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ABSTRACT

We define and study an extension of the classical
theory of nonblocking networks that is applicable to
multirate circuit and fast packet/ATM switching sys-
tems. We determine conditions under which the Clos,
Cantor and Bene$ networks are strictly nonblocking.
We also determine conditions under which the Benes
network and variants of the Cantor and Clos networks
are rearrangeable. We find that strictly nonblocking
operation can be obtained for multirate traffic with
essentially the same complexity as in the classical con-
text.

1. INTRODUCTION

In this paper we introduce a generalization of the
classical theory of nonblocking switching networks to
meodel communication systems designed to carry con-
nections with a multiplicity of data rates. The theory
of nonblocking networks was motivated by the prob-
lem of designing telephone switching systems capable
of connecting any pair of idle terminals, under arbi-
trary traffic conditions. From the start, it was recog-
nized that crossbar switches with n terminals and n?
crosspoints could achieve nonblocking behavior, only
at a prohibitive cost in large systems. In 1953, Charles
Clos [4] published a seminal paper giving constructions
for a class of nonblocking networks with far fewer cross-
points, providing much of the initial impetus for the
theory that has since been developed by Benes [1], Pip-
penger [11] and many others [3,6,8].
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The original theory was developed to model electro-
mechanical switching systems in which both the ex-
ternal links connecting switches and the internal links
within them were at any one time dedicated to a single
telephone conversation. During the 1960’s and 1970’s
technological advances led to digital switching systems
in which information was carried in a multiplexed for-
mat, with many conversations time-sharing a single
link. While this was a major technological change,
its impact on the theory of nonblocking networks was
slight, because the new systems could be readily cast
in the existing model. The primary impact was that
the the traditional complexity measure of crosspoint
count had a less direct relation to cost than in the
older technology.

During the last ten years, there has been growing
interest in communication systems that are capable of
serving applications with widely varying characteris-
tics. In particular, such systems are being to designed
to support connections with arbitrary data rates, over
a range from a few bits per second to hundreds of
megabits per second [5,7,14]. These systems also carry
information in multiplexed format, but in contrast to
earlier systems, each connection can consume an ar-
bitrary fraction of the bandwidth of the link carrying
it. Typically, the information is carried in the form of
independent blocks, called packets or cells which con-
tain control information, identifying which of many
connections sharing a given link, the packet belongs
to. One way to operate such systems is to select for
each connection, a path through the switching system
to be used by all packets belonging to that connection.
When selecting a path it is important to ensure that
the available bandwidth on all selected links is suffi-
cient to carry the connection. This leads to a natural
generalization of the classical theory of nonblocking
networks, which we explore in this paper. Note that
such networks can also be operated with packets from a
given connection taking different paths; reference [15]
analyzes the worst-case loading in networks operated



in this fashion. The drawback of this approach is that
it makes it possible for packets in a given connection
to pass one another, causing them to arrive at their
destination out of sequence.

In Section 2, we define our model of nonblocking
multirate networks in detail. Section 3 contains re-
sults on strictly nonblocking networks, in particular
showing the conditions that must be placed on the
networks of Clos and Cantor in order to obtain non-
blocking operation in the presence of multirate traffic.
We also describe two variants on the Clos and Cantor
network that are wide-sense nonblocking in the multi-
rate environment. Section 4 gives results on rearrange-
ably nonblocking networks, in particular deriving con-
ditions for which the networks of Benes and Cantor
are rearrangeable.

2. PRELIMINARIES

We denote a network N by a quadruple (S, L, I,0),
where S is a set of vertices, called switches, L is a set
of arcs called links, I is a set of input terminals and O
a set of output terminals. Each link is an ordered pair
(2,y) where z € TUS and y € OUS. We require that
each input and output terminal appear in exactly one
link. Links that include an input terminal are called
input links or simply inputs. Those including output
terminals are called outputs. The remaining links are
called internal links. A network with n inputs and m
outputs is referred to as an (n, m)-network. An (n,n)-
network is also called an n-network.

We consider only networks that can be divided into
a sequence of stages. We say that the input vertices
are in stage 0 and for ¢ > 0, a vertex v is in stage i if for
all links (u, v), u is in stage i — 1. An link (u, v) is said
to be in stage 7 if u is in stage i. In the networks we
consider, all output terminals are in the same stage,
and no other vertices are in this stage. When we refer
to a k stage network, we generally neglect the stages
containing the input and output vertices.

There are two basic components from which we
construct networks. The first is the m input n out-
put crossbar, denoted X, .. If ¢ is a permuta-
tion on {0...,n — 1}, we also let ¢ denote the net-
work (S5,L,1,0) where I = {ug,...,up1}, O =
{Uu,...,vn_l}, S=0and L = {(u,-,v,(,v)) | 0 < ) <
n—1}. If d; and d; are positive integers, we define
74,4, to be the permutation on {0,...,d;d; — 1} sat-
isfying 74,,4,(jdy +i) = ido +jfor 0< i< dy — 1 and
0<j<d, - L

Networks are constructed using several basic opera-
tions. The concatenation of two networks Ny and N,
is denoted Ny; Np and is obtained by identifying out-
put link 7 of Ny with input link 7 of Ny. This operation
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Figure 1: Network Construction Operations

effectively deletes the output terminals of N; and the
input terminals of N;. We require of course that the
number of outputs of N; match the number of inputs
of Nz.

The reverse of a network N is the network obtained
by exchanging inputs and outputs and reversing the
directions of all links and is denoted by N’.

If i is a positive integer and N is an (n, m)-network,
then 7 - N denotes the network obtained by taking i
copies of N, without interconnecting them. Inputs
and outputs to N are numbered in the obvious way,
with the first copy receiving inputs 0,...,n — 1 and
outputs 0,...,m — 1 and so forth.

Let N} be a network with n; outputs and N, be a
network having n; inputs. The product of Ny and N,
is denoted N, x N3 and is defined as

(n2 * Nl)! Tn;,n;; (nl * Nz)'

Informally, the product is obtained by taking ns copies
of Ny and connecting them to n; copies of Ny with a
single link joining each pair of subnetworks.

We alsc define a three-fold product which we denote
with the symbol M. If N, has n; outputs, N, has
ny inputs and na outputs and N3 has n; inputs, the
product Ny X N3 M N3 is defined as

(n2 - Ni); o, nai (1 - N2); Ty oy s (3 - N3)

These definitions are illustrated in Figure 1.

A connection request for a network N is a pair
(z,y,w) where z is an input, ¥ an output and 0 <
w < 1. We refer to w as the weight of the connec-
tion and it represents the bandwidth required by the
connection, A route is a path joining an input to an
output together with a weight. A route satisfies-a re-
quest (, y,w) if it connects = to y and has weight w.




A set of connection requests is said to be compatible
if for all inputs and outputs z, the sum of the weights
of all connections involving z is < 1. A set of routes
is compatible if for all links £ the sum of the weights
of all routes involving £ is < 1. A state of a network
is a set of mutually compatible routes. If we are at-
tempting to add a connection (z,y,w) to a network in
a given state, we say that a vertex u is accessible from
z if there is path from z to u, all of whose links have
a weight of no more than 1 —w.

A network is said to be rearrangeably nonblocking
(or simply rearrangeable) if for every set C' of compat-
ible connections, there exists a state that realizes C. A
network is strictly nonblocking if for every state S, re-
alizing a set of connections C, and every connection ¢
compatible with C, there exists a route r that realizes
¢ and is compatible with S. For strictly nonblocking
networks, one can choose routes arbitrarily and always
be guaranteed that any new connections can be satis-
fied without rearrangements. We say that a network is
wide-sense nonblocking if there exists a routing algo-
rithm, for which the network never blocks; that is, for
an arbitrary sequence of connection and disconnection
requests, we can avoid blocking if routes are selected
using the appropriate routing algorithm and discon-
nection requests are performed by deleting routes,

Sometimes, improved performance can be obtained
by placing constraints on the traffic imposed on a net-
work. We will consider two such constraints. First, we
restrict the weights of connections to the the interval
[6, B]. We also limit the sum of the weights of connec-
tions involving an input or output z to 4. Note that
0<b< B<pB<1. Wesay a network is strictly non-
blocking for particular values of , B and g if for all
sets of connections for which the connection weights
are in [b, B] and the input/output weight is 3, the net-
work cannot block. The definitions of rearrangeably
nonblocking and wide-sense nonblocking networks are
extended similarly. The practical effect of a restriction
on A is to require that a network’s internal data paths
operate at a higher speed than the external transmis-
sion facilities connecting switching systems, a common
technique in the design of high speed systems. The
reciprocal of @ is commonly referred to as the speed
advantage for a system.

Two particular choices of parameters are of special
interest. We refer to the traffic condition characterized
by B = B, b = 0 as unrestricted packet switching
(ups), and the condition B = b = § = 1 as pure
circuit switching (cs). Since the ¢s case is a special
case of the multirate case, we can expect solutions to
the general problem to be at least as costly as the cs
case and that theorems for the multirate case should
include known results for the Cs case.
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Figure 2: Clos Network

The classical complexity measure for switching net-
works is the crosspoint count ne. In our graph model,
this can be taken as the sum of the products of
the number incoming links and outgoing links for all
switches. While the crosspoint count is an appropriate
measure for electromechanical switching systems and
remains useful, it deesn’t give an adequate indication
of cost when switching systems are constructed from
custom integrated circuits in which input/output con-
straints at the chip level limit the amount of circuitry
that can be placed on a given package. Consequently,
we also find it useful to include the package count np
as an additional complexity measure with the under-
standing that the number of inputs and outputs per
package is limited to 26. Typical values of § would be
in the range 30-50.

When comparing multirate networks, we also need
to take into account the effect of different values of 8
that may be required by the different networks in order
to allow them to achieve comparable performance. We
do this by assuming that the speed advantage implied
by a given value of 8 is obtained by providing paral-
lelism in the data paths. This makes the complexity
of networks inversely proportional to f.

3. STRICTLY NONBLOCKING NETWORKS

A three stage Clos [4] network with n input and
output vertices is denoted by Cp d,m, Where d and m
are parameters, and is defined by Cham = Xam ™
Xnfania M Xma (see Figure 2). Note that ng =
(mn/B)(2+n/d?). Todetermine the package count, we
must partition the large crossbars in the network into
smaller portions that meet the pin constraints. Note
that at most 62 crosspoints can be placed in a single
package with 26 signal pins, so wetake np to be nc/62,
effectively assuming an ideal situation in which d, m
and n/d are multiples of § so that no fragmentation
occurs.

izl



The standard reasoning to determine the nonblock-
ing condition for the Clos network (see [4]) can be ex-
tended in a straightforward manner, yielding the fol-
lowing theorem.

THEOREM 3.1. The Clos network Cp 4 m is strictly
nonblocking if

Proof. Suppose we wish to add a connection (z,y,v)
to an arbitrary state. Let u be the stage 1 vertex
adjacent to z and note that the sum of the weights on
all links out of u is at most f(d— 1)+ (8—7) = fd—~.
Consequently, the number of links out of u that carry
a weight of more than (1—v) is < |(8d~v)/s(v)], and
hence the number of inaccessible middle stage vertices

pd—« fd —w
<% < %] <

That is, less than half the middle stage vertices are
inaccessible from z. By a similar argument, less than
half the middle stage vertices are inaccessible from ,
implying that there is at least one middle stage vertex
accessible to both. O

Let us examine some special cases of interest. If
welet b = B = § = 1, the effect is to operate the
network in cS mode and the theorem states that we
get nonblocking operation when m > 2d —1, as is well-
known. In the UPS case, the condition on m becomes
m > 2(B/(1 - B))(d —1). So m = 2d — 1 is sufficient
here also if 8= 1/2.

For the UPs case, if we choose d = \/n/2 and m =
1+2(8/(1—B))(d—1) the crosspoint count of the Clos
network becomes

d — w

lﬁ

s(w)

m > 2 max
ws B

where s(w) = max {1 —w,b}.

4
1-p
Notice that the complexity becomes unbounded if 8 is
either too close to 0 or too close to 1. Our next result

provides a lower bound on the complexity of strictly
nonblocking networks when A is unrestricted.

[\/51:3/2 - 2n] + 4n/p

THEOREM 3.2. Any (m,n)-network that is strictly
nonblocking for traffic with b = 0 and B = 8 = 1
must have at least mn crosspoints.

Proof. Consider any pair of inputs and outputs z and
y. If for each path in the network from z to y there
is some link £ that is on a path from u to v where
u # z and v # y, then the network is not strictly
nonblocking, since in this case every path from z to
y may contain a link with nonzero weight, which is
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Figure 4: Extended Delta Network

sufficient to block a connection (z, y, 1). Consequently,
there must be at least one crosspoint that can be used
only to connect z to y and hence there are at least mn
crosspoints. O

Theorem 3.2 tells us that we can obtain sub-
quadratic complexity and strictly non-blocking oper-
ation, only if we restrict the traffic. Note that Theo-
rem 3.2 leaves open the possibility of rearrangeable or
wide-sense nonblocking networks of less than quadratic
complexity. In fact, using Theorem 3.1, we can con-
struct a wide-sense nonblocking network for unre-
stricted traffic by placing two Clos networks in paraliel
and segregating connections in the two networks based
on weight. In particular if we let m = 4d — 1, the net-
work X 2 M Cy 4,m M X3, is wide-sense nonblocking
if all connections with weight < 1/2 are routed through
one of the Clos subnetworks and all the connections
with weight > 1/2 are routed through the other. The
complexity of this network is 16+/2n%2— 4n or roughly
four times that of the strictly nonblocking network for
the circuit switching case,

The delta network [10] D, 4 is defined by

Dyg=Xaa Dna=Xgax Dpjaa

and illustrated in Figure 3. Note that k = log; n must
be an integer. The delta network has % stages and
provides exactly one path between each input/output



pair. More flexible networks can be obtained by adding
additional stages of switching. We define the extended
delta network Dy, ; , by

D:&,d,h = Ddh 4 ) Dd"—",d M 'D:i",d
(see Figure 4). An equivalent definition is
Dhso=Dna Dhgn=XaaMDyygapy™ Xaa

Between each input/output pair there are d* differ-
ent paths, giving greater routing flexibility than the
ordinary delta networks. A Bene$ network (1], Bn 4
is equivalent to D}, ;,_, where k = loggn. For the
extended delta network, ng = dn(h + k) and we take
np = nc/é® for d > 6§ and np = nc/fdélog,é for
d < 6, again assuming an ideal situation in which no
fragmentation occurs.

THECREM 3.3. The extended delta network Dy, 45 Is
strictly nonblocking if

- -1
- (’;) < [[3: /;] (14 (d = 1)+ dl=A+02 d)]

Proof. Let r = {(k+h)/2]) and suppose we wish to add
a connection (z, y,w) to an arbitrary state. Note that
there are d* links in stage r that lie on paths from z to
y. We will show that at most [d" /2] of these links are
inaccessible from z if the inequality in the statement
is satisfied. By a symmetric argument, at most [d*/2]
of the links in stage h + k — r that lie on z-y paths
are inaccessible from y. Consequently, there must be
at least one available path from z to y.

Define W; to be the set of all links (u,v) in stage ¢,
for which u is accessible from z, but v is not. Define
A; to be the sum of the weights on all links in W; and
note that A; > [W;|s(w). The number of links in stage
r that are not accessible from z is given by

h r
STd Wi+ Y Wl

i=1 i=h+1

h r
< o [Zd’*-‘x.-+ > A.—]
s(w) i i=h41
h=1 h—t7 g i1
< S(B) [ﬁd +§d (d = d-1)8
+ z (d‘-—d“‘)ﬂ]
i=h+1
- B _ —h+1
= (B)d [14(d—=1)h+d -+ — ]
_ B
= B dh= 1[1+(d—1)h+df('= ﬁ+1>/21—d]
< [d*/2]
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By the argument above, the theorem follows. O
The following corollaries follow easily from the the-
orem by substituting the appropriate values of h.

COROLLARY 3.1. The delta network D, 4 is strictly
nonblocking if

< q-1¥/2]

B) ~ d

s(

COROLLARY 3.2. The Benes network By 4 Is strictly
nonblocking if

-1
L <[+ @-voaatnsa)]

From this corollary it follows that for networks with
b = 0 and B = B, an r stage Bene3 network is
strictly nonblocking if it has a speed advantage of
r - (2/d)logg(n/d). So for example, the five stage
Benes network with d = 32 and n = 2% is strictly
nonblocking if it has speed advantage of 4.875.

The Cantor network K, g.m = X1,m ™ Bng ™ X
and is shown in Figure 5 [3]. The next theorem cap-
tures the condition on m required to make the Cantor
network strictly nonblocking.

THEOREM 3.4. The Cantor network Kn 4,m is strictly
nonblocking if

m 2 o (1 (d = Dloge(n/d)

The proof of this theorem is similar to the one for
the previous theorem. When we apply it to the Cs case
for d = 2, we find that the condition on m reduces to
m > log, n, as is well known. For the UPS case with
d = 2, we have m > 2(8/(1 — 3))logy n; that is, we
again need a speed advantage of two to match the value
of m needed in the ©s case.



We can construct wide-sense nonblocking networks
for 8 1 and & 0 by increasing m. We di-
vide the connections into two subsets, with all con-
nections of weight < 1/2 segregated from those with
weight > 1/2. Applying Theorem 3.4 we find that
m > (8/d)(1+ (d— 1) logy(n/d)) is sufficient. That is,
the complexity is four times that required for strictly
nonblocking operation in the circuit switching case.

4. REARRANGEABLY NONBLOCKING NETWORKS

Although in most applications of switching networks
it is not practical to operate networks rearrangeably,
the property of rearrangeability is important nonethe-
less, because it implies a topological richness that leads
to low blocking probabilities even when the network is
not operated in a rearrangeable fashion. In this sec-
tion, we determine conditions under which the Benes,
Cantor and Clos networks are rearrangeable for mul-
tirate traffic.

A d-ary Benes network [1), can be defined recursively
as follows: Bgs = X34 and Bpag=XgaM Bn/d,d ™
Xd,4. The Benes network is rearrangeable in the cs
case (1] and efficient algorithms exist to reconfigure
it [9). We start by reviewing a proof of rearrangeability
for the Cs case, as we will be extending the technique
for this case to the multirate situation:

Consider a set of connections C = {c,.. e} for
Bp.a4, where ¢; = {z;,y;,1} and there is at most one
connection for each input and output port. The re-
cursive structure of the network allows us to decom-
pose the routing problem into a set of subproblems,
corresponding to each of the stages in the recursion.
The top level problem consists of selecting, for each
connection, one of the d subnetworks By 4,4 to route
through. Given a solution to the top level problem, we
can solve the routing problems for the d subnetworks
independently. We can solve the top level problem
most readily by reformulating it as a graph coloring
problem. To do this, we define the connection graph
Ge = (V, E¢) for C as follows.

{u,9;[0 < j < n/d}
Huziza) vy} 11 <igr)

To solve the top level routing problem, we color the
edges of G¢ with colors {0,...,d — 1} so that no two
edges with a common endpoint share the same color.
The colors assigned to the edges correspond to the sub-
network through which the connection must be routed.
Because G is a bipartite multigraph with maximum
vertex degree d, it is always possible to find an appro-
priate coloring [2]. In brief, given a partial coloring of
Gc, we can color an uncolored edge {u, v} as follows.
If there is a color i € {0,...,d — 1} that is not already

Ve
Ec

I
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in use at both u and v, we use it. Otherwise, we let i
be any unused color at v and j be any unused color at
v. We then find a maximal alternating path from v;
that is a longest path with edges colored 7 or j and v as
one of its endpoints. Because the graph is bipartite,
the alternating path must end at some vertex other
than u or v. Then, we interchange the colors i and j
for all edges on the path and use i to color the edge
{u,v}.

Fo prove results for rearrangeability in the presence
of multirate traffic, we must generalize the graph col-
oring methods used in the s case. We define a connec-
tion graph G¢ for a set of connections C as previously,
with the addition that each edge is assigned a weight
equal to that of the corresponding connection. We
say that a connection graph is (8, d)-permissible if the
edges incident to each vertex can be partitioned into d
groups whose weights sum to no more than 3. A legal
(8, m)-coloring of a connection graph is an assignment
of colors in {0,...,m — 1} to each edge so that at each
vertex u, the sum of the weights of the edges of any
given color is no more than £.

Now, suppose we let Y = Y} b4 Y3 M Y3, where V)
is a (d, m)-network, Yz is an (n/d, n/d)-network and
Y3 is an (m, d)-network and alsolet 0 < B, < B2 < 1.
Then if Y4, Y2, ¥5 are rearrangeable for connection sets
with @ < > and every (8, d)-permissible connection
graph for Y has a legal (82, m) coloring then Y is re-
arrangeable for connection sets with 8 < 3,

Our first use of the coloring method is in the analy-
sis of By 4. We apply it in a recursive fashion. At each
stage of the recursion, the value of # may be slightly
larger than at the preceding stage. The key to limit-
ing the growth of 8 is the algorithm used for coloring
the connection graph at each stage. We describe that
algorithm next.

Let G¢ = (Vg,Ec) be an arbitrary connection
graph. We construct a new graph G4 by splitting
each vertex u with with z > d edges into r = [z/d]
vertices #g,...,u,—; with the d “heaviest” edges as-
signed to ug, the next d heaviest edges assigned to u,
and so forth. When this operation is complete, we are
left with a bipartite graph in which every vertex has at
most d edges and we can d-color G, as before and then
color the edges of G¢ in the same way that the cor-
responding edges are colored in G,. We refer to this
as the balanced vertex splitting algorithm (Bvs) algo-
rithm. We can route a set of connections through Bny
by applying Bvs recursively. Our first theorem gives
conditions under which this routing is guaranteed not
to exceed the capacity of any link in the network.

THEOREM 4.1. The Bvs algorithm successfully routes



all sets of connections for Baa for which

o< [1+ 2 a/p) og,(n/d)|

Proof. Let G¢ be any (f,d)-permissible connec-
tion graph with maximum edge weight B and §; <
1 — B(d - 1)/d. We start by showing that the Bvs
algorithm produces a legal (B2, d)-coloring for some
£ < B+ B(d - 1)/d.

Let u be any vertex in G¢. The largest weight that
can be associated with any color at u is the sum of
the weights of the heaviest edges at each of the cor-
responding u; in G5. Because of the way u's edges
were distributed among the u;s this weight is at most
B+ (dpy — B)/d= 8, - B(d-1)/d.

Given this, if we route a set of connections through
Bhn 4 by recursive application of the Bvs algorithm, we
will succeed if

B+ (d—;—l) Blogy(n/d) <1

which is implied by the hypothesis of the theorem. O

As an example, if n = 215, d = 32 and B = B, it
suffices to have a speed advantage of 3. We can im-
prove on this result by modifying the Bvs algorithm.
Because the basic algorithm treats each stage in the re-
cursion completely independently, it can in the worst-
case concentrate traffic unnecessarily. The algorithm
we consider next attempts to balance the traffic be-
tween subnetworks when constructing a coloring. We
describe the algorithm only for the case of d = 2, al-
though extension to larger values is possible.

Let G¢ be a connection graph for Bna2. Gc
comprises vertices wuy,..., Y(n/2j—1 corresponding
to switches in stage one of B,2 and vertices
Y0:...,Ynyt2)-1 corresponding to switches in stage
2(logan — 1). We have an edge from u; to v; cor-
responding to each connection to be routed between
the corresponding switches of By 2. We note that for
0 < i < n/f4, the switches corresponding to u,; and
u2i4+1 have the same successors in stage two of By 3.
Similarly, the switches in By s corresponding to vy
and veiy) have common predecessors. We say such
vertex pairs are related.

Let a and & be any pair of related vertices in Ge.
The idea behind the modified coloring algorithm is
to balance the coloring at a and b so that the total
weight associated with each color is more balanced,
thus limiting the concentration of traffic in one sub-
network. The technique used to balance the color-
ing is to constrain it so that when appropriate, the
edges of largest weight at a and b are assigned differ-
ent colors, and hence the corresponding connections
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are routed through distinct subnetworks. For any ver-
tex v in Gg, let wy(v) > wi(v) > - be the weights
of the edges defined at v, let Wo(v) = 3 ;5qwai,
Wi(v) = Yisowaier and W(v) = Wo(v) + W (v).
Also, let z(v) = Wy(2) — W,(v).

The modified VS algorithm proceeds as follows. For
each pair of related vertices @ and b in Gg, if z(a) +
z(6) > B, add a dummy vertex z to Ge with edges
of weight two connecting it to a and b. We then color
this modified graph as in the original Bvs algorithm
and on completion we simply ignore the added vertices
and edges. The effect of adding the dummy vertex is
to constrain the coloring at @ and b so that the edges
of maximum weight are assigned distinct colors. We
apply this procedure recursively except that in the last
step of the recursion we use the original Bvs algorithm.

THEOREM 4.2. The modified BVs algorithm success-
fully routes all sets of connections for By 2 for which

-1

5 1+ Xis/oys, |

Proof. Let a and b be related vertices with wy(a) >
wo(b). Let z; = max {W(a), W(b)} and let z; be the
total weight on edges colored 0 at a and b. If z(a) +
z(b) < B, no dummy vertex is added and we have that

zy < Wo(a) -+ Wg(b)
< (2 +2(a))/2+ (21 + 2(b))/2
< 4+ B/2

Similarly, if z(a)+ z(b) > B, 2 dummy vertex is added
and we have that

z3 < wg(a) + W, (a) + W (b)
< wola) + (21 — (a))/2 + (21 — 2(b))/2
< 21+ B/2
Thus, the total weight on a vertex in stage ¢ is at

most 20 + (i — 1)B/2. In particular, this holds for
i = logn — 1. Also note that for an edge (u,v) in
stage j < logyn — 2, the maximum weight is at most
B plus half the weight on u. For an edge (u,v) in stage
log, n—1, the weight is at most B/2 plus the maximum
weight at u, since in this last step the original BvS
algorithm was used. Consequently, no edge carries a
weight greater than 8 + (B/4) logyn. D

Theorem 4.2 implies for example that if § = B, a
binary Bene$ network with 216 input and output ver-
tices is rearrangeable, if it has a speed advantage of 5.
Theorem 4.1, on the other hand gives rearrangeability
in this case only with a speed advantage of about 8.5.
Tt turns out that we can obtain a still stronger result




by exploiting some additicnal properties of the original
BVS algorithm.

THEOREM 4.3. The Bvs algorithm successfully routes
all sets of connections for B, ¢ for which

B < [max{2,\ - lnlﬂ/BJ]]_1

where A = 2 + Inlog,(n/d).

So, for example if d = 32, n = 2!% and S = B, a speed
advantage of 2.7 will suffice for rearrangeability. The
proof of Theorem 4.3 requires the following lemmas.

LEMMA 4.1. Let r be any positive integer. If a set of
connections for By, 4 is routed by repeated applications
of the BVS algorithm, no link will carry more than r
connections of weight > g/(r + 1).

Proof. By induction; the condition is true by definition
for the external links. If the assertion holds at a given
level of recursion, the connection graph G¢ for the
next stage will have at most rd edges of weight greater
than #/(r 4+ 1) at any given vertex u. These edges are
all incident to ug, 1y, ... %,y in G, implying that the
BVs algorithm will use a single color for at most r of
them. O )

If £is a link in By g4, we define 5} to be the set
of links £ in stage j for which there is a path from
¢ to £. If a given set of connections uses a link £,
we refer to one connection of maximum weight as the
primary connection on £ and all others as secondary
connections. We note that if the Bvs algorithm is used
to route a set of connections through B, 4, then if there
are r+1 connections of weight > w on a link £ = (u,v),
there are at least 1 + dr connections of weight > w on
the links entering u.

LEMMA 4.2. Let 0 < i < logy(n/d), let £ be a stage
t link in By g carrying connections routed by the BvS
algorithm and let the connections weights be wy >
wy 22 wp. For0<t<hand0<s < min{i,t},
there are at least (t — s + 1)d® + sd*~! connections of
weight > wy on the links in S;7°.

Proof. The proof is by induction on s, When s =
0, the lemma. asserts that there are  + 1 connections
of weight > w, which is trivially true. Assume then
that the lemma holds for s — 1; that is, there exist
(t — s+ 2)d*~! + (s — 1)d*~2 connections of weight
> wy on the links in S]*+!. Because |Si~*+!| = @*-1,

by the pigeon-hole pr1nc1ple, at least (£ — s+ 1)d*~! +
(s — 1)d*~2 of these are secondary connections. This
implies that there are at least

&+ d[(t~s+1)d + (s~ 1)d*?
=(t—s+1)d* +sd*t

555

connections of weight > w; in S;~°. O
Proof of Theorem 4.3. Consider an arbitrary set of
connections for B, 4 satisfying the bound on 8 given
in the theorem, and assume that the Bvs algorithm
is used to route the connections. Let £ be any link
in stage 7, where i < log,(n/d), and let the weights
of the connections on € be wp > -+ > wy. Let r be
the positive integer defined by g/(r +1) < B < g/r
(equivalently, r = |3/B]). By Lemma 4.2, S{ carries
connections with a total weight of at least
+d" ;g + di(wi +

wo + dwy + d%wq + - -- <-4 wp)

Since the total weight on 57 is at most Ad*, we have

i=1 h
Bd > dwi+d > w;
j=0 j=i

From this and Lemma 4.1, we have that

i—1

Z“J +E“"J +E“’J

=0

< Br+ﬁz—+ﬂ
J—r

logy(n/d) |

26+ 8 E

F=r41

<

If |B/B} > logy(n/d), the last summation vanishes
and we have that the weight on £ is < 28. Otherwise,
the weight is bounded by

<8 (2410 Hopn/d)) = 5~ ml/B)

So, if B satisfies the bound in the statement of the
theorem, the weight on £ is no more than one. By a
similar argument, the weight on any link in stage j for
J 2 logyn is at most one. O

The next theorem gives the conditions for rearrange-
ability for the Cantor network. The proof is omitted.

THEOREM 4.4. Let ¢ > 0 and [f/B| < logy4(n/d).
Ky 4m is rearrangeable if

m 2 [(1+€)(A -In|8/B])]
+2(2 + logy A + logy(B/e))

where A = 2+ Inlogy(n/d) and ¢ = 1 — BA/(1 4+ €)(A —
In{f/B]).

The graph coloring methods used to route connec-
tions for By, 4 can also be applied to networks that
“expand” at each level of recursion. Let C3 ; ., = X4.4
and for n = d*, i > 1, letCndm_..deNCIdnld
Xm,4- The followmg theorem gives conditions under
which C7 ; ,, is rearrangeable.



THEOREM 4.5. C}, , ., is rearrangeable if

m—lglmll'r"]_l
B1-1fy

where v = m/d and ¢ = log,(n/d).

g < [1/7‘ +

Proof. We use the Bvs algorithm to route the connec-
tions. If we let §; be the largest resulting weight on a
link in stage 7 for 1 < ¢ < log,(n/d), we have

dfi-,— B m—1
g < B+ Pa-B (Bi-r/7) + ——B
m m
n, m=1 1—(1/7)
< 1
< (Bo/v') + ™ B 1—1/y <1
m)
So, for example, C}, ; ,,_, is rearrangeable if B <
1/2.

5. CONCLUSIONS

Figure 6 compares the complexity of a variety of
different networks. The curves give the complexity of
the following networks.

o X, an n x n crossbar.

® C, a three stage Clos network with 8 = 1/2and m
Just large enough to make it strictly nonblocking.

o K3 and Kg3,, Cantor networks with d = 2 and
d =32, # = 1/2 and m just large enough to make
them strictly nonblocking.

e By and B3z, Benes networks with ¢ = 2 and
d = 32 and f chosen to make them strictly non-
blocking.

e B; and Bj,, Benes§ networks with d = 2 and
d = 32 and # chosen to make them rearrangeably
nonblocking.

e 5, a Batcher sorting network together with a
Banyan routing network as used in the Starlite
switching system [7].

The first plot gives the number of crosspoints per port,
the second gives the number of packages per port when
6 = 32 and the third gives the number of packages per
port when & = 2. In the crosspoint comparison, it's
interesting to note the fairly modest difference in com-
plexity attributed to the switch size in the Cantor and
Benes networks. There are two opposing effects at
work here. For the Cantor networks, larger switches
allows reduction in the value of m and in the Benes
network, reduction in the speed advantage. On the
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Figure 6: Complexity of Various Networks

other hand, this is partially offset by the larger num-
ber of crosspoints in a 32 port switch compared to a
five stage network constructed from two port switches.
Note that in the package count comparison, the larger
switch gives a reduction of more than two orders of
magnitude for most of the networks. For the larger
package sizes, the Benes networks appear most attrac-
tive, although the sorting network certainly compares
favorably. Notice that at switch sizes of 1024 and un-
der there is no difference in the package counts of the
strictly nonblocking and rearrangeable Benes networks



for § = 32. We believe that this indicales that our
bound on # for rearrangeable operation can be im-
proved. We suspect in fact that rearrangeable opera-
tion can be achieved with only a constant speed advan-
tage. Also note that at switch sizes of 1024 and under,
the difference in package counts between the Clos and
rearrangeable Benes networks is only a factor of two
when 6 = 32. From an engineering viewpoint, this
suggests that other factors may take precedence over
complexity considerations.

An important message of these plots is that the tra-
ditional complexity measure of crosspoint count can be
misleading. The package count is clearly the more use-
ful cost measure for making engineering choices and it
differs significantly from the crosspoint measure. One
final caution regarding the package counts is that the
absolute values can be misleading if used careiessly.
These values are normalized so that 8 = 1 corresponds
to systems with bit-serial data paths. If wider data
paths are required for reasons outside those consid-
ered here, the package counts shown in Figure 6 must
be scaled accordingly.

In this paper, we have introduced what we feel is an
important research topic and have given some funda-
mental results. Qur generalization of the classical the-
ory is a natural and interesting one, which has direct
application to practical systems now under develop-
ment in various research laboratories [5,7,14]). There
are several directions in which our work may be ex-
tended. While our resulis for strictly nonblocking net-
works are tight, we believe that our results for re-
arrangeably nonblocking networks can be improved.
Another interesting topic is nonblocking networks for
multipoint connections. While this has been consid-
ered for space-division networks [6,12], it has not been
studied for networks supporting multirate traffic. An-
other area to consider is determination of blocking
probability for multirate networks.
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