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ABSTRACT

This paper generalizes known results for nonbiock-
ing distribution networks (also known as generalized
connection networks) to the multirate environment,
where different user connections share a switch’s in-
ternal data paths in arbitrary fractions of the total ca-
pacity. In particular, we derive conditions under which
networks due to Ofman and Thompson, Pippenger,

and Turner lead to nonblocking multirate distribu-

tion networks. Our results include both rearrangeable
and wide-sense nonblocking networks. The complex-
ity of most of our nonblocking multirate networks is
roughly twice that of the corresponding space division
networks. The one exception, has complexity that ex-
ceeds that of the corresponding space division network
by a loglog factor.

1. INTRODUCTION

In reference [4, 5], the authors introduce the con-
cept of nonblocking multirate networks and prove a
collection of results generalizing the classical theory
of nonblocking connection networks. In this paper, we
extend our earlier work to cover distribution networks,
that is networks that are capable of distributing a sig-
nal from a single input to one or more outputs. Such
networks are also known as generalized connection net-
works. The networks we study are of interest in the
context of fast packet or aysnchronous transfer mode
(ATM) systems now being developed, where signal dis-
tribution is of interest for (among other things) the
distribution of video.
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2. DEFINITIONS

The topological design of switching networks deter-
mines their complexity and blocking characteristics.
We use a graph model for describing the topology of
switching networks; it is described in detail in refer-
ences {4, 5]. The delta network [7] D, 4 is defined in
this model by

Dyg=X4a Dnd=Xaa*xDntda

where n = d* for some integer k and Xyq isa dx d
crossbar. The number of stages in the delta network is
exactly k. The banyan network [3] Yy 4 is defined by

Yaa=Xaa Yad = Tapeai(n/d-Xa);1a4,n14i(d"Yasa,a)

The banyan network is isomorphic to the delta net-
work, and so is equivalent in all respects. However, it
is useful to define it separately as certain properties
are more easily proved using the banyan definition.

The delta networks can be extended by adding
stages of switching. If d, k, k are positive integers with
h < k and n = d*, we define the extended delta net-
work D}, 4, as follows ’

Dgo=Dna Dhan=XaaWDoysan-1"Xaa

H we take h = k ~ 1 we obtain the Benes network,
dencted B, 4. By placing several Bened networks in
parallel with one another we obtain the Cantor net-
work Kn 4, defined by

«Kﬂ.d,q = Xl,q Ly Bn,d‘ M X 1

These networks are illustrated in Figure 1

We define three parameters that constrain the traffic
placed on 2 network; b is called the minimum connec-
tion weight, B the maximum connection weight and
B the maximum port weight. By definition, 0 < & <
B<BL1
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Figure 1: Network Definitions

We discuss three different classes of netwotks, con-
nection networks (or simply connectors) which pro-
vide one-to-one communication between specified in-
puts and outputs, concentration networks (concentra-
tors), which provide one-to-one communication be-
tween specified inputs and unspecified outputs and dis-
tribution networks (distributors), which provide one-
to-many communication between specified inputs and
specified sets of outputs. Our primary interest here
is in distribution networks (also known as generalized
connectors).

A connection request is a triple (z,y,w) where z is
an input, y is an output and w € [b, B) is the weight of
the request and represents the fraction of the capacity
of the network’s internal data paths required by the
request. A connection assignment is a set of requests
for which, for every input or output z, the sum of the
weights of the connection requests including z is at
most B.

A connection route is a list of links forming a path
from an input to an output together with a weight. A
route realizes a request (z,y,w) if it starts at =, ends
at y and has weight w. A state is a set of routes for
which, for every input or output z, the sum of the
weights of the routes including z is at most B and
for every link £, the sum of the weights of all routes
including £ is at most 1. We say that a state realizes a
given assignment if it contains one route realizing each

request in the assignment and no others. The weight
on a link £ in a given state is the sum of the weights of
all routes including £. A link or switch y is said to be
w-accessible in a given state from an input z, if there
is a path from z to y, such that the weight on each

* linkin the path is at most 1 — w. We say that a state

5, is below a state s3 if 51 C 2. Similarly; we say that
s9 is above 5;,. We say a connection request (z,y,w)
is compatible with a state s if the weight on = and y
in s is at most f — w.

A network is a rearrangeable connector if for every
connection assignment, there is a state realizing that
assignment. A network is a strictly nonblocking con-
nector if for every state s and connection request r
compatible with s, there exists a route realizing r that
is compatible with s. A network is a wide-sense non-
blocking connector if the state space has a subset §
{called the safe states) such that for every state s € S
all states below s are in S and for every connection
request r compatible with s, there exists a route p re-
alizing r that is compatible with s and such that sU{ r}
is in 5. Intuitively, a network is wide-sense nonblock-
ing if blocking can be avoided by judicious selection of
routes. Note that every strictly nonblocking connec-
tor is also wide-sense nonblocking and every wide-sense
nonblocking connector is also rearrangeable.

Concentrators support one-to-one communication
between spécified inputs and unspecified outputs. A



concentration request is a pair (z,w) where z is an in-
put and w € [b, B] is the weight. A concentration as-
signment is a set of requests with total weight at most
fm (where m is the number of network outputs) and
for which, for every input z, the sum of the weights of
the connection requests including z is at most g.

A concentration route is a path from an input to
an output together with a weight. A route realizes
a request (z,w) if it starts at z and has weight w.
Network states are defined as previously. We say a
concentration request (z,w) is compatible with a state
s if the weight on z in s is at most § — w and if the
total weight in s is at most fm — w.

A network is a rearrangeable concentrator if for ev-
ety concentration assignment, there exists a state re-
alizing that assignment. A network is a strictly non-
blocking concentrator if for every state s and concen-
tration request r compatible with s, there exists a
route realizing r that is compatible with s. A net-
work is a wide-sense nonblocking concentrator if the
state space has a safe subset S such that for every
state s € S all states below s are in S and for every
concentration request r compatible with s, there ex-
ists a route p realizing r that is compatible with s and
such that sU {p} isin 5.

Distributors support one-to-many communication
from a specified input to one or more specified out-
puts. A distributjon request is a triple (z,Y, w) where
z is an input, Y is a set of outputs and w € [b,B]isa
weight. A distribution assignment is a set of requests
for which, for every input or output z, the sum of the
weights of the distribution requests including = is at
most g,

A distribution route is a list of links forming a tree
whose root is an input and whose leaves are outputs,
together with a weight. A route realizes a request
(z,Y,w) if its root is z, its leaves are exactly the set
Y and it has weight w. A state is defined as before,
but with respect to distribution routes. We say a dis-
tribution request (z, Y,w) is compatible with a state s
if the weight in s on z and all y € Y is at most f—w.

An augmentation request for a distribution network
in a state s is a pair (r,y) where r = (2,Y,w) is a
request in the assignment realized by s and y is an
output not in Y. An augmentation request is compat-
ible with s if the weight on y in & is at most 8 — w.
We say that an augmentation request can be satisfied
in s if the route realizing r can be extended by adding
links so that y becomes a leaf of the route. This ex-
tension must not of course increase the weight on any
lick beyond 1.

A network is a rearrangeably nonblocking distribu-
tor if for every distribution assignment, there exists a
state realizing that assignment. A network is a strictly

Pn/d

Figure 2: Pippenger's Network

nonblocking distributor if for every state s and dis-
tribution request r compatible with s, there exists a
route realizing r that is compatible with s and if ev-
ery augmentation request r compatible with s can be
satisfied. A network is a wide-sense nonblocking dis-
tributor if the state space has a safe subset S such that
for every state s € S all states below s are in §; for
every distribution request r compatible with s, there
exists a route p realizing r that is compatible with s
and such that sU {p} is in S; and every augmentation
request r compatible with s can be satisifed in such a
way that the resulting state is in S.

3. PIPPENGER’S NETWORK

Let @ = {Q4,Qq2s--.+Qar - -.} be a family of con-
centrators where Q, has n inputs and n/d outputs.
Define Ps = Xa,4 20d Pa(Q) = X1.4 X (Qn; Pasa(Q))
for all n that are powers of d. See Figure 2. Pip-
penger [8] showed that forb=B=f=1and d=2,
if Q is a family of wide-sense (rearrangeably) nonblock-
ing concentrators then P, is a wide-sense (rearrange-
ably) nonblocking distributor. To understand this re-
sult, note that a route from an input z to an output
y, must pass through a unique sequence of recursively
constructed subnetworks. The branch switches X 4
allow the route to pass to the required subnetworks
without conflict and the route must be able to pass
through the required concentrators i y is idle since
each of these concentrators must have at least one idle
output. This is illustrated in Figure 2. Note that
branching is restricted to the branch switches and the
crossbars in the last stage.

Ofman [6] shows that the reversed banyan network,
".7,,,2 is a rearrangeable concentrator when b = B =



# = 1, yielding an explicit construction of a rear-
rangeable distribution network in the classical con-
text. Similarly, since the Cantor network Ko d,m is
a strictly nonblocking connector when m > (2/d)(1 +
(d — 1) log, n/d) it is also a strictly nonblocking con-
centrator and Pippenger’s construction yields a wide-
sense nonblocking distribution network. Our first two
theorems generalize these results to the multirate en-
vironment.

Let 7,..,,..4 denote the reversed banyan network ?n,g
but with the cutputs restricted to any m consecutive
elements of [0,n — 1].

TueoREM 3.1. Let @ = (Y n7e.4}- Then Pa(Q) isa
rearrangeable distributor if (1/8) =z 2.

THEOREM 3.2. Let Q = {Bn4}. Then Po(Q) is a
wide sense nonblocking distributor if

1(8+ B) 2 =gy + (¢~ Dlosd(e/D)-

Theorem 3.1 follows from Pippenger’s basic con-
struction and the following theorem which gives con-
ditions under which the reversed banyan network is a
rearrangeable concentrator.

THEOREM 3.3. Given any concentration assignment
for Y, with total weight w < n and anyy € [0,n-1],
there is & state of Y n 4 that realizes the assignment us-
ing only outputs in S = {y,(y+1) mod n,...,y+{(r—
1) mod n} of ¥4, where r < min {2w,n}. Hence,
forallm<n, Yomaisa rearrangeable concentrator
ifg<1/2.

Proof. We show that given any concentration as-
signment with total weight w < =, and any output y,
there is a state of Y 4 that realizes the assignment
using only outputs in 5 = {v(y+1) modn,...,y+
(r—1) mod n} of Y 4, where r < min {2w,n} and for
which, for all z,(z+ 1) mod n € S, the total weight on
the outputs z, (z+ 1) mod n is strictly greater than 1.
The routing strategy we use to establish the assertion
has the property that the distribution of the weights
on consecutive outputs is insensitive to the choice of
y; that is, the weight on the j-th output in the group
does not depend on the output we start with.

The proof is by induction on the number of stages.
For a single stage network, we route the requests of
the form (0,w) to output y. We then route as many
of the requests of the form (1,w) as will fit on output
y without overloading it. When we can’t place any
more connections on output y, we proceed to output
(y+ 1) mod n. Continuing in this fashion, results in a
state that satisfies the conditions given above.
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Figure 3; Reversed Banyan Network

Assume, then that the induction hypothesis is true
for all n = &', where i < k and consider a k stage
network with £ > 1. Figure 3 shows the struc-
ture of Yp4. Notice how it is made up of recur-
sive subnetworks that are connected through a set
of switches to the outputs. Let w; be the total
weight in the connection assignment involving inputs
in [j(n/d),(j + 1)(n/d) — 1]. By the induction hy-
pothesis, these connections can be routed to outputs
{yis(y:""l) mod (n/d), ..., (y; +(rj—1)) mod (n/d}}
of recursive subnetwork j, for amy choice of y; in
[0,(n/d) — 1] and for r; < min {2w;,n/d}. Further-
more, for any consecutive pair of outputs with non-
zero weight, the total weight will be strictly greater
than 1.

To establish the truth of the theorem, we must se-
lect values of y; that will allow the connections to be
routed through the final stage of the network to the
output set 5. We start by letting yo = y mod (n/d).
This will route the connections from subnetwork 0 to
switches in the last stage that have access to out-
puts ¢,...,y + (ro — 1) mod n. We configure the
last stage switches to route the connections in this
fashion and then proceed to subnetwork 1. Let z =

- g+ (ro — 1) mod n. We wish to route the connections

from subnetwork 1 to the set of outputs starting at
either z or (z + 1) mod n. The choice between these
two alternatives will depend on whether the resulting
weight on z would be acceptable or not. In particular,
if routing the connections from subnetwork 1 fo out-
puts z,z + 1 mod n,... would lead to a load less than
or equal to 1 on output z, we route them that way;
that is, we let 1 = z mod (n/d). Otherwise we let
1 = (z + 1) mod (n/d). We makea similar decisions
when selecting y2, y3 and so forth. Proceeding in this



fashion yields a network state satisfying the condition
to be proved, and hence establishing the theorem. O

To prove Theorem 3.2 we need the following theorem
which is proved in [4]

"THEOREM 3.4. B, 4 is a strictly nonblocking connec-
tor if

W/8)2 5

Ty (1 + (€~ Dloga(a/d).

Now, to establish Theorem 3.2, we need a routing
_strategy that ensures that the conditions required to
make the concentrators strictly nonblocking are met.
Whenever setting up or augmenting a connection we
require that it not place a weight greater than S+ B
on the input or output links of any of the concentra-
tors. Given the bound on £+ B in the statement of

Theorem 3.2, this will ensure that routes can be found -

through the required concentrators.

Suppose we are adding z to an existing route
(z,Y,w) and let i be the largest integer for which there
exists a y € Y with [z/d*~] = |y/d*~}. Then, the
current route includes a path which leads toward z for
the first ¢ levels in the recursive construction of P,.
At level i + 1, that path reaches a branch switch from
which the subnetwork containing z contains no current
element of Y. There is a unique sequence of concentra-
tors along all paths from this point to z. Consider any
such concentrator and let m be the number of outputs
the concentrator possesses. The number of network
outputs that can be reached from this concentrator is
also m, hence the total weight on the concentrator’s
outputs is at most fm — w. Hence, there is ai least
one output of the concentrator with a weight of less
than 8, and since w < B, the new path can be routed
through this output without violating the weight con-
straint of # 4+ B on concentrator outputs. A similar
argument applies to inputs. This completes the proof
of Theorem 3.2. O

4. MoDIFIED OFMAN-THOMPSON NETWORK

Ofman [6] and Thompson [11] showed that the net-
work Yn2;Yn2;Bng2 is a rearrangeable distributor
when b = B = f = 1. We show that a similar net-
work is a rearrangeable distributor in the multirate
environment.

THEOREM 4.1. By 4;Yn d; Bng isa rearrangeable dis-
tributor when

1/(8+B) 2 1+ £22(B/(8+ BY loga(n/d)

.

or

1/{8+ B) 2 2 + max {0, Inlog,(n/d) - In|1+ 8/B|}

So for example, if n = 1024, d = 32 and f = B
then (1/68) > 3 is sufficient to ensure rearrangeable
operation. Ifn =25, d=32and f= B, (1/8) > 4is
suflicient.

To use B, 4;Ynd; Bnd as a rearrangeable distrib-
utor, we use point-to-point routing in the first and
last subnetworks, allowing branching to occur only in
the middle subnetwork. The proof of Theorem 4.1
requires two results describing the blocking character-
istics of the subnetworks, The following theorem is
proved in [4].

THEOREM 4.2. Bo, g4 is a rearrangeable connector
when

(/B 2 1+ Z32(B/B) osd(n/d)

(1/6) 2 2+ max {0,1n log,(n/d) - In{ 5/ B]}

A less general version of the following proposition is
proved in [6).

ProrosITION 4.1. Let 0 < r < n—1and let C =
{(z0,¥0,1);---»(Zr=1,¥r-1,1)} be a connection as-
signment for Y 4, where yop < +++ < Yr-1 and for
1<i<r-1,2 =zi1+1 mod n. Then, there
is a state of Y, ¢ that realizes C.

Proof. By induction on the number of stages. For
a single stage, Yy, 4 is a crossbar so clearly it satisfies
the theorem. Consider then a network with more than
one stage.

Each of the subnetworks formed when the first stage
is removed is a banyan network, so we need only show
that the first stage can route all connections to the
proper subnetworks and that the connection requests
passed on to the subnetworks satisfy the condition in
the statement of the theorem.

Consider subnetwork j; £ = j(n/d) and h; = £; +
(n/d)—1 are the first and last outputs of subnet j. Let
a be the smallest integer such that £; < ya < h;j and let
b be the larpest integer such that £ < y < hj. Note
that the connection requests that are to be routed to
subnet j all have indices in the interval [a, b] implying
that b—a+ 1< nfd.

Because all the connection requests involving sub-
net j appear on consecutive inputs to the network and



there are at most nfd of them, they appear on in-
puts connected to distinct switches in stage 1. Conse-
quently, all can be routed to subnet j without conflict.
Also, because the connection requests for subnet j ap-
pear on consecutive inputs to the network, they pass
through consecutive stage 1 switches, which in turn
connect to consecutive inputs on subnet j, implying
that the connection requests seen by subnet j satisfy
the conditions of the theorem.

The above argument holds independently for each of
the subnetworks. Applying the induction hypothesis
to each of the subnetworks then, yields the theorem.
a

The following proposition is an easy generalization
of the previous one.

PROPOSITION 4.2. Let 0 < r < n—1and let A =
{{z0:20:1)s .+ -+ (Zr=11Zp-1, 1)} be a distribution as-
signment for Zp 4, where yy € Z; and yz € Ziq implies
thaty, < ysandforl <i<r-l,z;==zi1+1 mod n.
Then, there is a state of Yy 4 that realizes A.

Proof of Theorem 4.1 Let A= {r; = (=i, Z;,w;)|0 £
i < ¢ — 1} be a distribution assignment for
Bng;Ya,d; Bag, and assume the r; are sorfed by
weight, 80 that w; > w4 for i € [0,¢ - 2]. - Also,
let fi = |Z;| and 55 = ZJ'S‘ fiforie[0,g—1].

Assume for the moment, that [(si-y + 1)/n] =
|si/n] fori € [1,¢— 1] and let 4; = {ri|lsi/n) = i}
(This assumption will be eliminated later.) We con-
strain the choice of routes so that for r; € A;, the se-
lected route starts at z; and passes through input (i —
§) mod n and outputs (si-1 + 1) modn,...,simod n
of the central subnetwork, before proceeding through
the third subnetwork to the members of Z;. Notice
that for all § > 1, the route for the last request in
Aj_; and the route for the first request of A; pass
through a common input of the central subnetwork.

Given these constraints and Proposition 4.2, the re-
quests in each of the A4; can be routed through the
central subnetwork without using any common links.
Consequently, each link in the central subnetwork is
included in at most one route realizing requests in A;.
Hence, the weight on each link in the central subnet-
work is at most

Zmaxw.- =B+ (fn—-B)/n<f+B
J_}of.'é.l,'

Since this is < 1, the indicated routes can be handled
by the central subnetwork. Since the weight on the
input and output links of the first and last subnetworks
is at most 8+ B, the bounds on § + B given in the
statment of the theorem together with Theorem 4.2
imply that the indicated routes can be handled by the
first and last subnetworks.

Now all that remains is to eliminate our earlier as-
sumption that [(s;_y + 1)/n] = |si/n]. Suppose now
that for some i, | (si—1+1)/n] # |si/n]. Insucha case,
we split request r; into tworequestsriy = (zi, Zi,1 i)
and r;g = (zi» Zi,2,wi) where ZiaU2Z;2 = Z; and
$i-1 + |Zia| is evenly divisible by n. By doing this
for all requests that violate our assumption we obtain
a new set of requests that satisfies the assumption.
Hence we can apply the routing strategy given earlier
to this new set of requests. Notice that because the
our routing strategy routes the last request in Aj—y
and the first request of A; through a common input of
the central subnetwork, this does not require branch-
ing in the first subnetwork, O

5. A NEARLY WIDE-SENSE NONBLOCKING DISTRIB-
UTOR

The definitions of wide-sense and strictly nonblock-
ing distributors require that the network handle both
distribution requests and augmentation requests. If we
require only the ability to handle distribution requests,
we obtain a class of networks that is intermediate in
power between the rearrangeable and wide-gense non-
blocking distributors. We call such networks nearly
wide-sense nonblocking distributors.

THEOREM 5.1. By d; Bn g is & nearly wide sense non-
blocking distributor when

1/(8+B) 2 gy 7By + (@ Dlogu(n/d)

Proof. For convenience we introduce an alt._e_rnative
description of the Benes network. Let Rpg=Dntga¥N
Xg,a ™ Dpygqe- It is not difficult to show that Ry 4 is
topologically equivalent to By 4. Figure 4 compares
the recursive structure of the two networks. We can

. view Rna as being an “inside-out” version of Bngd-

For simplicity of description, the remainder of the the
proof addresses the network By, 4; Rn 4, but the results
hold equally well for Byg 4; Bn,d-

Let S be the set of states of Bnd; Ra,d in which
branching oceurs only in the second subnetwork and
in which the weight on any input of the second subnet-
work is at most f+B. Givenanystates € Sanda dis-
tribution request, (z,Y,w) compatible with s, we first
identify an input z to the second subnetwork carrying
a weight of at most § and from which more than half
the middle stage switches in the second subnetwork are
w-accessible. The key to proof is showing that given
the conditions of the theorem, there must exist such a
2. We also show that given the conditions of the the-
orem, more than half the middle stage switches of the
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Figure 4: Recursive Structures of Ba ¢ and Rn 4

second subnetwork are w-accessible from each output
in Y and that z is w-accessible from z. These facts
together imply the existence of a route r realizing the
request for which s U {r} € S.

For 0 < i < k = logyn, define Li(x) to be the set
of stage i links that can be reached from input u in
an idle network Rn 4. We note that Li(u) = Li(v) if

lu/d’| = [v/d], s0
Li(©), L (@) 5 ..., Li (§d) ..., Li (¢ - 1) &)

partitions the links in stage i into d*~* groups of d
links each.

To find an input z to the second subnetwork, we
work backward from the middle stage of the second
subnetwork, seeking the most “lightly loaded™ portion
of the subnetwork at each step. Define W(j) to be the
weight on the links in L; (jd') let W} = min; Wi(4).
Note that W} < (8n — w)/d*~! < fd' and hence that
there is a z such that for 0 < i < k—1 the total weight
on the links in L;(2) is < Bd*.

Let Q; be the set of links (u,v) in stage i of the
second subnetwork for which u is w-accessible from
z but v is not. Also, let A; be the total weight on
all links in Q; and note that [Qilf(w) £ A; < Bd',
where f(w) = max {,1 — w}. The number of middle
stage switches of the second subnetwork that are not

A

w-accessible from z is exactly

k=1 .
Z |Qild* =1
i=0 1 k-ldk-i
St ™
1 [an- E-1 o et
< Ftyd [ﬁd 1+§d“ .(d’ d )ﬂ]
< Ty + (4= Dloga(n/)
< nf2d

Hence more than half of the middle stage switches are
w-accessible from z.

Next, we show that for all y € Y, more than half
of the middle stage switches of the second subnetwork
are accessible from y. The argument is similar to the
one given above. Redefine Q; to be the set of links
(u,v) in stage 2k — 1~ i of the second subnetwork for
which v is w-accessible from y but u is not. Also, let
X; be the total weight on all links in Q}; angl note that
IQilf(w) € Ai. Also, note that ); < Pd* since the
number of outputs that can be reached from links in
Q; is exactly d', none of them can carry a weight of
more than # and at least one (y) must carry a weight
of less than . The number of middle stage switches of



the second subnetwork that are not w-accessible from
y is then

k-1 _
E [Qifa* 1

= 1 k-1 -
S gt
<L |pdt1 4 kz—:ld*""(d" ~d1)p
f(w)d P
B
2 B n(1+(d - 1) logy(n/d))
<nf2d

Hence more than hslf of the middle stage switches are
w-accessible from y.

Finally, we need to show that a route can be found
from input z of the first subnetwork to z. This follows
from Theorem 3.4 and the fact that the input and
output links of the first subnetwork carry a weight of
at most S+ B. O

6. CLOSING REMARKS

The results given here generalize classical results on
nonblocking distribution networks. Furthermore, the
network model we have developed is directly applica-
ble to several ATM switching systems now under de-
velopment [1, 10]. In particular, several groups have
proposed the use of a Benes type topology for ATM net-
works, without apparently understanding the blocking
implications. Our studies indicate that while such net-
works cannot be made strictly nonblocking for prac-
tical values of 8, additional stages can yield 2 net-
work that is nonblocking for all new distribution re-
quests; while blocking can still occur for augmentation
requests, even this blocking can be avoided if we are
willing to occasionally rearrange a distribution request
in order to augment it. Only the specific request being
augmented is affected by this rearrangement, making
it a fairly straightforward operation.

The complexity of a space-division network can be
measured in terms of the number of integrated circuits
required to implement it. The complexity of a non-
blocking multirate network is defined to be the same
as the complexity of the underlying space division net-

work times the speed advantage (1/8) needed to make,

it nonblocking. So for example, the rearrangeable ver-
sion of Pippenger’s network has a complexity that is
roughly twice that of the corresponding space division
petwork. Similarly, most of our results for the multi-
rate case have complexity that is roughly twice that for
the comparable space division network. In the case of

i

the Ofman-Thompson network, the multirate case re-
quires a network whose complexity is larger than that
of the space division network by a log log factor.
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