connections.

Segment types. Axon segments are of two
types: memory and video. Memory segments
are either code or data subtype. Memory
segments are divided into pages, and may be
organized into segment groups, for performance
reasons. Video segments are either text or
graphics subtype. Graphics segments are
bit-mapped video image frames; text segments
correspond to a text window on a workstation.
Video graphics segments are divided into
scanlines, and may be organized into
multi-frame images (eg. a color image of R,G,B
frames).

Segments have attributes of read, write,
execute, indicating the type of access allowed.
Code segments are assumed to be pure
(refreshable), and therefore always have access
attributes of execute-only. Data segments may
be readable and/or writable.

Storage management policies. NVS in
Axon involves extensions and additions to
storage management policies. The fetch policy
is not affected by Nvs, except that
demand-segment implies a degree of
anticipatory-page movement across the network
and is, in fact, desired to counter latency
effects. The (real) placement policy is not
affected by Nvs at all, since placement is trivial
for paged storage management, and unaffected
by Nvs.

An entirely new policy, the remote placement
policy, is used to determine where remote
segments are placed while being used by the
local system. These include real store, auxiliary
store, a combination, or frame buffer
placement, with a number of sub-policy
options, such as swappable and nailed. Due to

28

Process System Network

aym oddr
s <z>|o -
¥ kst
UDir {
r= LOR ———— gel-segment{<s>)
kngwn “_ _---——-_1 =
K A o
EEZT OS] ve¥ ool
APT KHT L
T &
=] Ao B h> T B
ged—segment(h)
SOT AST
vend Tve
’2‘:« a:'ennnh
[— _{l> POT
e R
real
store
St =
Py r
o)
Y

RS
A ount

L______%.’.‘f’.'_.;;_.\h!

Figure 10: Network Virtual Storage Address Translation

the presence of segments from remote hosts, the
conventional replacement policy is affected. In
particular, placement of entire remote segments
in real store will result in presence of some of
the pages that are not really in the process
locality set in the real store. This indicates that
the estimation of working sets must consider
local and remote segments differently.

Nvs and its storage management policies are
described in more detail in [37, 41].

29

ALTP-OT and Communication Processor Design

Guru Parulkar, James Sterbenz

Most current transport protocols (including
TCP, X.25, and SNA) are general purpose,
providing complete flow and error control to all
applications. This results in complexity of
implementation and operational overhead that
is not necessary for particular applications. It
may be possible to functionally partition a
transport protocol, to provide only the
functionality needed for various classes of
applications, while still allowing the use of a
single protocol by adjusting the appropriate
parameters. A similar strategy that does not
require that a single transport protocol serve all
applications, is to have a small set of
application-oriented transport protocols. A
possible set might consist of application
oriented transport protocols for object transfer,
for voice and for video distribution.

Somewhat orthogonal to the scope of the
transport protocol is the simplicity of design
and efficiency of operation. A protocol that is
simple, streamlined, and efficient is referred to
as a lightweight protocol. Note that while it is
possible to design even a general purpose
protocol to be lightweight to some degree, it is
much easier to do so with an application
oriented protocol that can efficiently serve the
corresponding application class with the
appropriate (and simplified) error and flow
control mechanisms. This is the approach taken
in Axon with ALTPs (application-oriented
lightweight transport protocols).

In the Axon transport level, IPC across the VHSI
is supported by ALTP-OT (ALTP for object
transfer), which has its critical path function
implemented in visI hardware, is optimized to
provide the kind of performance guarantees and
functionality required for object transfer. The
ALTP-OT requests include connection
establishment/termination,
segment/page/message transfer, and packet
retransmission. ALTP-OT is described in detail
in [38]. ALTP-OT design is summarized in the
following paragraphs.

Flow control. When ALTP-OT opens a
connection, it specifies attributes of the
connection in terms of parameters such as
average and peak bandwidth, and a factor
reflecting the burstiness of the transmission.
These parameters can be translated into buffer
requirements, based on a rate between the
average and peak specifications. Initjal
exploration of this allocation has been
researched in [1]. Since the connection set up is
end-to-end, all the intermediate systems,
including various packet switches and gateways,
as well as the endpoint hosts that this
connection goes through, can make appropriate
buffer and resource reservations. The rate
specification will have to be negotiated between
ALTP-OT and the internetwork/network layers,
to ensure that the requested rate does not
exceed the capacity of internal network nodes
and gateways. As a result, as long as both ends
transmit subject to the rate specification, the
probability of packet loss due to buffer overruns
is very low.

It is assumed that the internet level below has
the functionality to support connections with
specified bandwidth requirements, and
furthermore, that the probability of packet loss,
errors, and resequencing is low encugh to design
the critical path with the assumption that
handling such problems is the exceptional case.

The only explicit flow control exercised by
ALTP-OT is the control of the cMP
(communications processor) data transmission
rate to correspond to the rate specification.
The benefit of the ALTP approach is manifest in
that only attributes significant for object
transfer need to be considered and that the rate
control functionality necessary on a per-packet
basis can be implemented in hardware.

Error control. In the VHSI environment error
control is performed, as much as possible, on an
end-to-end basis, and is decoupled from flow
(rate) control, as described above. The ALTP

30

error control is as simple as possible, based on
the target application characteristics. For
ALTP-OT, the packet handling is as follows:

e duplicate packets are discarded

e corrupted packets are discarded, and
retransmission requested based on
application need

e missing packets are detected by the
expiration of a timer, and retransmission is
requested

& packet sequence is irrelevant because each
packet is directly placed into the proper
location of application memory space.

The Axon architecture allows application
specific selective retransmission of corrupted or
missing packets, which gives considerable
flexibility in retransmission strategy. Note that
due to the orientation of ALTP-OT to this
application, the handling of duplicate and
out-of-sequence packets is considerably simpler
and more efficient than would be the case for a
general purpose transport protocol. Since data
packets have sufficient header information to
indicate the connection and request, and are
placed directly into the proper location of
target store, the overhead of sequence buffering
is not necessary. The simplified error control of
ALTP-OT can be efficiently implemented in vLsI

hardware.

Communication Processor {CMP) Design.
The Axon architecture interfaces the cmp
directly to the processor or memory, specifically
as a host-network interface processor. On the
network interface side, the cMP must be
capable of receiving and transmitting packets at
the full network data rate. On the host side,
the cMP must either interface to the
processor-memory interconnect or the special
dual ported communication memory, called
cMM, depending on the host architecture.

The primary design consideration of the cMP is
to serve as the network interface to the vasI, as
part of an end-to-end pipelined data path

CO

Cl C2 5o o CM 5

H } Control Bus } '=,

! ! : ! '

:= Dy| |Dgf---|Dy| |

- D] | | D
o Data Interconnect N

Figure 11: High Level CMP Design

between application memory spaces. Thus the
CMP must have the ability to perform critical
path functions in real time with no packet
buffering, and incorporate the necessary
functions in visi. This may be realized by
organizing the cMP as a pipeline, dynamically
reconfigurable based on the ALTP type and
options for a particular connection. The
pipeline organization allows packets to be
processed while moving at the vasi interface
data rates. Examples of data modules include
the network receive and transmit interfaces,
CMM interface, parallel/serial conversion, data
format conversion, encryption/decryption, and
video widow coordinate translation. Control
modules include rate control, checksum
generate/compare, CMM address generate,
header generate/decode, packet presence
timers, and retransmission logic.

Greater detail on the cMP design (for ALTP-OT
in particular) is presented in [39].

31

Resource Management in
Communication Networks

Resource Allocation for Markovian Networks

Andreas Bovopoulos

For a number of years we have investigated the
interplay between routing and flow control in
packet switched networks. We have studied
packet switched networks that are monitored
and controlled by a controller with complete,
partial, or no information about the activities
in the network. Our objective has been the
derivation of the optimal routing and flow
control in a single class network based on the
following objective: the maximization of
throughput under the constraint that the
expected time delay of packets in the network
not exceed a given upper bound.

A packet switched network is modeled as a
Markovian queueing network. The previous
problem is formulated as an optimization
problem with respect to the routing and flow
control parameters. A summary of the main
contributions of our work follows.

First, we assume that the network controller
has complete information about the activities
inside the network. At any given moment it
knows the total number of packets in each of
the network’s processors. Since the routing is
considered to be state dependent, the network
analyzed does not have a product form
solution. The state of the system is
characterized by the total number of packets in
each of the network processors. Packets arrive
at the controller with rate ¢, and the controller
makes state-dependent routing and flow control
decisions. The optimal state dependent routing
and flow control parameters that maximize the
average network throughput under an average
time delay constraint are given by means of an
iterative linear programming procedure. The
optimal routing is shown to be essentially
deterministic, and the optimal flow control
mechanism of a generalized window type. This
work is presented in {3, 4, 5, 6, 9].

Second, we alternatively assume that the
network controller at any giver moment knows
only the total number of packets for which it

has not yet received an acknowledgment.
Consequently, the network controller has only
partial information about the activities inside
the network. The optimization problem
analyzed in this section is a centralized
optimization problem. Although the routing is
considered to be state dependent, the network
is approximated by one that has a product form
solution, an approximation that makes its
analysis tractable. The optimization of the
routing inside the network is achieved by
maximizing the value of its state dependent
Norton equivalent. A resource allocation
algorithm is derived to solve the resource
allocation problem for this class of Markovian
queueing networks. This work is presented

in [10].

Third, the resource allocation problem for
Jackson networks is investigated. The state of
the network is represented by the total number
of packets for which the source has not yet
received an acknowledgment. We assume that
the acknowledgment packets are subject to
delay as they travel from destination to source.
The routing is assumed to be state
independent. The flow control is assumed to be
state dependent, while the acknowledgment
delays are assumed to be greater than zero.
The objective is to maximize the average
throughput of the network such that the
end-to-end expected time delay of the packets
in the forward network does not exceed an
upper bound. The optimal flow control is
shown to be a window flow control, and the
routing policy derived balances the traffic inside
the network. Based on the previous results, we
study the effect on network performance of the
amount of information available to the
controller. Specifically, we study the effect of
acknowledgment delay on network performance.
We also compare network performance using
state dependent (window) flow control or state
independent (rate) flow control. We derive
conditions under which each of these flow

33

control policies is superior with respect to
end-to-end network performance. This work is
presented in {7, 8, 11].

Finally we studied the effect of the availability
of either complete, partial, or no information
about the network’s state at the controller.

In [12] it is shown that network performance
improves as more information is made available
to the controller. It is also shown that as long
as the flow control and routing parameters are
computed from the same information, they can
be treated identically. More specifically, the
flow control parameter can be treated as one of
the routing parameters.

34

Adaptive and Fair Resource Allocation

Andreas Bovopoulos

Understanding the dynamics and control of
multi-class networks has been one of our
research focal points. We have investigated the
problem of finding the decentralized flow
control of a BCMP network., Each network user
is assumed to operate with either a
state-dependent arrival rate (i.e., an arrival rate
which depends upon the number of the user’s
packets that have not yet been acknowledged)
or a state-independent arrival rate (which the
user chooses). We have developed two
alternative formulations of the decentralized
flow control problem. With the first approach
we are mainly interested in achieving a better
utilization of the network resources. As a result
the network controller computes and enforces
the network flow control policies. Two different
optimization criteria are considered. Under the
first optimization criterion, the decentralized
flow control corresponding to each of the
network users maximizes the throughput of the
network, under the constraint that the expected
time delay of the packets in the network not
exceed a preassigned upper bound. Under the
second optimization criterion, the decentralized
flow control corresponding to each of the
network users maximizes the throughput of the
network, under the constraint that the expected
time delay of each particular class of packets
not exceed a preassigned (user dependent)
upper bound. The results of the research have
been published in [15].

With the second approach users are able to
change their policies at will. Each user operates
using a rate based flow control. The power
based optimization criterion is employed for the
derivation of the optimal flow control for each
of the network’s users. We have shown that the
optimal arrival rates correspond to the unique
Nash equilibrium point of a non-cooperative
game problem. In addition we have derived
asynchronous algorithms for the computation of
the Nash equilibrium point of the network.
Among them, the nonlinear Gauss-Seidel

algorithm is distinguished for its robustness and
speed of convergence. The results of the
research are described in [13, 14, 16]. We are
currently in the process of extending this work.

We plan to investigate a number of resource
allocation problems appearing in packet
networks that must provide performance
guarantees to their users. We wish to study
three inter-related problems: flow control,
congestion control, and routing. We aim to
derive decentralized algorithms that can be
implemented in packet networks. Furthermore
we intend to develop a set of analytical tools
that can be used for the design of
performance-criented networks. With such
networks, a user requests a certain quality of
service (QOS) at call set up time. This QOS
has implications for both the transport and
network layers. Specifically the QOS affects
flow control decisions at the transport layer and
routing and congestion control decisions at the
network layer.

In creating a performance-oriented network
design, both the desires of the network user and
service provider must be taken into account. A
user wants a requested service; the service
provider wishes to make the most efficient
utilization of network resources and therefore to
maximize revenues. Our goal is to create a
performance-oriented network design that
considers both desires. We plan to provide a
game theoretical formulation of the resource
allocation problems because game theory
encapsulates the conflicting requirements that
are imposed on network management. Our
initial results are reported in [17] and are quite

encouraging.

We would also like to bridge the dichotomy
between user and network requirements.
Specifically, the resource allocation decisions
should be based on the users’ requirements
while at the same time, resulting in an effective
and fair utilization of network resources, We

35

expect to demonstrate the way in which
congestion control, routing and flow control
algorithms must be modified in order to provide
fair service and performance guarantees to
network users. Such an environment should be
distributed, adaptive and able to operate with a
minimum exchange of information. As an
initial step in this direction, we are currently
investigating the problem of adaptive flow
control.

36

Buffer and Bandwidth Management

Shahid Akhtar, Jonathan Turner

One of the principal advantages of packet
switching is its ability to support
communication channels of any rate across a
potentially wide range. Not only can different
channels operate at different rates, but the

rates of individual channels may vary over time.

This latter property leads to the possibility of
overload since there may be periods when the
total offered traffic exceeds the network’s
capacity.

In conventional, low speed packet networks,
such overload periods are controlled using a
variety of feed-back oriented techniques, which
attempt to detect overload and then apply
control mechanisms that reduce the offered
load. A common approach is to allow
transmission of a packet from one switch to
another only when the receiving switch is
known to have a buffer available. During
overload periods, such networks become
congested with traffic backing up toward the
sources, which are ultimately forced to reduce
their rate of transmission until the congestion
clears. This technique works well in networks
with low speed or physically short transmission
links. It works less well in networks with high
speed links connecting switches that are
separated by large geographic distances. The
fundamental reason is that many packets
(hundreds or thousands) can be in transit
across a long, high speed link at any instant in
time. With conventional data link protocols,
buffers to store each of these packets are
required in the receiving switch even though
under normal conditions, only a few of these
packets will be present in the switch at the
same time. This leads to unreasonably high
buffer requirements. Consequently, high speed
packet networks use protocols that do not
preallocate buffers. Instead, they simply permit
packets to arrive in a relatively unconstrained
fashion, and discard packets if insufficient
buffer space is available. To keep the frequency
of packet loss at an acceptable level,

connections are allocated a portion of link
bandwidth based on their trafic characteristics.

A key problem in the design of fast packet
networks is how to perform this bandwidth
allocation. This in turn depends on the
behavior of information sources that may be
very bursty. We can model a bursty source as a
two state Markov chain. When in the idle state,
a source transmits no data and when in the
active state, it transmits A packets per second.
Sources that make infrequent transitions
between the active and idle states are called
bursty. When a bursty source becomes active it
stays active for a relatively long period of time.
We define the burst factor B of a source to be
the average time spent in the active state, times
the difference between the source’s peak and
average rates.

We can model the behavior of a queue of length
n receiving traffic from m independent and
identical bursty sources, as a finite Markov
chain with states s;; 1 <i<m,1< i< n. We
interpret state s; ; fo mean that ¢ sources are in
their active state and j packets are in the
buffer. This model is illustrated in Figure 12.
This Markov chain can be solved numerically to
determine the state probabilities and from
these the, fraction of transmitted packets lost
due to queue overflows.

The bandwidth allocation problem in fast
packet networks is to determine if a given set of
connections with known traffic characteristics
can share a link with acceptable packet loss
rate. If the sources can be adequately described
by two state Markov chains, this problem can
be solved in principle by the methods
mentioned above. Unfortunately, the time
required for solving a Markov chain model with
many different source types is prohibitive,
particularly in the context of a practical
communications network, where the time
available to make such a decision is on the
order of 10 ms. We address this problem by

37

Figure 12: Markov Chain Model

using a Markov chain model to compute an link’s bandwidth. This approach admits a fairly
effective bandwidth for a particular connection simple hardware implementation, and is the
type, then use the effective bandwidth as the subject of a recently awarded patent.

basis for bandwidth allocation decisions. .
Rather than compute the effective bandwidth e
when a connection is established, the required

value can be extracted from a pre-computed

table using interpolation to approximate values

that don’t appear in the table.

The problem of bandwidth management
becomes more complex in the presence of
multipoint connections with multiple
transmitters, since in this case it becomes
possible for packet streams from different
transmitters to converge with one another
inside the network, creating loads larger than
are permitted at the boundary. We have
developed a general solution to this problem
that allows the network to monitor buffer usage
at the various switching systems within a
network, and during overloads to preferentially
discard packets belonging to connections that
are currently using more than their “share” of a

38

Bandwidth Allocation

Akira Arutaki, Jonathan Turner

The bandwidth allocation problem in fast
packet/ATM networks is to determine under
what conditions a connection with specified but
statistically varying bandwidth requirements
can be safely multiplexed with an existing set
of connections (alsc with specified bandwidth
requirements). The problem is a difficult one
because many of the applications for which fast
packet networks are intended have very bursty
traffic requirements. While one can always
allocate peak bandwidth to such connections,
this can be extremely wasteful and should be
avoided if possible.

Current approaches to statistical bandwidth
allocation typically rely on a stochastic model
of the sources that neglects effects due to the
mixture of traffic from different types of sources
and ignores the effect of the bandwidth
enforcement mechanism (traffic valve) placed at
the access to the network. We are pursuing a
new approach that explicitly focuses on the
traffic valve and considers only traffic behaviors
permitted by the traffic valve. We hypothesize
that assuming sources act independently, the
worst-case behavior for any source is to be as
bursty as possible, that is to alternate between
transmission of a maximum allowed burst at
the maximum allowed transmission rate and
silence. Such a hypothesis leads to periodic
behavior for the sources and a queueing
problem that is dependent only on the random
phase relationships among the different sources.

We have developed an approximate analytical
technique to evaluate queueing delay and
packet loss rates for periodic bursty sources and
are currently working to improve its accuracy
and computational requirements. We have also
proposed a criterion for accepting a connection
in a network, that is based not on the usual
sorts of performance measures (such as packet
loss rate or delay), but a measure that we refer
to as the excess packet probability. We believe
this approach will allow incremental
maintenance of information about the traffic on

a given link, using a fast convolution
computation, so that a decision to accept or
reject a new connection can be made in no
more than a few milliseconds.

This approach to bandwidth allocation has
some other promising features. It can be easily
extended to handle switching systems with
shared buffering, something we feel will be
essential to handle highly bursty traffic streams.
It can also handle more complex traffic valves
with only a minor additional computational
cost. Such traffic valves are useful for
controlling traffic streams that may have
burstiness on several different time scales. For
example, when accessing images from an image
database a user might look quickly through
several images before pausing to examine one
image in detail. In such a situation, each image
would constitute a burst and the closely spaced
collection of images would constitute a “burst
group.” With the first-order traffic valves
currently receiving the most attention, such an
application would be handled by making the
maximum burst size equal to the size of the
collection of images. This can lead to an
over-allocation compared to what can be
obtained using a slightly more sophisticated
traffic valve.

39

Supporting Research

Distributed Debugging and Monitoring

Victor Griswold

The control and understanding of a system
under development is of considerable
importance during its testing and debugging.
Distributed systems present special problems
during debugging beyond those encountered
with strictly sequential systems; the developer
has less control over the system, and may
experience difficulties modeling the system’s
behavior. Problems include the
nondeterministic nature of distributed
execution; the potentially long period of time
required to generate a problem situation; and
the frequently vast amount of monitoring
information gathered during a test execution,
only a small portion of which turns out to be
critical to the test.

The structure of such a distributed debugging
and monitoring system is shown in Figure 13.
It comsists of a number of subjects to be
monitored (these are typically processes or
shared data objects) and a monitoring system
comprising a distributed collection of local
monitors plus a global moritor. Event
declarations, describing occurrences that are of
interest in a particular application of the
monitering system, are provided by the user.
When the user’s programs are prepared for
execution, these event declarations cause
generation of additional program instructions
that detect the occurrence of declared events
and pass descriptions of event instances to the
local monitors.

The user also provides the system with a set of
precedence rules, which allow the system to
determine ordering relationships between

events. For example, a common precedence rule

would be that a given message_send event
precedes a given message_receive event if the
message identifier associated with the two
events is the same. In addition, the user may
specify a collection of constraints, which

typically describe correctness conditions. These

constraints usually take the form of a pair of
events describing a time interval, together with

some condition that is required to hold over
that time interval. The user may also specify
actions that are to be taken if the constraint
fails to hold.

When the system is in operation, event
instances detected at subjects are passed to the
monitor which must infer ordering relationships
among events, incorporate these relationships
into its internal data structures, then use this
information to detect the occurrence of
constraint intervals and detect constraint
violations.

Towards this end, we are developing algorithms
for the efficient evaluation of temporal interval
logic constraints by such an event-based
distributed system monitor. All events are to
be ordered using logical time so that the true
nondeterministic nature of the subject is not
concealed in a false sense of real time.

Currently, we are working with a small subset
of interval logic and intend to expand this
subset to the point where we can no longer find
suitably efficient evaluation algorithms. We
consider the following three problems central to
the efficient evaluation of interval logic
constraints:

1) Determination of the logical-time order of
occurrence of two events A and B, as well
as all events “between” them.

2) Determination of when an event can no
longer take place within the subject, so
that final evaluations can be made on
long-duration constraints.

3) Dynamic (runtime) detection and matching
of important event characteristics in order
to support the above problems.

Process intervention, the alteration by the
monitor of the state of the subject, is a
secondary goal of our current research. We will

41

success/failure
& other
information

Constreints

User Precedes Rules

IR§

1

Goni tor Coordinzster ProcesD

filtered events

3

' Local Mon 1

Goct[Mon D Local Men 3

_/

raw events

SO

Event Declerstions

Figure 13: Organization of a Distributed Debugging and Monitoring System

investigate our evaluation algorithms with
respect to their implications concerning
intervention, but do not expect to develop an
actual intervention formalism and algorithms to
implement it.

We have had success with the problems of
determining all events between two bounding
events (the interval between those bounds) and
of rapidly classifying events by their
characteristics. Two approaches pose the most
promise for the interval-detection problem. One
of these, which we call the search tree method,
offers good memory efficiency and the ability to
rapidly answer any “does A come before B”
query. The other, called the wavefront method,
offers improved memory efficiency when
knowledge of the scope of future operations is
known, but can only answer a limited category
of “comes before” queries.

Our event classification strategy is optimized
towards matching events which, according to
the user-specified subject behavior description,
are ordered in time with respect to one another.

Event characteristics are put into a normal
form which allows the application of set
containment operations to determine time-order
matches not just between individual events, but
between entire groups of events at one time.

A simulator of the interval-detection algorithms
is undergoing continual development. This
simulator supports both an interactive mode in
which event histories may be displayed
graphically and an autonomous
parameter-driven mode for statistical data
collection. Plans for the simulator include
augmenting it for testing the
event-classification algorithm.

42

Automated Circuit Generation

George Robbert

Many of the circuits required in a fast packet
switching system contain a large number of
functional modules that accept packets on one
or more input ports, modify the packet headers
and transfer the packets to one or more output
ports. The various modules operate in tight
synchronism because of the use of fixed length
packets. We have come to view each of the
specific modules as special cases of a generic
synchronous streams processor or SSP.

An ssP, is a module with one or more typed
input and output ports, a local clock
synchronized by external timing signals and a
function which can be described in a style
similar to a conventional programming
language. The local clock is set to 0 when the
external synchronization signal start_time is
received, and is then incremented on every tick
of the global system clock. The period between
successive start_time signals is referred to as
an epoch and all events happen at specific
times during an epoch.

Each port has a type associated with it. The
base type is bit and complex types can be
constructed using arrays and structures. In
addition to its type, a port has a start time and
a width. The start time defines at what point
in each epoch the data item defined for that
port begins to appear on the port. The width
of the port defines the number of bits available
to carry the data. These pieces of information
are sufficient to define when in an epoch and
where on a port, specific items of data appear.
This allows a designer to describe the function
of an sSSP in terms of actions on port fields,
ignoring the details of timing and bit location.

ssps that perform simple functions, as are

typical in the packet processors, fit nicely into a

cornmon architecture illustrated in Figure 14.
This architecture supports several input and
output ports of varying widths. Input ports
connect to a common input bus and outputs to
a common output bus. Between these are a set

of processing elements (PE). Each processing
element has data registers which latch selected
input fields. The guard evaluation logic in
addition, contains the combinational logic to
evaluate the conditions in conditional
statements. The expression evaluation logic
evaluates expressions on the right side of
assignments. The delay lines are used to delay
the passage of certain fields to the output bus
in order to satisfy timing constraints. The
control and timing element provides timing
signals for latching input data and controlling
access to the output bus.

We have developed a circuit generator that
takes a high level description of an ssp and
creates a circuit implementing it, by tailoring
the target architecture. We have divided the
translation into several parts. The compiler
takes the high level module description and
translates it to a simple register transfer
language. This is further processed by an ssp
assembler which translates it further to a PE
description language. This is further processed
by a PE assembler which generates the actual
mask-level description of the module, using a
library of standard cells and a set of PE
generators, which include existing tools such as
FLA generator.

See reference [35] for more details.

43

e delay .
L] * L]
—_—
- lines *
=
Input . =
E
) i expression . -g
regs .
Ports . s evaluation | . .g"
o [+]
—
c
regs | &uard n.
evaluation R
- S —
y Y
@ —
control/timing

start_time—

Figure 14: Target ssp Architecture

44

Output

Ports

Signature Based Search Algorithms for Video Codecs

Shabbir Khakoo, Jonathan Turner

Currently, high compression coding techniques
have been applied primarily for video
conferencing, in order to reduce the bandwidth
to the range of a few hundred Kb/s. While
most of these techniques make use of motion
compensation algorithms, they perform poorly
in the presence of even moderate amounts of
motion. We have investigated these algorithms,
have determined the reasons for this poor
performance and have devised a class of
algorithms capable of far better performance in
the presence of substantial amounts of motion.
‘We believe that these algorithms will yield
substantially better performance in a diverse
application environment.

Most high compression video codecs in common
use today are based on transform coding. First,
an image is broken into sub-blocks of
(typically) 16 by 16 pixels and then for each
sub-block, a two-dimensional transform such as
the 2D discrete cosine transform (DCT) is
computed giving a 16 by 16 matrix of transform
coefficients. The transform coefficients form an
alternative representation of the initial
sub-block, which has the advantage that the
perceptually important information is
concentrated in a relatively small number of
transform coefficients. Consequently, one can
transmit a fraction of the transform coefficients
(or transmit them with varying precision) and
recreate the image from those few coefficients
without significantly degrading the image.

If one is transmitting a sequence of similar
images, as in a video sequence, additional
compression can be obtained by maintaining a
copy of the previous image and transmitting
the difference between the current image and
the previous one. Typically, each sub-block to
be transmitted is compared to the
corresponding sub-block in the reference image,
a difference sub-block is calculated and the pcT
of the difference sub-block is computed and
sent with varying precision. This can be
improved further through a form of motion

compensation called block matching. This
involves comparing the sub-block not just to
the corresponding sub-block in the reference
image but to all sub-blocks of the reference
image within a given distance of the sub-block
to be transmitted. The coder then identifies the
sub-block of the reference image that differs
least from the given sub-block and transmits
the difference information relative to that
sub-block, along with the identity of the
selected reference sub-block.

A key element in the performance of a block
matching codec is the algorithm used to
identify the sub-block of the reference frame
that is most similar to the current sub-block.
To compare two sub-blocks, one typically
computes the sum of the squares of the
differences between corresponding pixels. For
16 by 16 sub-blocks this requires 256 multiplies
and 512 additions. To compare a given
sub-block to every reference sub-block within
say eight pixels in any direction, requires 289
comparisons or a total of about 220,000
arithmetic operations. Since in a 512 by 512
pixel image, this must be done 1024 times per
frame, the computational requirements are
pretty clearly prohibitive for real-time coding.

Consequently video codecs that employ block
matching don’t attempt to consider every
sub-block in the region. Rather they try to find
the best match using some form of local search.
Such techniques can work well if there are no
local minima in which the search algorithm can
get stuck. We have found however that for
many typical images, local minima are
common, and that the local minima are
typically not nearly as good as the global
minimum. Consequently, conventional search
techniques often fail to achieve the highest
possible compression rates.

We have devised a class of search algorithms
that attempts to solve this problem. It is based
on the idea of computing a concise signature for

45

25

20 |
B
1 Rao
1
f 5
1 L .
p Juin
¢
r
Pio |
x
05 L
L=16
lé;.hu
0.0 L 1)
0 - 5 10 i5 T2

Frame Number

Figure 15: Compression Rate Comparison

each sub-block in the search regior and then
comparing the input sub-block to the reference
sub-blocks on the basis of their signatures. The
signatures must be quickly computable and
small enough that it’s reasonable to perform an
exhaustive comparison of the signatures. Then
several sub-blocks with closely matching
signatures are compared to the input sub-block
using the squared-difference measure and the
best match selected. We have evaluated one
version of this technique in which the
signatures are selected coefficients of a
one-dimensional DCT, computed over the sum
of the pixel values in each row of a sub-block.
Figure 15 shows the results of one of our
experiments. This plot shows the average
number of bits per pixel for a sequence of
frames starting from no motion, increasing to a
panning motion of eight pixels between
successive frames and then decreasing to no
motion. The curves labeled Rao and Jain give
the performance for two popular algorithms
that are commonly used in video conferencing

codecs. The curve labeled exhaustive gives the
performance obtained by exhaustively searching
for the best match and the three other curves
give the performance of three variations of our
signature-based algorithm. The parameter N
refers to the number of sub-blocks with closely
matching signatures that were selected for the
final comparison. Notice that the
signature-based algorithm gives compression
rates of three to five times that achieved by the
other algorithms in the presence of substantial
amounts of motion.

More detailed results may be found in [25].

References

[1]

2]

(3]

(4]

(5]

[6]

[7]

Akhtar, Shahid. “Congestion Control in
Fast Packet Networks,” Washington
University Electrical Engineering
Department, MS thesis, November 1987.

Barrett, Neil. “Design of a VLSI Packet
Switch Element,” Washington University
Computer Science Department,
WUCS-88-32.

Bovopoulos, A.D. and Lazar, A.A.,
“Optimal Routing and Flow Control of
Time Division Multiplexed Channels,”
Proceedings of the 12th International
Conference on Mathematical
Programming, Cambridge, Massachusetts,
August 1985, p. 13A.

Bovopoulos, A.D. and Lazar, A.A.,
“Optimal Routing and Flow Control of a
Network of Parallel Processors with
Individual Buffers,” Proceedings of the
Twenty-Third Annual Allerton Conference
on Commuanication, Control and
Computing, University of Illinois,
Urbana-Champaign, llinois, October 1985,
pp. 564-573.

Bovopoulos, A.D. and Lazar, A.A.,
“Optimal Routing and Flow Control of a
Network of Paralle] Processors,”
Proceedings of ORSA /TIMS 1985,
Atlanta, Georgia, November 1985, pp.
139-140.

Bovopoulos, A.D. and Lazar, A.A.,
“Optimal Load Balancing for Markovian
Queueing Networks,” Proceedings of the
30th Midwest Symposium on Circuits and
Systems, Syracuse University, Syracuse,
New York, August 1987.

Bovopoulos, A.D. and Lazar, A.A.,
“Qptimal Load Balancing of a Network
with Nonzero Acknowledgment Delays,”
Proceedings of the Computer Networking
Symposium, Washington, D.C., April 1988,
pp. 144-151.

(8]

[9]

[10]

[11]

(12]

[13]

(14]

47

Bovopoulos, A.D. and Lazar, A.A., “Load
Balancing Algorithms for Jacksonian
Networks with Acknowledgment Delays,”
Proceedings of the IEEE INFOCOM’89
Conference, Ottawa, Canada, April 1989,
pp. 749-757.

Bovopoulos, A. D. and Lazar, A. A,
“Optimal Resource Allocation for
Markovian Queueing Networks: The
Complete Information Case,” Washington
University Computer Science Department
Technical Report WUCS-89-21, 1989.

Bovopoulos, A. D., “Resource Allocation
for Markovian Queueing Networks: The
Partial Information Case,” Washington
University Computer Science Department
Technical Report WUCS-89-22, 1989.

Bovopoulos, A. D., “ On the Effect of
Delayed Feedback Information on Network
Performance,” Washington University
Computer Science Department Technical
Report WUCS-89-23, 1989.

Bovopoulos, A. D., “Resource Allocation
Algorithms for Packet Switched
Networks,” accepted for presentation at
the First ORSA Telecommunications SIG
Conference, “Operations Research in
Telecommunications,” Boca Raton,
Florida, March 1990.

Bovopoulos, A.D. and Lazar, A.A.,
“Decentralized Algorithms for Optimal
Flow Control,” Proceedings of the
Twenty-Fifth Annual Allerton Conference
on Communication, Control and
Computing, University of Illinois,
Urbana-Champaign, Illincis, September
30-October 2, 1987, pp. 979-988.

Bovopoulos, A.D. and Lazar, A.A,,
“Asynchronous Iterative Algorithms for
Optimal Load Balancing,” Proceedings of
the Twenty-Second Annual Conference on
Information Sciences and Systems,
Princeton University, Princeton, New
Jersey, March 16-18, 1988.

[15] Bovopoulos, A.D. and Lazar, A.A.,
“Decentralized Network Flow Control,”
Proceedings of the 9th International
Conference on Computer Communication,
Tel Aviv, Israel, October 30-November 3,
1988,

Bovopoulos, A.D. and Lazar, A.A.,
“Asynchronous Algorithms for Optimal
Flow Control of BCMP Networks,”
Washington University Computer Science
Department Technical Report
WUCS-89-10, 1989.

(16]

Bovopoulos, A. D., “Resource Allocation
as a Nash Game in a Multiclass Packet
Switched Environment,” Washington
University Computer Science Department
Technical Report WUCS-89-18,

(17]

Bubenik, Richard. “Performance
Evaluation of a Broadcast Packet Switch,”
Washington University Computer Science
Department, MS thesis, 8/85.

[18]

Bubenik, Richard and Jonathan S. Turner.
“Performance of a Broadcast Packet
Switch.” IEEE Transactions on
Computers, 1/89.

(19]

Gaddis, Michael E. “Prototype Connection
Management: a Progress Report,”
Washington University Applied Research
Laboratory, ARL-89-01.

[20]

Haserodt, Kurt and Jonathan Turner. “An
Architecture for Connection Management
in a Broadcast Packet Network,”
Washington University Computer Science
Department, WUCS-87-3.

(21)

Imase, Makoto and Bernard Waxman.
“Worst-case Performance of
Rayward-Smith’s Steiner Tree Heuristic,”
Information Processing Letters, 12/8/88.

[22]

Imase, Makoto and Bernard Waxman.
“The Dynamic Steiner Tree Problem,”
Washington University Computer Science
Department, WUCS-89-11.

(23]

f24] Khakoo, Shabbir and Jonathan Turner.
“System Testing of a Broadcast Packet
Switch,” Washington University Computer
Science Department, WUCS-87-4.

[25] Khakoo, Shabbir. “Improved Search
Algorithms for Video Codecs,” Washington
University Electrical Engineering
Department, MS thesis, June 1988.

[26] Mazraani, Tony. “Design of a Clock
Generator Chip” Washington University
Computer Science Department,
WUCS-88-36.

Magzraani, T.Y., Parulkar, G.M.,
?Specification of a Multipoint
Congram-oriented High Performance
Internet Protocol,” Washington University
Computer Science Department
WTUCS-89-20.

(27]

[28] Melen, Riccardo and Jonathan S. Turner.
“Distributed Protocols for Access
Arbitration in Tree Structured
Communication Channels,” Proceedings of

ICC 88, June 1988,

[29] Melen, Riccardo and Jonathan S. Turner.
“Nonblocking Multirate Networks,” SIAM
Journal on Computing, 4/89.

Melen, Riccardo and Jonathan S. Turner.
“Nonblocking Networks for Fast Packet
Switching,” Proceedings of Infocom 89,
April 1989,

(30]

[31] Melen, Riccardo and Jonathan S. Turner.
“Nonblocking Multirate Distribution
Networks,” Washington University
Computer Science Department,

WUCS-89-34.

[32] Parulkar, Guru and Jonathan Turner.
“Towards a Framework for High Speed
Communication in a Heterogeneous
Networking Environment,” Proceedings of

Infocom 89, April 1989.

[33] Parulkar, Guru. “The Next Generation of

Internetworking,” Washington University

48

[34]

[35]

(36]

[37]

[38]

(39]

[40]

[41]

[42]

Computer Science Department,
WUCS-89-19.

Robbert, George. “Design of a Broadcast
Translation Chip,” Washington University
Computer Science Department,
WUCS-87-9.

Robbert, George. “A Circuit Generator for
Synchronous Streams Processors,”
Washington University Computer Science
Department, MS thesis, May 1988.

Sterbenz, James. “Design of a VLSI Packet
Switch Element,” Washington University
Computer Science Department,
WUCS-88-5.

Sterbenz, James P.G. and Gurudatta M.
Parulkar, “Axon: Network Virtual Storage
Design,” Washington University Computer
Science Department wucs-89-13.

Sterbenz, James P.G., “Host-Network
Interface Architecture for Gigabit
Communications,” Washington University
Computer Science Department
wUCs-839-35.

Sterbenz, James P.G. and Gurudatta M.
Parulkar, “Axon: Application-Oriented
Lightweight Transport Protocol Design,”
Washington University Computer Science
Department wucs-89-14.

Sterbenz, James P.G. and Gurudatta M.
Parulkar, “Axon: A High Speed
Communication Architecture for
Distributed Applications,” Washington
University Computer Science Department
WUCs-89-36.

Sterbenz, James P.G. and Gurudatta M.
Parulkar, “Axon: Network Virtual Storage
Design”, to appear in Computer
Communicalion Review, Vol.20 #2, AcMm,
New York, April 1990.

Turner, Jonathan S. “New Directions in
Communications,” IEEE Communications
Magazine, 10/86.

[43]

[44]

(45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

49

Turner, Jonathan S. “Design of an
Integrated Services Packet Network,”
IEEE Journal on Selected Areas in
Communications, 11/86.

Turner, Jonathan S. “Advanced
Commurication Systems Progress Report,”
Washington University Computer Science
Department, WUCS-87-22.

Turner, Jonathan S. “Specification of
Integrated Circuits for a Broadcast Packet
Network,” Washington University
Computer Science Department,
WUCS-87-5.

Turner, Jonathan S. “The Challenge of
Multipoint Communication,” Proceedings
of the ITC Seminar on Traffic Engineering
for ISDN Design and Planning, 5/87.

Turner, Jonathan S, “Fluid Flow Loading
Analysis of Packet Switching Networks,”
Proceedings of the International Teletraffic
Congress, June 1988.

Turner, Jonathan, “Broadcast Packet
Switching Network,” Unites States Patent
44,734,907, March 1988.

Turner, Jonathan S. “Design of a
Broadcast Packet Network,” IEEE
Transactions on Communications, June
1988.

Turner, Jonathan S. “Advanced
Communication Systems Progress Report,”

Washington University Computer Science
Department, WUCS-88-28.

Turner, Jonathan S. “Practical Wide-Sense
Nonblocking Generalized Connectors,”
Washington University Computer Science
Department, WUCS-88-29.

Turner, Jonathan, “High Speed Data
Link,” Unites States Patent #4,829,227,
May 1989.

Turner, Jonathan, “Buffer Management
System,” U. S. Patent #4,849,968, July
1989.

(54]

[55]

[56]

[57]

58]

[59]

Valdimarsson, Einir. “Design of an Eight
Bit VLSI Packet Switch Element,”
Washington University Computer Science
Department, WUCS-88-23.

Waxman, Bernard. “Thesis Proposal:
Routing of Multipoint Connections,”
Washington University Computer Science
Department, WUCS-87-2.

Waxman, Bernard. “Probable Performance
of Steiner Tree Algorithms,” Washington
University Computer Science Department,
WUCS-88-4.

Waxman, Bernard. “Routing of Multipoint
Connections,” IEEFE Journal on Selected
Areas of Communications, 12/88.

Waxman, Bernard. “New Approximation

Algorithms for the Steiner Tree Problem,”
Washington University Computer Science
Department, WUCS-89-15.

Waxman, Bernard. “Evaluation of
Algorithms for Multipoint Routing,”
Washington University Computer Science
Department, doctoral thesis, 8/89.

