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Abstract

This paper provides a method of analyzing the queueing behavior of switching net-
works constructed from switches that employ shared buffering or parallel bypass input
buffering. It extends the queueing models first introduced by Jenq and later general-
ized by Szymanski and Shaikh to handle these classes of networks. Qur analysis expli-
citly models the state of an entire switch and infers information about the distribution
of packets associated with particular inputs or outputs when needed. Earlier analyses
of networks constructed from switches using input buffering attempt to infer the state
of a switch from the states of individual buffers and cannot be directly applied to the
networks of interest here. Moreover, the assumption of independence among the
buffers in a given switch can lead to substantial inaccuracies in some cases, as has been
observed by Szymanski and Shaikh. Our approach can also be applied to previously
studied systems and yields more accurate results,
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1. Introduction

In a widely cited paper [3], Jenq describes a method for analyzing the queueing behavior
of binary banyan networks with a single buffer at each switch input. The method, while
not yielding closed form solutions, does permit the efficient computation of the delay and
throughput characteristics of a switch. A key element of the analysis is the inference of the
state of a single switch from the state of its two buffers, based on the assumption that the
states of the two buffers are independent. This independence assumption is not valid but
does not yield gross inaccuracies in the systems that Jenq studied.

Recently, Szymanski and Shaikh [5] have extended Jenq’s method to switching systems
constructed from switches with an arbitrary number of inputs and an arbitrary number of
buffer slots. They have also applied it to systems with different buffering techniques. While
these extensions are useful, it turns out that for many specific choices of system parameters,
the independence assumption mentioned above leads to significant inaccuracies.

‘We extend the previous work to cover switching systems in which the buffer slots in a
switch are shared among all the inputs and outputs, rather than being dedicated to either
particular inputs or particular outputs. Such systems require an analysis which explicitly
models the state of the entire switch rather than the states of individual input or output
queues, from which one infers the state of the switch. We can also apply our method to
systems using parallel bypass input buffering, a class of systems that cannot be analyzed
directly using the previous methods. Our technique can also be applied to the systems
studied previously, yielding more accurate results.

In section 2, we review the previous results for switching systems with input buffering,
in order to motivate the key issues involved in their analysis. In section 3, we show how
to analyze a switching system with shared buffering and present a variety of performance
curves characterizing such systems. In section 4, we show how our methods can be extended
to switching systems with input buffering, including systems supporting bypass queueing.
Finally, in section 5, we provide numerical comparisons of the different buffering techniques,
describe our computational experience and suggest some possible extensions to our work.
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Figure 1: Recursive Definition of a Delta Network
2. Approximate Analysis of Networks with Input Buffering

Figure 1 shows the recursive construction of a delta network D,gq with n inputs and out-
puts, constructed from d-port switches. Such networks provide a single path between any
inputs and outputs, and have log, n stages of switching. The delta network is topologically
equivalent to such networks as the banyan and omega networks. The results we describe
here are equally applicable to any of these networks. Delta networks are often constructed
from switches that contain buffering for a small number of packets, with flow control be-
tween successive switches to ensure that the buffers do not overflow. Figure 2 shows the
structure of a typical switch in which each switch input has a buffer with a capacity of 8

packets.

Typically these systems are operated in a time-slotted fashion, with fixed length packets
progressing from stage to stage in a synchronous fashion. Consequently, we can think of
the system as operating in two phases. In the first phase, flow control information passes
through the network from right to left. In the second phase, packets flow from left to right,
in accordance with the flow control information. A switch input will allow its predecessor to
send it a packet if it has an empty buffer slot currently or if one of the packets in its buffer
will leave during the second phase of the current cycle. This is called global flow control,
since the flow control decision at a switch potentially depends on all of its successors in
the network. Local flow control is also possible; in this form, a switch input allows its
predecessor to send a packet only if its buffer has an empty slot. While local fiow control
doesn’t make as effective use of a switch’s buffers, it is more straightforward to implement,
particularly in high speed systems where the propagation time required for global flow
control can lead to unacceptable overheads.

One way to analyze the queueing behavior of a buffered delta network is to explicitly
model the state of single input buffer by a discrete time birth-death process and then model
the state of an entire switch by assuming that the states of its various input buffers are
independent. This technique is described in [5]. We briefly review it here for completeness.
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Figure 2: Switch with Fifo Input Buffer

Let 7;(j) be the steady state probability that an input buffer in stage { of the network
(stages are numbered from left to right starting with 1) contains exactly j packets, where
0 < 7 < B. Let a; be the probability that a packet is available to enter a stage ¢ buffer and
let g; be the probability that the packet at the front of a stage ¢ buffer can leave during a
given cycle. With these definitions, the transition rates for the stage ¢ buffer are as shown
below.

ay a;gq e:G; g,
ool olBoEREE :EB0
a,9; g9; ag; 9

Here, @; = 1 — a; and §; = 1 — q;. The reasoning is straightforward. If the queue
contains j packets where 0 < j < B, then the probability that during the next cycle the
queue contains j + 1 packets is just the probability that a new packet is available to enter
the queue and the packet at the head of the queue does not leave; this is @;7;, assuming
that arrivals and departures are independent of one another. Similarly, the probability that
during the next cycle the queue contains j — 1 packets is just the probability that no new
packet is available to enter the queue and the packet at the head of the queue does leave;
that is, @;g;.

If we knew a; and ¢; then, we could easily compute the state probabilities #;(7). The
trouble of course is that a; and g; depend on the state probabilities of the buffers in the
neighboring switch elements. This leads to an iterative computational method in which we
assign arbitrary initial values to the state probabilities, then compute a; and g; for all ¢,
use these values together with the balance equations for the Markov chain to compute new
state probabilities, and so forth.

We calculate a; using the following equation
a;=1- (l = fi_I(O)/d)d

The reasoning is that a packet is available to enter a particular input buffer of a stage ¢
switch if at least one of the d buffers in the predecessor is non-empty and has a first packet
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Figure 3: Approximate Throughput of Networks with Fifo Input Buffering
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for the particular stage i switch of interest. Note that the states of the predecessor’s d
buffers are assumed to be independent.

Define b; to be the probability that a successor of a stage ¢ sthch can accept a packet.
Then,

b = 1= 7341(8)g;yy for global flow control
T mir(B) for local flow control

and
d=-1

b; ( i ) 7:(0)/d) (1 — 7:(0) /)41

=0

n

'H

,

d
= }0) > ( )(r.w)/d)’(l - 7(0)/ )~

= 1(0)(1 = (1= F(0)/d)") = biaiy1/7i(0)
The first equality above is based on the observation that the first packet in a stage ¢ buffer
can leave if the successor it is destined for can accept it and it wins any contention that may
occur between it and the other input buffers in the same switch. There are d —1 other input
buffers that might contend with it, the probability that any one does contend is 7;(0)/d,
and the probability that the given input buffer wins, when it has to contend with j others
is 1/( +1).

In realistic systems, each input to the network is supplied with a buffer that is typically
much larger that those in the switches. We can model such a buffer using the Markov chain
shown below, where 8’ is the number of buffer slots, by is the probability that a stage 1
switch can accept a packet offered to it (computed according to the equation for b; given
above) and p is the offered load, that is the probability that a packet is available to enter
the buffer. _ _ _

P pby pb, Pby
ol clBoNBoNERE-UBG
By Bby By b

Finally, we note that a; is computed not according to the general equation given above
but is equal to the probability that the input buffer is nonempty; also, we assume that the
output of the network can always accept a packet meaning that b; = 1, where k = logy n.

The performance curves shown in Figure 3 were computed with this method. The
top four curves show the maximum obtainable throughput as a function of switch size for
networks with switches of different sizes and varying amounts of buffering. The bottom
two curves show the effect of varying the amount of buffering for switches with 256 inputs.
The curves on the left show the throughput in the case of local flow control and those on
the right are for global flow control. It’s interesting to note that the networks constructed
from larger switches have lower throughput when n is large. This is caused by head-of-
line blocking effects that affect the larger switches more severely and because the smaller
number of stages in these networks means that the total buffering available is smaller.
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Figure 4: Switch with Shared Buffering

3. Analysis of Networks with Shared Buffering

It’s well known that switching networks in which buffers are shared among the inputs
can yield better performance than those in which buffers are dedicated either to inputs or
outputs. Figure 4 shows a switch in which packets arriving at any of d inputs are placed
in available buffer slots from a pool containing B slots. Packets are routed from the shared
buffer to the appropriate outputs. An implementation of such a switch would require a
d x B crossbar to distribute arriving packets to buffers and a separate B x d crossbar to
route packets from buffers to outputs.

As in the input buffered switch, one can use either local or global flow control, but we
analyze only the case of local flow control. There are two additional possibilities for imple-
menting local flow control which we refer to as the grant and acknowledgement methods. In
the grant method of flow control, a switch with z empty buffer slots, grants permission to
send a packet to min{z, d} of its upstream neighbors at the start of an operation cycle of the
switch. If z < d, we assume that z predecessors are chosen at random. In the acknowledge-
ment method of flow control, all predecessors with packets to send are permitted to send
them. The receiving switch stores as many as it can in its buffer and acknowledges their
receipt by means of a control signal. Unacknowledged packets are retransmitted during a
subsequent cycle. The acknowledgement method requires that the predecessors hold a copy
of a packet pending an acknowledgement, but allow better buffer utilization overall.

We first analyze a network using the grant method of flow control. We model each
switch as a B + 1 state Markov chain. We let 7;(s) be the steady state probability that
a stage i switch contains exactly s packets and we let A(s1,s2) be the probability that a
switch with s; packets during a given cycle contains s; packets in the subsequent cycle.

Let pi(4,s) be the probability that j packets enter a stage 7 switch that has s packets
in its buffer and let ¢;(7, s) be the probability that 7 packets leave a stage 1 switch that has
s packets in its buffer. Then

Ai(s1,82) = 3 pi(h, s1)gi(h — (82 — 81), 51)
M{O,sz—a;}ShSd
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Figure 5: Carried Load Curves for Networks with Shared Buffering



Queueing Analysis of Buffered Switching Networks

30 n=256, d=2
grant
24
B=1| 15
18—
delay
12 “
6 —
0 | | 1 1 0 1 l | i
0 2 4 b 2 1 [t} 2 A 6 8 1
offered load (p) offered load (p)
n=256, d=4
ack
Br 1s] 2{26] 3
delay
___JA
0 | T T T 0 T T T T
0 2 A 6 3 1 0 2 4 6 B 1
offered load (p) offered Joad (p)
a0
=256, d={6 CY n=256,d=16
grant ack
24 24
18- Bl ts] 2lz¢ 3 18 Bst| L3 2)a28) [*
delay
12 124
6 6 -
J i )
0 | ] i | 0 [ I 1 1 |
0 2 4 5 8 1 0 2 4 6 2 1
offered load (p) offered load (p)

Figure 6: Delay Curves for Networks with Shared Buffering



Jonathan S. Turner 9

Let a; be the probability that any given predecessor of a stage ¢ switch has a packet for
it. Then if we let m = min {d, B — s},

pi(4,8) = (?)ﬂ‘.f(l-ai)m"j
> miea(h) [t - (1= 1/dY]

0<i<B

a;

Let b; be the probability that a successor of a stage i switch provides a grant and let
Yy(r,s) be the probability that a switch that contains s packets, contains packets for exactly
r distinct outputs. Then

%(d,s) = Y Yuns) (T) Bi(1 - i)
j<r<min{d,s} J

b = Y, mulh)+ D mia(B-h)R/d

0<h<B-d 0<h<d-1

Y is easily calculated, assuming all distributions of s packets to the d outputs are
equally likely. This is just a classical distribution problem. For the purposes of calculation,
the following recurrence is all we require.

1 ifs=r=0
Yi(r,s)=4 0 if(s>0andr=0)ors<r

2Ya(rys = 1)+ ECY(r - 1,5-1) f0<r<s

Note that Yy(r,s) is independent of the stage of the switch in the network. For computa-
tional purposes, it is most convenient to merely precompute a table with the values of ¥
required; the above recurrence is ideal for this purpose. As in the earlier analysis, we com-
pute performance parameters by assuming a set of initial values for 7;(7), then use these
and the equations given above to compute A;(s1,s2). These, together with the balance
equations for the Markov chain are used to obtain new values of 7;(§) and then we iterate
until we obtain convergence.

Most of the above analysis carries over to networks that use the acknowledgement
method of flow control. The only changes required are in the equations for p;(j,s) and
b;. In particular, we have

o ifB-s<j
. (?)a;?(l —a;)%d ifB-s>j
pi(f& s) = d
> b a?1-a)?* ifB-s>j
i<hgd
and
d-—1 —1)—
b o= Y, mm(h)+ Y ma(B-h) [+ > ( )a‘,-'H(I — @iy )T
0<h<B—d 1<h<d~1 o<r<h—1 \ T

+ 2 (d : 1)“:41(1 — a1 YR (7 + 1):|

h<r<d-1
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Figure 5 shows curves of offered load vs. carried load for networks with 256 inputs
and outputs, varying switch and buffer dimensions. In the plots 8 = B/d is the number of
buffer slots per switch input. We note that for shared buffer networks, large switches usually
perform just slightly better than small ones with the same values of 3. The advantage of
the acknowledgement method of flow control is most pronounced when the number of bufler
slots is limited, although one would expect a greater benefit in the presence of unbalanced
traflic patterns. Also, we note that throughputs of 80% or more can be obtained.

Figure 6 shows curves of average delay. The curves that become constant for large load
give the delay through the network itself. The curves that rise steeply for large loads include
the delay through the input buffer in addition to the network delay. We note that for offered
loads below the maximum capacity of a given network the total delay is generally between
1 and 2 times the number of stages in the network, yielding an advantage for networks with
large switches. We also note that the maximum network delay for a given configuration is
generally smallest for 8 = 1.5 or 2. This is a little surprising at first glance but of no great
practical import as the total delay is the more important performance measure.

Figure 7 gives maximum throughput curves for networks with shared buffering of varying
size and buffer capacities. As before, we note reduced throughput with larger switch sizes.
However, for § = 3, we obtain throughputs over 80% even for the largest networks.

4. Improved Analysis of Networks with Input Buffering

We now return to the study of networks comprising switches using input buffering. In
addition to switches that use fifo buffers, we are interested in switches that use bypass
buffering to avoid the head-of-line blocking eflects that limit the performance of systems
with fifo buffering. Two types of bypass buffering are possible. In serial bypass, the first
packets in a switch’s input buffers first contend for outputs, then the losing input buffers
with a second packet are allowed to contend a second time, those that lose in the second
round and have a third packet are allowed to contend a third time, and so forth. In parallel
bypass, all packets in a switch contend in a single round with the winners proceeding to the
outputs. This allows more than one packet from a given input to proceed during a single
cycle, allowing potentially higher performance. In high speed systems, parallel bypass is
actually somewhat easier to implement, as one does not have the overhead of multipie
contention rounds. For this reason and because it is more straightforward to analyze, we
concentrate here on parallel bypass.

The analysis of a network with parallel bypass input buffering is similar to that for a
network with shared buffers using the grant method of flow control. In particular, we need
only alter the equations for b; and pi(j,s). Let X f (j,¢) be the probability that a given
input buffer has j packets given that the switch contains s. Then,

bi= Y mia(s)(1- X3(B,9))

0<s<B
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Next, let Wf (r,s) be the probability that exactly r input buffers are not full given that
a switch contains exactly s packets. Then,

piis)= 3 Wirs) (3) ai(1-a;)~

jsrsd

X and W are easily computed, assuming that when the switch contains s packets, all
distributions of those packets among the input buffers are equally likely. Let zf {s) be the
number of ways to distribute s distinct objects (packets) among d distinct containers (input
buffers), under the restriction that each container may contain at most 8 objects. Also, let
:cg (r,s) be the number of ways to distribute s objects among d containers of capacity 8, so
that a particular container receives exactly r objects. Then

X5 (r,s) = 2§(r,5)/25(s)

Similarly, if wf (r, ) is the number of distributions that leave exactly r containers with fewer

than S objects, then
W (r,8) = wi(r,)/73(s)

We compute z, z and w as follows,

1 ifs=0
0 ifs>dp
7(s) = N
Z Jzg(s—1) f0<s<dB
0<i<min{4,s} K
s
zi(r,8) = (r) 2 (s=1)

d s
8 - B-1(c _ (d— g -

wd(r' 3) - (1‘) ((d - r)ﬁ) %y (s (d T)ﬂ)zd—r((d T)ﬁ)
Using these equations, it is straightforward to compute tables containing the requisite values
of X and W,

We now return to the case of an input buffered network with fifo buffers. Most of the
analysis for bypass input buffering carries over to this case. The two equations requiring
modification are those for a; and ¢;(j,s). Let Yf (r,s) be the probability that exactly r
input buffers contain at least one packet, given that the switch contains s packets. Then,

e = ), mals) Y Y(ra)1-(1-1/d))

0gs<B 0<r<min{d,s}

i = T . —_—

whe) = > Yi(he) X n(r,h)(-)bf(l—bo ,
j<h<min{d,s} i<r<h J
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If we let yf(r, s) be the number of ways to distribute s objects among d containers so that
exactly r containers receive one or more objects, then

YP(r,s) = u5(r.9)/z5(s)
1 ifr=5=0
0 fs<rord<rordf<sorr=0<s

A0 = Yot 2 (Y-

1<i<min{g,e—(r—1)}
if0<r<s<dfandr<d

Figure 8 gives curves of maximum throughput for networks comprising switches with
both fifo and parallel bypass input buffering, of varying size and buffer capacity. We note
that bypass buffering gives a very substantial improvement over fifo buffering and that larger
buffers yield a greater improvement in the case of bypass buffering. It’s also worthwhile to
note the differences between the curves on the left side of Figure 8 to the corresponding
curves on the left side of Figure 3 that were obtained using the more approximate method
of analysis. The two correspond closely only when 8 = 1. In all other cases, the earlier
analysis is too optimistic, and in some cases by a substantial margin.

5. Conclusions

Figure 9 compares the maximum throughput obtained with the various buffering methods
and networks of varying size, switch dimension and buffer capacity. We show curves for
shared buffering using both the grant and acknowledgement methods of flow control. We
show curves for input buffering using local flow control, bypass queueing and fifo queueing
using both the ealier method of analysis and our method. We note that shared buffer
switches offer clearly superior performance for a given amount of buffering, but bypass
input buffering performs impressively as well. Fifo input buffering when analyzed precisely,
performs rather poorly in comparison to the other methods, but may be acceptable in certain
applications. Interestingly, variation in switch size yields only small changes in maximum
throughput for networks with the same values of 8, but the reduction in the number of
stages obtained with larger switches yields a significant economy in implementation, as well
as lower delays. We note that the acknowledgement method of flow control yields only
modest improvements over the grant method when we have uniform random traffic with
Bernoulli arrivals. We would expect a greater difference in the face of non-uniform bursty
traffic, but cannot confirm that expectation at this time.

Qur computational experience is quite favorable. In collecting the data for all the curves
shown in this paper, we computed approximately 900 data points and used a total of 40
hours of CPU time on a Sun Sparcstation I, with 16 Mbytes of memory, yielding an average of
about 2.67 minutes per data point. The program required to compute the results for input
fifo buffering consists of about 8 pages of C++ code. The memory requirements for this
program are under 3 Mbytes when dimensioned for networks with up to 12 stages, switches
with up to 32 inputs and a total of up to 100 buffer slots. The other programs are a little
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smaller in both code and memory usage. The switch dimension and buffer capacity both
have a strong influence on the running time and memory requirements. We have computed
results for switches with d = 32 and # = 3, but this is about as far as one can reasonably
push the method with typical workstations. Fortunately, this covers the cases of greatest
interest, as larger switches are difficult to implement. Also, the relative insensitivity of the
results on switch dimension allows one to extrapolate to networks of larger switches with
a good deal of confidence. We note that, the analysis also supports computation of delay
distributions, and packet loss rates in addition to average delay and throughput.

In summary then, we have presented a method of analyzing the performance of buffered
switching networks that extends earlier work to apply to switching systems with shared
buffering and bypass input queueing. In addition, our approach yields a2 more precise
analysis of systems using fifo input queueing. We have also presented numerical results
demonstrating the applicability of the technique and in order to gain insight to the relative
performance of different buffering methods.

There are a variety of directions in which this work can be extended. One cbvious one is
the application of our approach to yield a precise analysis of networks using switches with
output buffering. Our work on parallel bypass input buffering has prompted us to observe
that the difference commonly noted between input buffering and output buffering may be
less significant than commonly assumed. What most authors overlook is that in a switch
with output buffering the internal crossbar or bus required to provide access to the outputs
requires greater capacity than the crossbar required in a switch using fifo input buffering. If
one equalizes the crosshar capacities in the two cases (which is essentially the effect of using
parallel bypass input buffering), the differences are significantly reduced and may become
negligible. This suggests that the position of the buffers is not the real issue. Rather it is
the capacity of the crossbar that makes the difference.

Another interesting problem would be to extend our models to allow modeling of systems
with global flow control. This appears difficult and may be of only academic interest, but
nonetheless it would be interesting to compare with the earlier analyses. Extension of
our models to networks with uneven traffic distribution would also be worthwhile. We
expect this could be done following the pattern established in {4]. Networks that perform
distribution and/or packet replication are of substantial practical interest currently [6]. The
extension of our models to cover distribution networks appears straightforward; the case of
replication is more challenging but may prove tractable.

Finally, these techniques are directly applicable to the study of several switching system
architectures that are under development for ATM networks [1, 2, 6]. A detailed comparison
of these systems using the tools we have developed could have an important practical impact
on the development of emerging networks.
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