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The Advanced Networks Group

The Advanced Networks Group of the
Computer and Communications Research
Center is concerned with new communication
technologies that can support a wide range of
different communication applications in the
context of large public networks. Fast packet or
ATM networks promise a far more flexible
communications infrastructure than is currently
available. The Advanced Networks Group is in
particular concerned with systems that are
capable of supporting ubiquitous multicast
communication, suitable for applications such
as video distribution, voice/video
teleconferencing and LAN interconnection. We
are developing an experimental switching
system supporting links operating at 100 Mb/s
and have devised economical switch
architectures that can support link speeds in
excess of a gigabit per second and having total
throughput exceeding a terabit per second.

Our work spans a variety of particular topics
including switching system design and analysis,
performance evaluation of switching systems
and networks, multicast connection
management, algorithms for multicast routing,
buffer and bandwidth management in the
presence of bursty traffic, internetworking of
high speed networks, image and video
compression and design of specialized
computer-aided design tools. Qur research
program includes a strong experimental
component, which currently centers on the
development of a prototype fast packet
switching system supporting link speeds of 100
Mb/s and multicast. We have developed five
integrated circuits to be used in this prototype
system and plan to assemble a network of four
switches to demonstrate applications of fast
packet switching. The experimental work is a
crucial element of the overall research program,
exposing detailed issues not apparent in higher
level studies and providing a strong focus for
the other activities.
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Executive Summary

This is the sixth progress report for the
Advanced Networks Group and covers calendar
year 1991. It has been another busy year with
good progress in several different areas. During
the past year, the Advanced Networks Group
has produced three journal articles, six
conference papers, eleven technical reports,
three MS theses, two doctoral theses and has
applied for four patents.

The new students joining the group this year
inlcude Saied Hosseini, Seyed Mahdavian,
Gopal Raman and Apostolos Dailianas. All
four are working with Andreas Bovopoulos. Jim
Anderson, Sanjay Kapoor and Lakshmana
Kumar all completed their masters degrees and
left the group as have Victor Griswold and
James Sterbenz who completed their doctoral
degrees.

The Applied Research Laboratory, now headed
by Dr. Jerome Cox, has continued in the past
year to develop an experimental ATM network,
which will shortly include four nodes deployed
around the St. Louis area to demonstrate a
wide range of applications including video
distribution, video teleconferencing and medical
imaging. This project, which grew out of the
Advanced Network’s Group’s research program
continues to be an important part of the overall
networks research activity. Washington
University is now seeking sponsors to initiate a
major new effort, called Project Zeus, which
seeks to develop and deploy ATM technology
within a campus network. The plans for
Project Zeus are summarized briefly below.
ARL has been working with a major
communications equipment manufacturer to
help them develop a cormmercial version of the
broadcast packet switch that can be used in
Project Zeus and is working to develop similar
relationships with other vendors.

The Advanced Networks Group’s research
agenda continues to focus on three primary
areas: (1) design and analysis of switching
systems, (2) internetworking and end-to-end

protocol issues and (3) network performance
and traffic engineering. The short articles that
follow cover a variety of specific topics; Project
Zeus, our planned campus ATM network; a
quantitative evaluation of switching networks
that compares different networks based on
performance and cost; a more accurate method
of analyzing the performance of buffered
switching networks with shared buffer switch
elements and flow control between stages; the
design of a general purpose simulation system
for evaluating switching system performance; a
method for congestion control in ATM networks
using a technique called fast buffer reservation;
algorithms for designing low cost networks,
given a set of traffic requirements and
constraints on equipment location and link
routing; design and implementation of a
kernel-based implementation of the McHip
internet protocol; design and evaluation of a
pipelined televisualization of biological
organisms; simulation and evaluation of the
Axon host-network interface architecture; a
model for analyzing the performance of general
acyclic asynchronous processing networks; exact
analysis of a traffic control module for ATM
networks; traffic engineering of the primary
statistical multiplexing stage in ATM networks;
design and analysis of a protocol that solves the
unfairness problem present in DQDB networks.
More detailed accounts of these activities
appear in the appendix.

We have just completed the first full year of our
Industrial Partnership Program which replaced
the prior Acs consortium. We currently have
seven members of the 1PP, providing $320,000
per year. Funding from the National Science
Foundation has brought the total to
approximately $470,000. While this is a
reasonably healthy funding level, the search for
additional funding continues apace. Guru
Parulkar’s current NSF grant expires this
summer and he is seeking support for a new
research initiative, together with Dave



Richards, a faculty member in electrical
engineering. The membership of several of our
IPP sponsors is up for renewal this year and we
will be talking with each of you about
continuing your support. We also continue to
look for new sponsors in the program. We are
hoping in the coming year to expand the IPP
membership to ten.



Project Zeus

Jerome Cox, Jr. and Jonathan Turner

During the last several years there has been a
growing recognition that fast packet switching
technology (also known as Asynchronous
Transfer Mode or ATM) will form the basis of
next generation communication networks. One
attractive aspect of ATM technology is its
inherent scalability, both in the total
throughput a network can support and the port
data rates. While much of the focus in ATM has
been on public network applications, most
people now agree that the demand for these
new networks will come from computer-based
applications needing higher bandwidth than
current shared-access LANs are able to deliver.
LAN and workstation vendors are recognizing
the need to introduce switching within campus
networks to expand their capacity and range of
applications, and are now moving aggressively
to develop products to fill this need.

Washington University has been deeply
involved in the development of ATM switching
technology and its application to medical
imaging. We now propose to work with a
variety of industrial partners to create
commercial implementations of the technology,
to apply that technology throughout the
university community for the benefit of users
and to answer several pressing system questions
that can only be addressed in an operational
network environment.

Figure 1 illustrates the concept behind the
proposed ATM network. The system would
consist of several switches on each of the
university’s two campuses. The switches would
be connected by transmission links operating at
speeds of 155 Mb/s and 620 Mb/s. Each switch
would support potentially several hundred
interfaces, with a variety of port speeds. We
expect the majority of ports to be 155 Mb/s
but will support higher speed ports as the need
for them arises. These interfaces could be
connected directly to multimedia workstations
and central compute servers or could be
connected indirectly through shared access

LANs such as Ethernet or FDDI. Video would
play a central role in the network, allowing
access to centrally stored video information
through the network, two-way or multipoint
video conferencing and remote classroom
instruction using video.

The network will include connections to remote
sites using either dedicated or switched
channels provided by the local exchange carrier
or interexchange carriers. In particular,
connection to new broadband services planned
by Southwestern Bell would make possible
classrooms, medical offices and hospitals, all at
locations more convenient to their clientele, and
all linked to the university or the medical
center by video, high resolution image
transmission and shared databases. Connection
to interexchange carriers would allow scientists
to interact with their colleagues at other
institutions and with distant supercomputers
via the emerging National Research and
Education Network.

A goal of Project Zeus is to explore possibilities
which may transform daily practice in a number
of application areas and, at the same time to
conduct experiments useful in understanding
the future bandwidth requirements of these
application areas. Those of us familiar with
network technology wish to work with scientists
and scholars from a broad range of disciplines
to increase our ability to generalize the
experimental results to new areas.

Many possible applications of the proposed
ATM network have been discussed with our
colleagues at Washington University. Four seem
particularly appropriate for the initial
experiments with Zeus network technology.
These applications are described briefly in the
following paragraphs.

Medical Imaging and Electronic Radiology.
Applications of broadband network
technology in medicine are particularly
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Figure 1: A Fast Packet Campus Network

attractive because of the extensive use of
medical images in diagnosis and treatment,
because of the need for prompt decision
making and because of the promising
results of early experiments, particularly in
the field of radiology.

Optical Sectioning Microscopy. The optical
sectioning microscope analyzes a series of
2D images obtained at different focal
planes of a live organism and displays the
organism’s 3D structure. This new
instrument promises to allow biologists to
investigate a variety of fundamental, and
previously insoluble, problems.

Earth and Planetary Sciences The Remote
Sensing Laboratory in the Department of
Earth and Planetary Sciences at
Washington University houses the lead
Geosciences Node of the NAsA Planetary
Data System. The node is responsible for
working with the Magellan and Mars
Observer missions to ensure that the data
acquired from spacecraft exploring the
solar system are properly documented and
archived. These data are primarily in the
form of that, in most cases, arrive over the
Internet.

Visualization in Art and Architecture. The
Urban Research and Design Center in the

School of Architecture has identified a
research agenda which addresses issues
regarding the development of a designer’s
workstation. The design of buildings,
urban places and cities is augmented
through multimedia and 3D models that
are linked to image collections, graphics
and art.

Another goal of Project Zeus is to provide a
realistic testbed suitable for communications
research on pressing questions of network
design and operation. Laboratory experiments,
simulations and demonstrations all provide
answers to some communications research
questions, but until thousands of users with
hundreds of applications test a network,
questions that depend on real traffic and service
patterns remain unanswered.

Network Congestion. Congestion control is
an essential feature of networks with
stochastically variable traffic. Evaluation
of congestion control methods requires
testing in a realistic testhed. Network
instrumentation for this and other related
purposes will be a key component of the
Project Zeus network design.

Efficient Routing. The Project Zeus
network will support general multicast



communication, in addition to
point-to-point communication. Efficient
algorithms for multicast connection routing
have been studied by our group, and final
evaluation of these algorithms will be
undertaken in the context of the Zeus
network.

Network Planning and Configuration.
Switched networks require more attention
to network capacity planning than the
shared access LANs currently used in
campus networks. We are working to
create a general software tool that will
support network planning and
configuration, allowing detailed
consideration of network expansion
alternatives, taking into account traffic
requirements, physical restrictions on cable
and equipment placement as well as
installation and maintenance costs.

Interoperability. The fast packet switching
technology based on the ATM standard will
be deployed both in campus networks and
in public broadband networks. The trade
offs for these two scenarios are different,
and thus, can lead to differences in ATM
signaling protocols. The success of ATM
critically depends on the interoperability of
different switches and associated signaling
protocols.

Internetworking. The existing
communication environment is best
characterized as an internet consisting of a
number of low speed networks
interconnected by gateways. Extending the
internet model to accommodate ATM
subnetworks is essential to the successful
incorporation of ATM into existing campus
networks. We are developing a
connection-oriented internet protocol that
will fully exploit the capabilities of new
high speed networks in the internet
environment.

Project Zeus is organized in three phases.
Phase 0, now underway, seeks to demonstrate
feasibility of the core technology, provide a

basis for a more complete design and provide a
testbed for application development. The
network created in this phase will be primarily
an experimental vehicle, rather than an
operational network supporting real users. This
phase of the project began in 1988 and will
continue through early 1992.

Phase 1, scheduled to begin at the start of 1992
and run through 1994, will create all the key
components needed to establish an ATM campus
network and provide extensive support for
application development. When complete, the
phase 1 network will be an operational system
supporting a variety of users in key
departments within the university.

During phase 2, which will run from 1994
through 1996, we plan to expand the range of
interfaces that can be used to access the
network, construct components for larger scale
networks and reduce the cost of key network
components. The phase 2 network will support
users in all departments of the university.

More details on Project Zeus can be found
in [9].



Quantitative Evaluation of Switching Networks

Ellen Witte

There have been a number of architectures for
ATM switching systems proposed in the
literature with extensive performance data, but
little in the way of comparison to indicate
which architectures are preferable from a cost
standpoint given specific performance
requirements. Any reasonable architecture can
be configured to provide a given level of
performance, but the associated costs can be
quite different. In this study, we compare
networks on the basis of both cost and
performance, to determine which architecture
provides a specified level of performance for the
lowest cost. To measure cost we count the
number of chips needed to realize the
architecture, taking into account both pin
constraints and device density. We have chosen
chip count because it is a dominant component
in the cost of a switching system.

We use the term switching system to refer to
the functional unit that interconnects the
external data links. The switching system is
responsible for receiving packets from external
links, routing them as appropriate and
transmitting the packets on external links.
Within the switching system there is a network
or switching fabric that performs the actual
routing function. Many of the networks we
consider are constructed by interconnecting
multiple copies of some smaller building block.
We use the term switch element to refer to the
smaller building block.

We are interested in differences between
switching systems based on architectural

choices as opposed to details of implementation.

Thus, we consider several broad categories of
systems based on high level architecture
choices. Within each category we consider one
or more alternatives and develop an equation
for the chip count for each alternative. These
equations are used to make plots of chip count
for each network over a range of parametric
values. We then compare the chip counts of the
various networks. Clearly the chip count

depends on the strategy used to assign
components of the system to chips. For each
architecture, we develop a packaging strategy
using as few chips as possible for that
architecture, within the constraints on package
size and transistor count for the chip. In
considering the chip count, we focus on the
switching network of each switching system and
ignore the input and output circuits which
interconnect the external data links. This is
done on the grounds that the input and output
circuit complexity is comparable for each of the
networks.

In this study, we have considered only
point-to-point networks. The following
networks were examined:

e Crossbar networks. In particular, we
consider the Knockout architecture in some
detail.

o Sorter Based Networks. In particular, we
study the Sunshine network and Lee’s
hybrid network, which includes a number
of sorter based modules which feed into
Knockout type output concentrators.

o Unbuffered Networks with Deflection
Routing. In this category, we consider
Tobagi’s Tandem Banyan network and the
Shuffleout network of Décina, et. al. In
both cases, we consider configurations with
recirculation, which provide the least cost
for a given performance level.

e Buffered Benes Networks. Here there are
many possible variations. We studied in
particular, a network with fixed path
routing and output buffering, and a second
network with per cell routing and shared
buffering,.

For each of the networks, a configuration was
chosen that allows the network to be essentially
nonblocking and have acceptably low cell loss
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Figure 2: Comparison of Network Architectures

rates. In some cases, this requires a speed
advantage for the network’s internal data paths
that is typically realized through added
parallelism within the network.

Figure 2 shows a comparison of the networks
studied for configurations with 256 inputs and
outputs (left side) and networks with 4096
inputs and outputs (right side). In both plots,
each integrated circuit was constrained to have
no more than 64 inputs and 64 outputs and the
transistor count per package was limited to
500,000. The plots show how the chip counts
grow as a function of the speed of the switching
system’s external data links. Notice that the
y-axis is logarithmic and gives the number of
chips per input and output. Note that in the
larger system, the various systems have costs
that differ by more than two orders of
magnitude. Even excluding the Knockout,
which is very poor in large configurations, there
is a striking difference among the various
alternatives.

More details on this work can be found in [47].

p=54,n=4056 —k——k—k—k
kT
e
— '--1
g= = Eé:|=$
— ~—~h=0==
1— fﬁzﬁfj_"__l -—t"t
;EI/[/ .----t-"'t-'---t-.-"t
jZizimimem et
T L) L] L]
200 400 800 800 1000
link speed (Mbvs)



Improved Queueing Analysis of Buffered Switching

Networks

Jonathan Turner

Reference [39], analyzes the queueing
performance of switching networks comprising
switches with shared buffering and flow control.
This analysis leads to a fast computational
procedure for determining the delay and
throughput of such networks.

We model each switch in the network as a

B + 1 state Markov chain. We let 7;(s) be the
steady state probability that a stage i switch
contains exactly s packets and we let A(sq, s2)
be the probability that a switch with s; packets
during a given cycle contains 3, packets in the
subsequent cycle. Let p;(j,s) be the probability
that 7 packets enter a stage ¢ switch that has s
packets in its buffer and let ¢;(7, s) be the
probability that j packets leave a stage ¢ switch
that has s packets in its buffer. Then

Xi(s1,82) = 3 pi(R, 81)gi(h — (s2 — 1), 81)
n

Let a; be the probability that any given
predecessor of a stage ¢ switch has a packet for
it. Then if we let m = min {d, B — s},

m

pilis) = (j)a{(l—a;)m-f
> mia(G) 1 - (1 - 1/d)]

0<i<B

a; =

Let &; be the probability that a successor of a
stage i switch provides a grant and let Yy(r, s)
be the probability that a switch that contains s
packets, contains packets for exactly r distinct
outputs. Then

%:(4,8) = > Yd(T,S)(gt)bf:(l—bi)’_j
j<r<min{d,s} J
by = Z wit1(h)
0<h<B—d
+ 5 mia(B - h)h/d
0<h<d—1

Y is easily calculated, assuming all
distributions of s packets to the d outputs are

equally likely. We compute performance
parameters by assuming a set of initial values
for 7;(7), then use the equations given above to
compute A;(s1,82). These, together with the
balance equations for the Markov chain are
used to obtain new values of 7;(j) and we
iterate until we obtain convergence.

In this analysis, we represent the state of a
switch by the number of packets it contains and
assume that the stored packets are equally
likely to be destined for any of the switch’s
outputs. This assumption is used in the
equation for a; and again in the equation for
Yi(r,s). This assumption ignores the
correlations between packet destinations that
develop as packets contend with one another.
Comparing the results of analysis with
simulation, we have identified conditions under
which the analysis overestimates a network’s
maximum throughput by as much as 30%.

Pattavina and Monterosso [30] call the above
model the scalar model and have proposed
instead, a vector model in which the state of a
switch is represented not by the number of
stored packets, but by a vector containing the
number of packets for each destination. The
vector model is exact for a single stage network
and is reasonably accurate for multistage
networks as well. On the other hand, the state
space grows exponentially with the size of the
switches, making it applicable only to networks
with up to four ports per switch.

We have developed an alternative scalar model
that seeks to match the accuracy of the vector
model while avoiding its computational
complexity. This model is based on the
observation that when a switch is in the steady
state, the average number of arriving packets
destined for a particular switch output port
equals the average number of packets departing
via that output port. When the original scalar
model is compared to the vector model, it’s easy

10
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Figure 3: Comparison of Alternative Queueing Analyses

to see that the scalar model in effect, implicitly
assigns probabilities to the vector model states
according to a multinomial distribution {when
d = 2, it is a binomial distribution). However,
the observation concerning the balance of
arriving and departing packets suggests that
the probabilities of these states should be
approximately equal. This leads to an
alternative scalar model in which uniform
probabilities are assigned to these states.

The uniform scalar model yields good results
for networks with large buffers (B > d?),
relative to d, precisely the case where the
original scalar model was least accurate. For
these cases, the predicted throughput is
generally within 5% of that predicted by
simulation. However, substantial inaccuracies
remain in the practically important case of
large d and B/d < 4. The problem here is that
for such switches, boundary states (states in
which there are some outputs for which there
are no packets in the buffer) are very common,
but occur with lower probability than is
assigned to them by the uniform scalar model.

To compensate for this, we have augmented the
uniform scalar model, by the addition of one
additional bit of information (roughly doubling
the number of states needed to represent a
switch). This bit is used to distinguish between
boundary and nonboundary states; within each
group, probabilities are assigned uniformly, as

11

before. This boundary method yields dramatic
improvements for switches with 2 or 4 ports,
but only a slight improvement for 16 port
switches. This is because, in large switches the
probability of being in a boundary state is so
overwhelmingly large that we gain little
information by distinguishing boundary from
nonboundary states. Consequently, we have
developed a threshold method, which uses the
extra bit of information to distinguish states in
which the number of outputs for which there
are packets is above or below a given threshold.
With this approach, we can predict
throughputs of networks with large switches
accurately (within a few percent of simulation
results) and quickly.

Figure 3 contains plots of maximum throughput
as a function of the size of the shared buffer, for
two networks with 256 ports ports each. The
plot on the left is for a network constructed
from four port switch elements and the one on
the right is for a network with 16 port switch
elements. The curve identified by the plotted
circules was obtained from simulation and the
other solid curve was obtained using the
threshold analysis. The dotted curves are for
the earlier analyses, with the top curve being
the original scalar method, the bottom curve,
the uniform scalar method, and the middle
dotted curve being the boundary method.

There are two primary directions in which this



work can be developed. One is to develop still
more accurate models of single stage switches,
while maintaining the computational efficiency
of the scalar models. The second is to model
the correlations between packet destinations for
packets in adjacent switches. For large networks
of small switches, this is the largest remaining
source of inaccuracy in the current models.

12



Design of a General Purpose Switching System Perfor-
mance Evaluation and Visualization System

Einir Valdimarsson

The evaluation of switching systems is a
complex task, because there are many different
components which interact in subtle and
unexpected ways. Simulation is an essential
tool for deriving insight into the way systems
perform, as it allows the designer to reproduce
the precise conditions under which a system
will be used, while allowing him or her to
observe the system’s behavior at either a
macroscopic or microscopic level.

Unfortunately, the design of effective simulators
for switching systems is a time-consuming
chore, since each switching system has its own
set of characteristics and idiosyncrasies that
must be captured, and since careful
programming is necessary to achieve acceptable
performance for system configurations of
practical interest. We have initiated work on a
simulation tool that will make it possible to
simulate a wide variety of different systems
with little or no programming on the part of
the performance analyst. The performance
analyst will be able to specify the components
of the system and the way in which they are
interconnected, by way of a graphical user
interface, with menus from which components
can be selected and powerful network
construction operators, which provide common
interconnection patterns. Once the system is
specified, the analyst will then be able to
simulate the it using appropriate traffic models,
also selected and modified through menus,
while monitoring the traffic parameters of
interest. The graphical user interface comes
into play during simulation as well, allowing the
user to observe the operation of the system
through a continuous animation and/or
through continuous plotting of the desired data.
The system will provide several advantages over
traditional approaches.

e It will allow the analyst to construct a
specific network and traffic configuration

with an absolute minimum of effort and
verify that the network operates as
expected using the animation features.

e It will make it much easier to compare
different configurations. Because the
different networks are constructed within
the same environment, they can be
subjected to identical traffic and compared
with far greater precision than when
simulations are done independently.

o The visualization features are an excellent
vehicle for illustrating a system’s
operation. They are also an excellent way
to obtain a detailed understanding of
transient behavior.

This work has been inspired in part, by an
earlier animation of the broadcast packet switch
simulator. This tool, while relatively crude, has
proven to be extremely useful for explaining the
operation of the system to visitors and for
developing an understanding of certain
unexpected situations that arose when the
prototype system was tested. The new tool
provides similar animation features, but
provides far more flexibility in how networks
are configured, simulated and measured.

Figure 41 shows an example of a simulation
window containing a simple network with
input-buffered switches preceded by a set of
traffic sources and input buffers, and followed
by a set of output buffers and traffic sinks. The
tools menu shown in the figure provides
primitives for selecting and instantiating basic
components, repositioning them and connecting
them together.

A number of pulldown menus provide
additional capabilities. The File menu allows a
given network to be saved or restored from a
file and allows the contents of a simulation
window to be printed. The Specify menu
provides a means for changing the parameters

13



Figure 4: Example Simulation Window

of various components. For example, the
number of inputs or outputs of a switch element
can be varied, as can the size and placement of
buffers (input, output or shared), the queueing
discipline (fifo, age, priority, lifo), the type of
flow control (none, grant or acknowledgement)
and the function (route, distribute, copy). For
traffic sources, the peak and average loads and
burst length can be varied. For lookup tables,
the table size and initial contents can be
specified. The Construct menu includes options
for series or parallel construction of networks,
allowing large networks to be specified with just
a few steps. The View menu controls the visual
appearance of the simulation and allows
multiple views of the same simulatijon to be
shown. It also provides access to a graph
editor, which is used to specify plots which can
be attached to variables within the simulator,
allowing the user to observe various traffic
parameters as the simulation proceeds. The
Simulate menu provides commands for
controlling the simulation and includes both

single-step and multi-step commands. It also
includes commands for suppressing screen
updates during multi-step commands, to speed
up system operation.

Using the Examine command in the net tools
window, information about each of the objects
can be examined and modified. For example, if
one selects a packet, one gets a dialog box
containing information about the packet
contents; the contents of any of the packet’s
fields can be modified through the dialog box,
as can its color, making it possible to observe
the progress of a particular packet as it passes
through the network. Similarly, one can change
the load offered by a source or the mapping
provided by a lookup table.

Most of the key design issues for the system
center on the competing objectives of generality
and performance. For example, one issue arises
from the question of how to route packets in
networks that can be constructed with
arbitrary topology. To handle this problem in
full generality, each switch might require a

14



different routing table specifying the switch
output to use to reach any given network
output. In most common situations, a single
table would suffice for all switches in a given
stage, but users can certainly construct
networks where this would not be the case.

The system is being written in C++ and is
based on the InterViews user interface toolkit,
which in turn is based on the X-windows
system. Each of the graphical objects is
implemented as a C++ class and includes
member functions for accessing internal state,
executing a simulation step and updating its
on-screen representation. At this writing, the
system is still in a preliminary stage of
development. While many of the desired
capabilities have been implemented, others are
still being developed.

on



Congestion Control Using Fast Buffer Reservation

Jonathan Turner

A central objective in ATM networks is to
provide virtual circuits that offer consistent
performance in the presence of stochastically
varying loads on the network. This objective
can be achieved in principle, by requiring that
users specify traffic characteristics when a
virtual circuit is established, so that the
network can select a route that is compatible
with the specified traffic and allocate resources
as needed. While this does introduce the
possibility that a particular virtual circuit will
be blocked or delayed, it allows established
virtual circuits to receive consistent
performance as long as they remain active.

Ideally, a bandwidth management and
congestion control mechanism should satisfy
several competing objectives. First, it should
provide consistent performance to those
applications that require it, regardless of the
other virtual circuits with which a given virtual
circuit may be multiplexed. Second, it should
allow high network throughputs even in the
presence of bursty traffic streams. Third, the
specification of traffic characteristics should be
simple enough that users can develop an
intuitive understanding of the specifications
and flexible enough that inaccurate
specifications don’t have sericusly negative
effects on the user. Fourth, it should not
artificially constrain the characteristics of user
traffic streams; the need for flexibility in ATM
networks makes it highly desirable that traffic
streams be characterized parametrically, rather
than by attempting to fit them into a
pre-defined set of traffic classes. Fifth, it must
admit a simple realization for reasons of
economy and reliability. Less crucial, but in our
view, also important, is the requirement that
the bandwidth management mechanism
accommodate multicast virtual circuits with
multiple transmitters. All proposals we have
seen for connection management in ATM
networks have serious deficiencies with respect
to at least one of these objectives. We describe

here an approach using fast buffer reservation
which appears to satisfy them all.

To preserve the integrity of user information
bursts, the network must detect and track
activity on different virtual circuits. This is
accomplished by associating a state machine
with two states with each virtual circuit passing
through a given link buffer. The two states are
idle and active. When a given virtual circuit is
active, it is allocated a prespecified number of
buffer slots in the link buffer and it is
guaranteed access to those buffer slots until it
becomes inactive, which is signaled by a
transition to the idle state. Transitions between
the active and idle states occur upon reception
of user cells marked as either start-of-burst or
end-of-burst. Other cell types include
middle-of-burst and loner, the latter is used to
designate a low priority cell that is to be passed
if there are unused buffer slots available, but
which can be discarded if necessary. A forced
transition from active to idle is also made if no
cell is received on the virtual circuit within a
fixed timeout period.

Figure 5 illustrates the buffer reservation
mechanism. For virtual circuit 7, the
mechanism stores the number of buffer slots
needed when the virtual circuit is active (B;),
the number of buffer slots used by unmarked
cells (b;) and a state variable (s;: idle, active).
The mechanism also keeps track of the number
of unallocated slots in the buffer (B). The
detailed operation of the state machine for
virtual circuit ¢ is outlined below.

When a start cell is received:

o If the virtual circuit is in the idle state
and B — B; < 0, the cell is discarded.

e If the virtual circuit is in the idle
state and B — B; > 0, s; is changed to
active, a timer for that virtual circuit
is set and B; is subtracted from B. If
b; < B;, b; is incremented and the cell
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is placed (unmarked) in the buffer. If
b; = B;, the cell is marked and placed
in the buffer.

If a start or middle cell is received while
the virtual circuit is in the active state, it
is queuned and the timer is reset. The cell is
marked, if upon reception, b; = B;
otherwise it is left unmarked and b; is
incremented.

If a middle or end cell is received while the
virtual circuit is in the idle state, it is
discarded.

If an end cell is received while the virtual
circujt is active or if the timer expires, s; is
changed from active to idle and B; is
subtracted from B.

If a loner is received, it is marked and
placed in the buffer.

Whenever a cell is sent from the buffer, the
appropriate b; is decremented (assuming
the transmitted cell was unmarked).

When a virtual circuit is routed, the software
that makes the routing decisions attempts to
ensure that there is only a small probability
that the instantaneous demand for buffer slots
exceeds the buffer’s capacity. This probability
is called the excess buffer demand probability
and might typically be limited to say 1%.

To make this precise, let A; denote the peak
data rate of a given virtual circuit and let p;
denote the average rate. If the link rate is R
and the buffer has L buffer slots, the number of
slots needed by an active source with peak rate
X; is defined to be B; = rLz\;/R].

Since B; buffers are allocated to a virtual
circuit when it is active, the virtual circuit’s
instantaneous buffer requirement is either 0 or
B;. If we let z; be a random variable
representing the number of buffer slots needed
by virtual circuit ¢ at a random instant then
Pr(a:,- = B;) = ;L;/A; and

Pl‘(:l:,‘ = 0) =1- [L;/A,‘.

Consider then, a link carrying n virtual circuits
with instantaneous buffer demands z,,...,z,.

Figure 5: Fast Buffer Reservation

Define X = 3", z;. Note that X represents
the total buffer demand by all the virtual
circuits. Suppose we have a new virtual circuit
with buffer demand z,41 and we want to decide
if it can be safely added to the link. We first
must compute, the probability distribution of
the random variable X’ = X + z,41. This can
be obtained by numerical convolution of the
distribution of X with the the distribution of
Zn41, assuming that the idle, active behavior of
the new virtual circuit is independent of the the
existing virtual circuits. To decide if the virtual
circuit can be accepted we then simply verify
that Pr{X’ > L} is small. For a link with a 256
slot buffer, we estimate that about 2000
multiplications and 1250 additions are required
to compute the distribution of X’ and

Pr{X' > L}. Using fixed point arithmetic, this
can be done in less than half a millisecond on a
10 M1PS processor.

To complete the bandwidth management
scheme, a traffic monitoring mechanism is
required at the user-network interface to ensure
that the virtual circuit’s long term average data
rate does not exceed the value specified at
virtual circuit establishment. We have designed
an appropriate mechanism of this sort, and
generalized it to support multicast virtual
circuits with multiple sources. We have studied
the'implementation complexity of this approach
and estimate that the incremental cost of
adding bandwidth management hardware to a
port controller of an ATM switch to be no more
than 10%.

See [40] for further details.

17



Algorithms for Network Design

Andy Fingerhut

This work concerns the problem of how to
design the least cost communication network
that meets a given set of traffic requirements
and satisfies practical constraints on placement
of equipment and cable routing. While this is
not a new problem, the ATM environment raises
some new considerations. First, statistical
methods are of relatively little use, as the traffic
characteristics of ATM networks are unknown
and in any case are expected to be highly
variable and dynamic. This makes design
methods based on worst-case analysis more
approriate than statistical methods. Second,
ATM networks are expected to support
multicast virtual circuits, whick magnifies the
impact of virtual circuit routing algorithms on
overall network capacity requirements.

The work has two parts. The first is concerned
primarily with finding effective algorithms for
network design and analysis. The second
concerns design of a practical software tool that
can be used for planning an ATM campus
network and which uses the network design and
analysis algorithms to assist the network
planner in creating and evaluating network
designs. We have concentrated so far on the
first part, creating a general problem
formulation and then developing and analyzing
algorithms for several special cases.

General Problem Formulation

We have created an abstract formulation of the
network design problem in a fairly general way,
so as to capture the essential features of the
problem while suppressing extraneous detail.
The abstract formulation consists of several
components. A physical graph describes
physical constraints on where equipment may
be placed. Equipment descriptions specify the
types and properties of the components which
may be used in constructing the network. A
logical graph describes a way of connecting
equipment together to form the network, and an

embedding specifies where to place equipment
and how to route links. Traffic requirements tell
us how we expect the network to be used.

In detail, a physical graph is an undirected
multigraph in which each vertex represents a
place where switching equipment could be
installed (e.g. a wiring closet or computer
room) and each place has several parameters
such as amount of available space, power
availability, and presence of air conditioning.
Each edge in the physical graph represents a
link path where one or more transmission links
may be placed, {(e.g., a duct or chase in a
building, a tunnel between buildings). Each
link path has parameters such as length,
cross-sectional area and cost of laying cable on
this path.

A network is constructed from switches, of
possibly different types. Each type is
characterized by its physical volume, total
switching capacity, number and types of links it
can terminate, initial cost (both startup and
per port), possibly a maintenance cost and
power and environmental requirements. A link
is some type of cable (e.g., twisted pair wire,
coaxial or fiber optic cable) which can transmit
information. Each type is characterized by
cross-sectional area, maximum length over
which signals can be carried with amplification
or regeneration, data carrying capacity, cost per
unit length and termination cost.

The purpose of the network is to connect
terminals together. Terminals can be sources
and destinations of messages in the network.
They are characterized by certain traffic
requirements which can take a variety of
different forms. In the simplest case, traffic
requirements are fixed; that is for each pair of
terminals, we specify the amount of traffic that
must be carried between that pair. This can be
extended to multicast traffic requirements as
well. More generally, we can give a termination
capacity for a terminal which specifies the
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Figure 6: An example embedding

maximum traffic allowed to originate or
terminate at that terminal. We then seek to
construct a network that will support any fixed
traffic requirement that is consistent with the
specified termination capacities.

A logical graph represents a particular way of
connecting switches, links, and terminals
together. It does not specify anything about
where such items are to be placed. To be
feasible, a logical graph must satisfy constraints
given by the equipment descriptions, e.g., the
number and type of links which may be
terminated at a particular switch cannot be
violated.

An embedding is a mapping from a logical
graph to a physical graph. It specifies where
each piece of equipment is located. Vertices in
the logical graph (switches and terminals) are
mapped to vertices in physical graph (places).
Edges in the logical graph (links) are mapped
to paths in the physical graph (sequences of
link paths).

An embedding is feasible if it satisfies
constraints such as volume available in places,
cross-sectional area available in link paths, and
environmental constraints. Taken together, a
physical graph, equipment descriptions, a
logical graph, and an embedding determine the
cost of the network. An example embedding is
given in Figure 6. The physical graph is drawn
with dashed lines while the logical graph is
drawn in solid lines. The labeled circles
represent switches and the triangles represent
terminals.

The general network design problem can be
described as follows: given a physical graph, a
set of equipment descriptions, a set of terminals
with assigned locations in the physical graph
and a set of traffic requirements, create a
logical graph and an embedding of that graph
that realizes the traffic requirements, satisfies
all the given constraints and has the lowest
overall cost.

Algorithms and Complexity Results

We have concentrated initially on a number of
special cases of the general network design
problem formulated above, in order to obtain
insight into the general problem and help to
identify which parts of the general problem are
difficult and which are easy. We also expect
that some of the algorithms developed in this
study will be useful as “subroutines” in the
solution to the general problem.

One important subproblem of the network
design problem is to determine if a given set of
fixed traffic requirements is routable over a
specific logical graph. We have shown that this
problem is NP-complete, even for point-to-point
traffic. On the other hand, we have devised an
efficient algorithm for optimally selecting link
capacities in the logical graph for the case
where link costs are proportional to the
capacity. In the multipoint case, the design
problem is Np-complete. However, we have an
approximation algorithm for multipoint
connections, that produces networks whose cost
exceeds that of an optimal network by no more
than a factor of two. The design problem is also
NP-complete for the case where link costs are
independent of capacity, but in this case as
well, there is an approximation algorithm that
produces solutions with cost no more than twice
optimal. No good approximation algorithms are
known for the case in which links have both
startup and capacity-dependent costs.

We have also studied problems in which a
termination capacity is specified for each vertex
in a logical graph and we are asked to
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determine if when connection requests are
received sequentially, over time, it is possible to
avoid getting into a situation where a request is
denied. Design of such nonblocking networks
depends in general on the routing algorithm
used to respond to connection requests. We
have so far considered two types of algorithms.
In fixed path routing, the route for any given
pair of endpoints is fixed and independent of
the traffic in the network; while this is too
restrictive for general use, it does have some
potential applicability and leads to some useful
insights. In constrained distance routing, we
select a path from among those having distance
at most k; one specific algorithm of this type
selects the shortest available path between a
pair of endpoints and blocks if there is no
available path with length < k.

We have shown that the problem of designing a
nonblocking network for point-to-point
connections and fixed path routing can be
reduced to a generalized matching problem, for
which efficient algorithms are known. A special
case of fixed path routing in which the routes
are always shortest paths can be solved using a
somewhat faster method. For
constrained-distance routing, we can say only
that determining if a given network is blocking
is in NP. While we suspect that this problem is
NP-complete, we have not yet been able to
prove that, nor do we have any positive
algorithmic results to report.

More details on this work can be found in [10].
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High Speed Internetworking

Guru Parulkar, James Anderson, Milind Buddhikot, Chuck Cranor, Zubin Dittia, Sanjay

Kapoor, Tony Mazraani

We have proposed a very high speed internet
abstraction (called vusI) which can efficiently
support guaranteed levels of performance for a
variety of applications, and can cope with the
diversity of underlying networks [23, 28, 29].
Important components of this abstraction are
shown in Figure 7. We continue to make good
progress on the research and development of
various components of the VHSI abstraction.
Progress is summarized for each component of
the VHSI abstraction in the following
paragraphs:

MCHIP. McCHIP is a novel multipoint
congram-oriented high performance internet
protocol, equal in status to 1P in terms of the
protocol hierarchy. The congram service
primitive aims at combining the strengths of
both classical connection and datagram
approaches.

MCHIP includes two types of congrams: user
congram (UCon) and persistent internet
congram (PICon). UCons provide support for
the connection-oriented applications, and
PICons for datagram applications.
Specification of PICon management was
completed during this past year. PICon
management involves specification of PICon
setup, usage, and termination. We specify
PICon management using specification of
appropriate data and control packet formats,
exchange of control messages, creation and
management of various data structures to store
state information, and interaction with resource
managers to allocate resources for PICons.
Details of PICon and UCon management can
be found in [1, 2, 23, 24].

We have also made good progress with MCHIP
implementation in the kernel of SunOS Unix
4.0 which is summarized in the next section.

Resource Server. The vHSI abstraction provides
performance guarantees to applications by
preallocating resources to congrams, based on

the application needs. However, a number of
networks do not do resource management on a
per connection basis, and therefore the vHsI
abstraction includes resource servers to provide
this functionality.

We have completed a simulation study of a
resource server for Ethernet with a variety of
traffic sources, including Poisson and bursty
sources [24]. This model uses a central resource
manager in a directly connected gateway. The
role of the resource manager is to keep track of
all active congrams and their resource usage,
and accept or block new congrams depending
on resource availability. The resource manager
is always consulted before a congram can be
established.

The goal of the resource manager is to
guarantee performance to established congrams,
and to manage the network resources efficiently.
Efficient resource management in this
environment means maximum utilization of the
network and minimum congram blocking,
packet loss, and packet delay. Note, however,
that minimizing packet delay may result in
lower channel utilization. This study however
shows that a simple resource management
model can be devised to provide bounded
packet loss and delay to various applications
with reasonable channel utilization and
blocking.

We have also made considerable progress on the
simulation study of PICon multiplexing. Note
that the PICons are provided to multiplex
datagram traffic from a number of sources. A
datagram source is considered to be a bursty
source and its traffic output is characterized by
three parameters: burst size, delay between
bursts, and a time after which a burst is to be
discarded. The simulation study is aimed at
understanding how many and what kind of
datagram sources can be successfully
multiplexed on a given PICon. A number of
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Figure 7: VHsI Abstraction

scheduling schemes have been studied, and a
deadline based scheduling algorithm is found to
provide the best results under the given
conditions. For details of this study, refer to [1].

Gateway Architecture. The vHsI abstraction
requires that the gateway architectures be able
to support data rates of at least a few hundred
Mbps, to interface with diverse networks, and
to implement MCHIP without becoming a
performance bottleneck. An important part of
the gateway design philosophy is to partition
the functionality into critical and non-critical
paths. The critical path consists of per packet
processing, and should be implemented in
hardware for speed and performance. The
non-critical path consists of congram
management and resource and route
management and is best implemented in
software due to complexity, need to do fine
tuning with time, and flexibility. It is inefficient
to mix these paths as is generally done in
current gateways.

To research high speed gateway architectures, a
paper design and a simulation study of a two
port ATM-FDDI gateway were undertaken

[17, 18]. We believe that ATM and FDDI are
excellent target networks to explore the vHSI
gateway architecture because they pose the
necessary challenges to the gateway designer
due to their high data rates and significant
diversity.

Design of the ATM-FDDI gateway requires
appropriate separation of control and data
paths, and design of protocol processors to
implement the Segmentation and Reassembly
(saR) Protocol and MCHIP critical path in
hardware. The SAR protocol processor
implements the SAR protocol that is used in the
gateway to reassemble incoming cells from the
ATM network into FDDI frames, and also
fragment FDDI frames into ATM cells, The
MCHIP protocol processor implements some of
the MCHIP protocol primitives. It contains
channel translation tables and logic to append
FDDI specific headers on reassembled frames,
and ATM headers on incoming FDD! frames
before they are forwarded for fragmentation.
Protocol processor designs are sufficient in
detail to allow a prototype implementation. A
simulation study of the gateway has also been
completed which has served two purposes: first
to do functional verification of the design, and
second, to characterize the performance of the
gateway for different traffic patterns.
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MCHIP Implementation

Charles Cranor, Guru Parulkar

Our MCHIP implementation essentially consists
of two parts: COIP-K and MCHIP modules.
CoIpr-K is the connection oriented internet
protocol kernel which includes the common
functionality necessary for most
connection-oriented internet protocols. The
MCHIP modules are protocol specific modules
that use coIP-K as a toolkit to create an
instantiation of MCHIP. We decided to partition
the MCHIP implementation as described above
because of the following two observations.

e A number of recently proposed coip
protocols have many parts in common. For
example, COIP protocols, by definition,
have a connection state machine. A
connection starts out as “closed”, then
after a set up phase, it is considered
“established.” During the established
state, data is exchanged using the
connection, and once the data transfer is
over, the connection is closed again. While
the actual details of this state machine
may vary from protocol to protocol, the
basic model is the same for all coip
protocols. Other functionality that corp
protocols tend to share include resource
reservation and enforcement and support
for multipoint communication.

¢ Protocol development in an operating
system kernel is a difficult task because the
kernel is a rather large and complex
program with many parts that must work
together to keep the system running. A
bug in the kernel can lead to system
crashes which is very disruptive to users on
the system.

The concept of CoIP-K was also considered very
useful by members of the cOIP working group
of the Internet Engineering Task Force (IETF)
[27]. 1t is believed that connection-oriented
protocols, such as BBN’s ST and Xerox’s flow

unix kernel
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Figure 8: COIP-K structure

protocol can also use the coiP-K as a toolkit for
their implementation. Figure 8 shows how
COIP-K is structured, with the coIP-K core code
in the middle, and different protocol modules
plugged in on top of it.

The BSD Unix networking model has three
layers: the socket layer, the protocol layer, and
the network interface layer. The protocol layer
consists of a few communication domains with
a number of protocols under each domain. For
example, INET is a domain for the Internet suite
of protocols, and protocols such as Tcp, UDP,
1P are part of this domain. For the purpose of
connection-oriented protocols, we have created
a new domain called coip, and COIP-K is a
protocol (actually a subset of a protocol) under
this domain.

The socket layer is the layer the applications
programmers use to interface to various
protocol suites. Since COIP-K is built into the
normal BSD Unix networking software system,
the application programmer interface is very
similar to any other protocol that runs under
BSD Unix (e.g. TCP/IP). A typical coIp client
and a typical COIP server are shown in figures 9
and 10 respectively. Note that the setsockopt
is used to specify the performance requirements
of the connection.

ColP-K maintains a per-socket protocol control
block (PCB). The COIP-K PCB contains state

23



s = socket {(PF_COIP, SOCK_RAW, 0)

err = setsockopt{s, level, CIN SETPREQ, &preq,
sizeof (preq))

connect (s, addr, addrlen)

err

err = read(s, buf, buflen)
err = write(s, buf, buflen)
close (s)

Figure 9: COIP-K client

information such as connection IDs (CIDs),
addresses, port numbers, routing information,
timer values, logical channel numbers (LCN),
the state of the connection, and a pointer to a
per-protocol PcB which allows protocols built
with COIP-K to have their own protocol specific
control blocks.

ColIp-K also maintains the interface between
itself and the socket and network interface
layers. The interface with the socket layer is
maintained using a COIP-K user request
function which acts as a dispatcher for all calls
received from the socket layer. ColP-K calls the
standard socket functions to pass data and
control information to the socket layer in the
reverse direction. For the interface with the
network layer, COIP-K provides an interrupt
function which the network layer calls for
received packets. COIP-K uses an output
function to send and route packets to an
appropriate network interface. There are also
other functions for PCB manipulations and
running the connection state machine and
forwarding data in the case of a gateway. On
the other hand, the protocol specific modules
are expected to support protocol specific
functions such as packet creation, data
extraction from a packet, control packet
processing, and PCB lookup and setup
functions.

The first version of COIP-K is nearing
completion and ready for release to interested
parties. The first phase implementation of
coIP-K and a test protocol modules (based on
MciuIP) have been implemented and thoroughly

-8 = socket (family, type, protocol)
err = bind{(s, addr, addrlen)
err = listen(s, 5)

s_new = accept (s, addr, addrlen)

err = read(s, buf, buflen)
err = write(s, buf, buflen)
close (s)

Figure 10: COIP-K server

debugged. A number of point-to-point and
multipoint applications have been
demonstrated over COIP-K. Measurements of
coIP-K performance indicate that the per
packet processing is indeed efficient with the
connection-oriented approach. However, the
mbuf manipulation and data copying overhead
of the Unix kernel is the same for coIP-K and
other protocol implementations. It is important
to note that COIP-K is a carefully selected
subset of MCHIP and can be used to create
implementations of other connection-oriented
internet protocols.

Qur plan for the near future includes
performance measurements of coIP-K and
accordingly fine tuning the code and
development of MCHIP specific modules to
create a complete operational MCHIP for the
Unix kernel. We also plan to help other
research groups to use COIP-K to create
implementations of their favorite coIP.
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Simulation of the Axon Host-Network

Interface Architecture

James Sterbenz, Milind Buddhikot, Guru Parulkar

A new communication architecture called
Axon [31] has been proposed for distributed
systems. The primary goal of the Axon
architecture is to support a high performance
data path delivering high network bandwidth
directly to applications. The significant features
of Axon are: (1) an integrated design of host
and network interface architecture, operating
systems, and communication protocols; (2) a
network virtual storage facility which includes
support for virtual shared memory on loosely
coupled systems {32]; (3) a high performance,
lightweight object transport facility which can
be used by both message passing and shared
memory mechanisms [33]; (4) a pipelined
network interface which can provide a high
bandwidth low latency path directly between
the network and host memory [34].

Axon Simulation Model

This section describes the Axon architecture in
the context of its simulation which was done
using the BONes™! gsimulation package [3]. The
simulation of the Axon architecture serves two
purposes. First, it is a verification of the design
and the ability to implement key mechanisms in
hardware. In particular, the simulation model
of the cMP (communications processor) uses
modules that correspond to functions available
in a VLSl cell library. Secondly, the simulation
provides a platform to evaluate design options
and tradeoffs before a prototype system is built.

The Axon system level simulation consists of
two hosts connected by the vHsI, as shown in
Figure 11. The entire system model consists of
7 levels of hierarchy, which when fully flattened
contains 1018 blocks. The upper levels of the
Axon model will now be described.

1TMBONeS (Block Oriented Network Simulator) is a
trademark of Comdisco Systems, Inc.
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Figure 11: Axon System Level Simulation

VHSI. The VHSI is modeled at a high level of
abstraction for the purpose of simulating the
Axon host-network interface. The model
includes end-to-end latency (and its variance),
packet loss (including burst errors),
missequencing, duplication, and bit errors.
These are used as parameters into the
behavioral simulation of paths connecting hosts
through the visi. Hosts. In a real Axon
implementation, there would be a number of
symmetric hosts scattered throughout the
internet. The simulation model consists of two
hosts, which will be referred to as the local and
remote hosts depending on where a request has
been initiated. The Axon host model is
presented in Figure 12. Each host contains a
CPU, CAP (CMP assist processor), CMP
(communications processor — the network
interface chip), and CMM (communications
memory module). The local host is responsible
for generating requests based on the address
reference trace model. The remote host receives
requests and returns segments based on the
requests.

This organization allows a direct connection
through the cMP between the cMM and VHSI.
Thus, packets can be transmitted and received
without any host interaction, with the cMPp
performing all critical per packet processing.
The CAP serves-to perform functions that do
not need to be implemented in CMP hardware,
but involve protocol processing that may be
offloaded from the cpu.

CPU. The cPu simulation model generates
requests from a process model consisting of a
dispatching queue served by the cPu
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Figure 12: Axon Host

instruction processor. Processes receive service
for a specified burst length (in number of
instructions), and are returned to the
dispatching queue. The program execution
model assumes that process execution can be
divided into phases during which a set of
segments is in the locality set. This phase
behavior is a common way of modeling program
locality. In the Axon environment, segments
may be located on other hosts across the VHSIL.
Thus, with a given probability, a remote
segment fault will take place. This results in
transfer of control to ALTP-OT which issues a
get-segment request, which is then passed to the
CAP.

When pages within the segment return, the
CPU is notified of their arrival by the cap. The
CPU can then mark them present in the
corresponding page table and recover from a
page fault if necessary.

CAP. A high performance microprocessor, the
CMP assist processor (CAP), performs functions
that are not part of the critical path, but
require higher performance than could be
provided by the host cPu without adversely
affecting the performance of other host
processes. The CAP is responsible for building
control packets and passing them to the cMP
for transmission and checksumming. Similarly,
control packets received by the CMP are passed
to the caP for full decoding and subsequent
action, which may involve interaction with the
host cpu. The CAP is involved in the timer
management for request retransmission, and

notifies the host when pages have been
completely received.

Since the CAP is a microprocessor running
software processes to perform its function,
operations are modeled as processing delays
with parameters indicating the number of
instruction cycles. The simulator insures the
serialization of processing delays. Additionally,
there is some overhead modeled in task
switching between operations.

The cPU sends requests to the CAP, such as for
a remote segment fault. The cAp then builds
the appropriate control packet and passes this
to the cMP. The CAP also decodes incoming
control packets from the CMP and takes the
appropriate action. This may involve
interrupting the CPU, for example when a link
fault is required in response to a get-segment
control packet received.

CMM. The method for providing direct access
between host memory and the network interface
without any store-and-forward hops is through
the use of a special multi-ported
communications memory module (CMM),
similar in concept to VRAM (video-RAM) design.
The cMM has a conventional random access
port which appears like any other memory bank
to the processor—memory interconnect, out of
which the CPU may execute code and access
data. The other ports are high speed sequential
access interfaces to the CMP (transmit and
receive), and must operate at a rate of the VHSI
optical links scaled by the cMP datapath width.

A delay models the access time to start up the
read from the sequential output port. The data
packet length field is inserted in the packet for
use by simulator probes in computing
throughput. Individual read operations take
place for a sequence of packets in a given page,
given the page base address. A page
transmission request from the CMP Rate
Control results in a page burst of packets at
full vusi link rate.

CMP. The goals for the design of the cMP
include the ability to perform critical path
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functions in real time with no packet Buﬂ’ering
and to incorporate the necessary function in
vLSI. This may be realized by organizing the
CMP as a dynamically reconfigurable pipeline,
based on the ALTP type and options for a
particular connection. The pipeline
organization allows packets to be processed at
the VHSI data rate,

It is important to note that the simulation
model is constructed to reflect the actual
hardware design of the Axon cMP. Since a
major thrust of this research is to investigate
the implementation of critical path function in
hardware, simulation blocks are chosen
carefully to represent function easily
implementable in visl. Thus, high levels of
simulation abstraction are not used within the
cMP model. For the sake of brevity, details of
the cMP simulation are not presented here but
can be found in [37].

Simulation Results

Axon simulation results are divided into four
groups: overall system behavior, rate control,
error control, and functional partitioning. Two
example results are presented in this section
from rate and error control. A complete set of
simulation results can be found in [37]. A
metric of primary concern is the time that a
process is blocked waiting for the return of a
data segment. The time interval between the
process referencing the segment and its
complete return to the local host is defined as
Ts. More important is the time a process is
blocked. This is measured by the interval
between reference and the return of the first
page in the segment, since execution can begin
when this page is marked present; this is
defined as T,.

A number of simulation experiments have been
run to indicate the performance of the Axon
system with respect to errors. An example is
shown in Figure 13. In this case 3 connections
on each host share 90% of a 1Gbps link. The
packet size is 32 bytes of data with 16 bytes of
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Figure 13: Latency vs. Packet Loss

header. The page size is 1 Kbyte, with an
average segment size of 8 pages. Results are
shown for both a wAN latency of 30ms and an
internetwork (1aN} latency of 50ms.

Packets are lost with a probability varying from
10~% to 1072, Note that artificially high error
rates with very small packet sizes are simulated
to push the error control mechanisms to
extreme limits. The vHsi environment is
expected to be much more reliable than this.

The latency performance is quite flat, even up
to extremely high error rates, which can be
attributed to the use of selective retransmission.
The Ts (upper) curves indicate the blocking
that would occur if a process would have to
wait for an entire segment to arrive (as is the
case with common general purpose protocols).
The T, (lower) curves indicate the advantage of
knowledge by ALTP-OT of the page structure of
segments, allowing processes to resume
execution more quickly (the height of T; related
to the page size). Note that while the segments
simulated are rather small, T, is independent of
segment size. This is the case since T} is only
dependent on the correct arrival of the first
page in the segment, and retransmitted pages
preempt the primary segment transmission in
progress. As segment sizes increase, so will the
difference between T, and T's, and thus the
performance benefits of ALTP-OT.

For a rate control scheme to be fair, all
processes should receive the specified share of
bandwidth, and in the case where rate
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Table 1: Network Throughput by Connection

sl ] 1 32 1K
l«[ || 1040B 1248 43B
#c || 10 ] 100 | 10 | 100 | 10
min || 392 393] 615] 9.99] 948
max || 3.93| 393| 730 1038 995
mean || 3.93 | 3.93 | 70.5| 10.23 | 96.8
ideal || 3.93| 393 | 70.8] 9.96| 96.8
total || 39.30 | 392.00 | 708.0 | 996.00 | 968.0

specifications are identical across processes
none should receive significantly different
service. Figure 14 compares the throughput
across connections as they are added. A single
connection cg was given a peak bandwidth of
Ap = 0.5Gbps with additional connections
evenly sharing an additional 0.5Gbps as they
were added. The curve for cg is flat as desired,
and the curves for the other connections
decrease and track one another closely.

Table 1 indicates the network throughput per
connection for various combinations of packet
size |r| and segment size |s| (with a 1KB page
size), for 10 and 100 active connections per
processor, indicating close correspondence
across connections. Note that since the
application is subjected to the rate control
mechanism and has no direct access to flow
control once the requested rate has been
granted, a firewall is established preventing
applications from harming one another in terms

of bandwidth utilized. Simulations were also
run verifying the insensitivity to individual
connections as the error rates on other
connections were driven extremely high.

28



Visualization of Cells in Biological Organisms

Christos Papadopoulos, Guru Parulkar

In collaboration with scientists in the
department of biology, we are developing a
distributed visualization scheme for the display
of cells of biological organisms in 3D, in
particular, the cellular slime mold which is an
amoeba-like organism. This project has been
motivated by the following two observations:

e Very little is understood about the real
communication requirements for
distributed computations on wide area
networks, despite the fact that such
understanding is necessary for design of
efficient protocols to support these
computations.

o Although pipelining is a simple special case
of general distributed computation, it is
readily applicable to many televisualization
applications; and televisualization is a very
important and challenging class of network
applications because it is intensive both in
computation and communication.

Thus, the goal of this project is to better
understand the remote visualization
applications and to characterize the
performance bottlenecks of the protocols, if
any, for this class of applications.

The organisms being studied undergo a very
interesting transformation as they develop:
first, they aggregate in a hemispherical mount
of about 10° cells; the mount is soon
transformed into an upright finger called a slug;
then, the slug topples over and moves as a unit
before eventually standing upright again to
differentiate into two parts, the stalk and the
spores. This last process of differentiation is the
focal point of the biological research.

The significance of this study lies in the promise
that insight can be gained on how global shape
changes are produced by coordinated
movements of cells in a developing organism.
An important question is how cells in different

parts of the mount are determined to become a
part of the stalk or the spores. Answers to this
question can lead to better understanding of
the development of any embryo. One of the
visions of this project is that understanding of
embryo development may lead to the ability to
control regeneration of damaged organs in the
body, by simulating the conditions of growth.
For such biological applications, we have found
volume visualization techniques to be very
useful. In our current volume visualization
scheme there are four major steps: data
collection, thresholding, rendering and display.
They are described in the following paragraphs.

Data is collected using a computer-controlled
microscope used for time lapse 3D imaging. 3D
images are collected in the form of 2D slices
obtained by rapidly stepping through focal
planes spanning the specimen. The whole data
collection process takes about 2 hours,
collecting a 3D image every 2 minutes, for a
total of 60 images. Typical image sizes are

256 % 256 x 20 at 2 bytes per voxel, giving a
total data size of about 157 Mbytes. Each 2D
slice collected by this method is blurred by out
of focus light from the surrounding slices.
Removal of the blurring is accomplished by
thresholding the data at an appropriate value
obtained from the data histogram. Rendering
of the cleaned up data is accomplished using a
Simulated Fluorescence Process (SFP)
algorithm. This algorithm closely resembles a
fluorescence process in that it simulates the
flow of excitation light through the 3D data
and then creates a projection by gathering the
fluorescence from each individual voxel. Finally,
the projected images are displayed using the
X-window system. Each image is saved at the
display stage, the researcher can choose to view
them individually or as an animation sequence.

The four steps described above are naturally
implemented as a pipeline of separate modules.
While the raw data is collected and stored on a
lab computer, the data viewing needs to be on
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Figure 15: Unprocessed and Processed Images

the biologist’s workstation remote from the lab.
Instead of either doing all the computation on
the lab computer and shipping images to the
workstation for display, or shipping the raw
data to the workstation first and doing all
computation there, we assign each stage to a
different machine so that pipelined parallelism
can be achieved. Each of the modules is
designed such that it can run on different
computers to better utilize the computing
resources. Communication between modules is
through Unix 1PC socket interface on top of
TCP /1P over our campus network (10 Mbps
Ethernet). Each module consists of three
processes: reading, computing and writing,.
These processes communicate locally using
shared memory. This allows communication {o
proceed independent of computation, better
utilizing the local computing resources.

The left side of figure 15 shows the 3D organism
as seen by a user from the microscope. Clearly,
it is very difficult to trace various cells and
their trajectories using such images. The right
side of figure 15 shows the processed image
which is quite good for identifying cells, and an
animation of a sequence of such images is also

found useful for studying the cell trajectories.

Initial experience with the implementation does
show that there is speedup when using the
pipeline. The speedup can be attributed to two
factors: parallelism resulting from pipeline
operation and the reduction in disk swapping
due to availability of increased memory at
different stages and reduced memory
requirement at any given stage of the pipeline.

If the work load is partitioned to balance the
computational requirements of the different
parts, communication processing becomes the
bottleneck and it will get worse as the data
resolution increases. The communication
overhead includes moving the data between
user and system spaces, protocol processing,
and data transmission (data transmitting time
+ propagation delay). The transmitting time is
expected to decrease as faster networks become
available, but the propagation delay will remain
the same and become a more significant
overhead. The protocol processing delay will
also increase since transmitted data size is
expected to increase. Locating bottlenecks in
the current 1PC paradigm, ( i.e., the UNIX
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socket interface on top of TCP/IP) may provide
insight into what problems need to be addressed
in the design of future protocols to support
pipelining. To identify those problem areas, we
plan to run the example application for
different data sizes and pipeline configurations
with a minimal number of probes strategically
placed in the networking code. This will help us
acquire a better understanding of the different
processing delays in the individual protocol
layers and characterize them as either protocol
or operating system dependent. Currently such
experimentation is in progress.
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A Recurrence Model for Asynchronous

Pipeline Analysis

Fengmin Gong, Zubin Dittia, Guru Parulkar

Motivation. We have proposed pipelining
across high-speed networks as an efficient
televisualization model, called pipelined
televisualization (pTv) [11]. This has led us to
develop tools for the analysis of asynchronous
pipelines. In general, a pipeline can either
operate in lock-step fashion by a global clock or
operate by having each stage processor
synchronize only with its neighbors using a
handshaking protocol. In the first case, the
pipeline is called a synchronous pipeline; the
second case corresponds to an asynchronous
pipeline. Issues surrounding synchronous
pipeline design are well understood.
Synchronous pipelines are generally simpler to
design, and they can be very efficient if the
computational task can be partitioned into
stages of nearly equal processing time.
However, asynchronous pipelines are absolutely
necessary when pipeline stages are physically
distributed or have varying processing delays,
for example, in the case of a pipelined
televisualization.

There are still two main obstacles to the wide
use of asynchronous pipelines. The complexity
of asynchronous circuit design is still high; and
characterization of the asynchronous behavior
has been a difficult task leading to limited
understanding of asynchronous pipelines. We
have developed a simple yet accurate method
for analysis of asynchronous pipelines using
recurrence relations. This development was
done in two steps: (1) derivation and
experimentation for pipelines of linear topology,
and (2) derivation and verification for pipelines
with general DAG (directed acyclic graph)
topology. This note will present the recurrence
relations for only the DAG topology and
example verification results. For details refer
to [12].

Notation. We view the set of dependencies
among processors of the DAG as a set of

dependency chains. We use a two dimensional
indexing scheme for the identification of
processors. The processors are partitioned into
stages as follows. Let m be the total number of
stages, which is defined as the number of
processors on the longest dependency chain.
Each source processor is labeled as a stage 1
processor and a sink processor as a stage m
processor. For any internal processor (i.e., not a
source or sink processor), if 7 is the maximum
distance from the processor to any sink
processor, this processor is labeled as a

stage (m — i) processor. If w; is the number of
processors at stage ¢, we label these processors
by tuples (4,1),(4,2),---, (¢, uw;). Also, we use
pred(i, 7) to denote the set of predecessors for
processor (i, j) and succ(, j) to denote the set
of successors to processor (%, j).

Now we introduce recurrence variables. Let s;;
be the time at which processing of data item &
begins at processor (i, j). Let d;;z denote the
processing delay for data item & at

processor (%, 7), and let f;;x denote the finish
time of data item k at processor (%, 7). Finally,
I;;x represents the time at which data item k
leaves processor (i, 7) and arrives at all
processors in succ(é,j). We assume that a
processor begins execution when all input data
items have arrived and can forward its output
data item to its successors only when they are
ready to receive the data item. A set of
recurrence relations in these variables can be
derived and organized as initial conditions,
boundary conditions and recurrence body.

Initial Conditions. Since the pipeline is empty
initially, the first data item (k = 1) can be
processed at a given processor as soon as all the
corresponding input data items are received
from predecessors; and the resulting output
data item can move to successors immediately
after its processing is finished. The first data
item is available to the source processors at
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time 0. Therefore, the following initial
conditions hold for the pipeline:

8141 =. 0

hip = dijn

bjr = fin

S = e )
fin = sijnt+dip

Liv = fin

where2<i<mand1<j< w.

Boundary Conditions. Qperation of source and
sink processors is also special. First, source
processors never have to wait for input data
items because they are assumed to have all
data items to begin with. Sink processors never
have to wait to forward an output data item
because they consume their own output. These
correspond to the boundary conditions of the
pipeline:

S1jk ljk-1

Sk = sk +digk

11 ik = max Iy ] T

o {i’,j’)Esucc(l,j)( e 1)

Smik = max Lo
i (i‘,j’)EPred(m.J')( I L)
fmjk = Smijk + dmjk

lnje = fmjk

where 1 < j<w;and 2<k < n.

Recurrence Body. Processors of internal stages
(2 £ ¢ £ m — 1) have to wait for input data
items from all predecessors to arrive before the
processing can start; once the processing is
complete, the output data item has to be held
until all successors are ready to receive it. This
logic is formulated into the recurrence body:

.. — li’ i
Sijk . d(i,j)( i)
fije = Sijp + dijx
Lijp = max| (h'j'k-l)& fijk]

max
(“prime‘jprime ) Esucc(i,j)

where2<i<m-1,1<j<w;and2< k< n
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Figure 16: Linear Pipeline

Given a real-life asynchronous pipeline, we first
apply two simple transformations (see [12] for
details) that models the effect of interstage
communication overhead and data buffers. We
then apply the recurrence relations to the
resulting pipeline. The evaluation of the
recurrence relations provides a complete trace
of the start time, finish time, and departure
time for every data item at each processor.

Results. The recurrence model has been
implemented as a single C program. Results of
two experiments have been reported that help
verify the correctness of the recurrence
relations. These experiments involved a 3-stage
linear pipeline and a 3-stage pipeline with two
processors at the second stage, referred to as a
parallel pipeline. These pipelines are evaluated
using the recurrence model as well as a discrete
event simulation using BONeS, a network
simulator from COMDISCO Systems Inc. In
this study, all stages
(computation/communication) were assumed to
have a normally distributed processing latency
with mean equal to 50. The standard deviation
was varied from 0 to 50 with step size 10 and
four buffer sizes (0,1,10,20) were examined.
Buffer sizes were always the same across stages.
In all cases, both simulation and the recurrence
model were run with more than 9000 data
items to ensure statistical significance for the
results. Figures 17 and 18 presents respectively
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Figure 17: Parallel Pipeline

the results for the linear and the parallel
pipelines from the recurrence model. The same
set of results were also obtained with the
BONeS simulation model, and they match
almost exactly with results of the recurrence
model. Hence, the simulation results are
omitted from the plot. It should be noted that
the metric used in these plots is the average
cycle time ACt = f’“ﬁ{“& (n>1).

First we examine the linear pipeline results
shown in Figure 17. When processing delay for
all stations is constant at 50 (i.e., standard
deviation = 0), the average cycle time is 50
regardless of buffer size. As the standard
deviation is increased, and there is no buffering,
the average cycle time shows a linear increase;
with buffer size 20, the increase in average cycle
time is very little. Thus, the family of curves
(for buffer sizes 0,1,10,20) shows that the
increase of average cycle time with the increase
in standard deviation is slower with larger
buffers. This result fully conforms to our
expectation of the effects of buffering.

In the case of a parallel pipeline, Figure 18
shows a similar trend, that is, the average cycle
time increases linearly with increase in standard
deviation when buffer size is 0. As larger buffers
are used, average cycle increases slowly with
increasing standard deviation. Comparison of
Figures 17 and 18 show that for the same
processing delay and buffer size, a parallel

pipeline has a larger average cycle time than
that of a linear pipeline except when standard
deviation is zero. This is correct, because in the
case of parallel pipelines, the waiting resulting
from splitting and merging of stages contributes
to a longer average cycle time. This kind of
waiting is due to synchronization among
parallel data streams, and it cannot always be
eliminated by using extra buffers.
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Integrated Traffic Characterization and Control

Andreas D. Bovopoulos, Apostolos Dailianas, Seyyed Mahdavian

Research concerning ATM networks is currently
focused on the study of teletraffic problems
appearing in an ATM environment. The
fundamental problem of the ATM technology
stems from the fact that the performance of an
ATM statistical multiplexer depends on the time
behavior of the incoming traffic. As a result,
without sufficient traffic control provisions, an
ATM network may fail to provide grade of
service (GOS) guarantees to end users.

Each connection in the ATM layer results in a
cell sequence (cs) that can be both analyzed
and controlled at one or more of the following
time scales: call, burst, and cell. At each of the
time scales for which a ¢S control is provided, a
resource allocation scheme can be introduced
and classified as corresponding to the call,
burst, or cell time scale.

In order to design an integrated traffic
characterization and control infrastructure
capable of guaranteeing a Gos and providing
that Gos at the minimum cost, the following
are required: (i) the design of a traffic control
and resource allocation infrastructure capable
of efficiently handling a wide variety of traffic
behaviors, (ii} given a particular traffic control
and resource allocation scheme, the
determination of the cos that can be provided
to an incoming ¢s, (iii) given a particular GOS
requirement, the determination of the traffic
control and resource allocation scheme required
to provide to an incoming cs the desired GoOs at
the minimum cost. The work presented in [7) is
part of an ongoing effort directed towards
satisfying these requirements.

In [7], a traffic generator capable of modeling a
broad spectrum of incoming traffic behaviors is
introduced. A traffic control mechanism (TCcM)
capable of supporting a number of different cell
time scale control and resource allocation
schemes is described. For each of a variety of
incoming cs time behaviors and a given control
and resource allocation scheme, the Gos that
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Figure 18: Traffic Control Module

can be provided by the TcM is determined.

The TcM (Figure 18) has a cell buffer of size K
and a token pool of size M. Time is divided
into units called slots, where the time interval
corresponding to a slot equals the service time
of a cell. Incoming cells are served by the TCM
in the order of their arrival. Tokens act like
permits for cell service. The cell at the front of
the buffer is served at the beginning of a slot if
a token exists, in which case a token is removed
from the token buffer. If no token is available
at the beginning of a slot, no cell is serviced
during that time slot. Incoming cells are stored
in the cell buffer as long as the buffer is not
full; if the buffer is full, cells are discarded.

With the control and resource allocation just
described, the T¢M provides cell level control
and resource allocation; i.e. control and
bandwidth allocation decisions are made at the
cell time scale. In addition to this cell level
control, burst or call level controls and resource
allocation schemes can be utilized. The focus of
[7], however, is on cell level control and resource
allocation. Issues relating to burst level control
and its interaction with cell level control are
currently under investigation.

For reasons explained below, tokens are
generated with a deterministic and periodic
pattern. Specifically tokens are generated in
accordance with a T-state, cyclic, deterministic
Markov chain, The number of tokens generated

35



in state [ of the Markov chain is equal to s; for
0 £ ! £ T - 1. Once generated, a token is either
(i) immediately utilized by a cell requiring
service, (ii) stored in the token pool if there is
no cell requiring service and the token pool is
not full, or (iii) immediately discarded if the
token cannot be immediately utilized by a cell
and if the token pool is full. The time between
two transitions of the Markov chain is D slots,
and therefore the period of the deterministic
and periodic pattern is D X T slots. The token
patterns that can be generated in this fashion
are deterministic and thus predictable and yet
at the same time rich erough to implement a
wide variety of control policies. The TCM
control scheme can be easily implemented using
two counters, one which records the state of the
token pool and one which keeps track of the
state of the token Markov chain.

Generating tokens in the manner just described
is desirable for the following reasons. By
appropriately selecting D and T x D, the size
of the cell buffer K, the size of the token pool
M, and the number of tokens generated at each
transition of the Markov chain, s, for

0 <1< T-1,a wide variety of Goss can be
provided to an incoming Cs. Because tokens are
generated according to a deterministic and
periodic pattern, a TCM can optimally support
deterministic and periodic incoming css; a
deterministic and periodic incoming cs
controlled by a TCM results in a departing Cs
which is also deterministic and periodic.
Further by using a deterministic control
scheme, an open loop control scheme can be
implemented when desired.

Recently, attention has been given to a
hierarchical family of protocols {11] based on
the periodic exchange of information related to
the transmission of bursts. Note that a burst is
a group of packets, and a packet is the
fundamental information block at the transport
layer. The structure of the TCM makes the TCM
the ideal mechanism through which hierarchical
type protocols can be implemented at the cell
level. In such an environment the TCM
parameters remain fixed for the duration of a

burst and may be reset from burst to burst.

The TcM is a new traffic control mechanism. It
differs from the variations of the leaky bucket
mechanism that have appeared in the literature
in the fact that it is integrated into the traffic
characterization and control infrastructure of
the network and in the fact that it can monitor
and control a much richer family of traffic
behaviors. The analysis presented in (7} is
complete and informative for performance
parameters including loss distribution, waiting
time distribution, token loss distribution, cell
buffer occupancy and token buffer occupancy.

The TcM performance analysis presented in [7)
is developed in the following manner. First, a
traffic generator capable of modeling a broad
spectrum of traffic behaviors is introduced and
extensively studied. Next the TcM performance
is evaluated under the assumptions that the
service time of a cell is zero and that a slot is
not defined with respect to the cell service time,
i.e. a slot is simply a time interval of unit
length. These assumptions are widely used in
the literature to simplify analysis. Later, the
simplifying assumptions are removed, and the
TCcM performance is evaluated assuming a
constant positive cell service time equal to a
unit of time referred to as a slot.

Current experience suggests that the
computational procedures introduced in [7] are
stable and efficient. Examples with 60,000
states have been evaluated without difficulty.
Nevertheless one aspect of our research focuses
on the development of continuous time flow
algorithms with even higher computation
efficiency.

One of the limitations of the current version of
the TCM is its inability to handle traffic sources
with long active and idle periods. For such
sources, enhancement of the TCM control
capability is necessary in order to do resource
reservation not only at the cell level but at the
burst level as well. A desirable TCM
enhancement currently being developed is the
capability of deallocating buffer space and
bandwidth (i.e. tokens) from idle sources and
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reallocating this buffer space and bandwidth to
sources currently in need of resources. Such an
enhancement will facilitate the multiplexing of
highly bursty sources and may prove useful for
the development of efficient burst level resource
allocation schemes.
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Engineering ATM Statistical Multiplexors

Andreas Bovopoulos, Apostolos Dailianas, Saied Hosseini-Khayat

An integrated broadband network should be
able to support a variety of existing and yet to
be defined services. It is widely accepted that
the transport technology that provides the
most flexibility for the realization of such an
ambitious undertaking is ATM.

In an ATM network, the access segment is
considered the most crucial segment because it
includes systems that cannot be tuned more
than once every Operationan Planning Period
and because, owing to its proximity to traffic
sources, the access segment design must take
into consideration the dependency of ATM
traffic handler performance on traffic mix. For
these reasons, the most crucial component of a
broadband network is the First Statistical
Multiplexing Stage (FsMs), which is the
network segment connecting NT2s to Inlets of
Remote Switching Units. The rsMs should be
able to absorb time and local variations of
demand using a few standardized, modular,
scalable network components arranged in a
flexible, fault and overload tolerant network
architecture. More detailed discussion of the
importance of the FsMs can be found in [3].
The central design problem of the Fsms is the
problem of developing multiplexing rules for
practically important and representative classes
of the ATM traffic.

In order to fully understand the requirements
imposed on the FsMS, let us assume that
multiservice terminals (MSTs) are connected to
the rsMs. Each MST supports one or more
services, and at the cell level, each terminal
issues calls that generate cell sequences (css)
with identical or distinct statistical
characteristics. For example a digital voice
conversation results in one Cs, whereas a data
terminal generates a family of statistically
distinct Css.

The simplest possible traffic multiplexing
problem that the FsMs must handle is the case
in which each of the terminals generates the

same CS. This is a classical multiplexing
problem that has been extensively studied and
is referred to here as Multiplexing Problem A.
A more complicated traffic multiplexing
problem arises when each terminal generates
one cs, while different terminals generate
different ¢ss. This problem is referred to here
as Multiplexing Problem B. If each terminal is
a multiservice terminal, then each terminal can
generate a family of ¢ss. If all terminals
generate the same family of css, then the
resulting multiplexing problem is referred to as
Multiplexing Problem €. If the different
multiservice terminals generate different
families of C¢ss, then the resulting multiplexing
problem is referred to as Multiplexing Problem
Cs.

QOur current efforts are focused in the solution
of type A and B multiplexing problems. We are
currently studying the behavior of a multiplexer
when the incoming Cs is composed of a number
of multiplexed, independent, and identically
distributed bursty sources. Our engineering
objective is to completely and efficiently
characterizate the behavior of a large number
(at least 100) of multiplexed, independent, and
identically distributed bursty sources. Such a
result would be necessary in order to solve the
access problem of how to effectively multiplex
low rate bursty sources (say up to 2Mbps) over
a 140Mbps access multiplexer. In [7] a number
of necessary tools have been developed that are
currently applied for the solution of this
multiplexing problem.

We are also attempting to identify the
macrodynamic behavior of a multiplexer, by
identifying invariant parameters and simple
traffic engineering rules that adequately
describe the relationship between the source
behavior, a multiplexer’s bandwidth and buffer
parameters, and the provided Gos, without
having to resort to the mathematical equations
that describe the microdynamic behavior of the
multiplexer. Such results would be necessary in
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order to make a real time evaluation of the
performance that could be guaranteed to a
particular incoming Cs by a particular
multiplexer and to make a real time calculation
of the multiplexer’s buffer and bandwidth
requirements needed in order to achieve a
particular Gos for a particular incoming Cs.

We anticipate that the satistactory solution of
the above problems will facilitate the solution
of the multiplexing problem B, whose solution
we anticipate will lead to the solution of the
multiplexing problems of type C.
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The Access Unfairness Problem in DQDB MANSs

Andreas D. Bovopoulos and Lakshmana N. Kumar

The Distributed Queue Dual Bus (DQDB) MAN
is composed of two unidirectional buses, to
which the individual nodes (access units) are
connected across the buses. In addition a
head-end station (also known as a frame
generator) is provided for each bus. The
head-end generates the DQDB frames (or
segments which carry the data) and transmits
them along a single bus. The two unidirectional
buses operate in opposite directions. The nodes
are connected to both buses, using a read and
write connection to each bus. The two buses
are named bus-A and bus-B. The head-end
that controls bus-A, is known as the Head-end
Of Bus-A (HOB-A). The portion of the bus
between node-i and the HOB-A on bus-A is
known as the upstream of node-i, with respect
to bus-A. Similarly the portion between node-7
and HOB-B on the bus-A is known as the
downstream of node-: with respect to bus-A.
Every node has to file a REQUEST by setting
the REQ bit of a bus-B slot, in order to grab
an empty slot on bus-A for transmission of its
packet. The requests are filed on the bus
opposite the one that the node wants to gain
access to. The detailed operation of the
protocol can be found in [12], [18] and [25].

One of the most important problems appearing
in DQDB MANSs is the access unfairness problem.
Access unfairness can be defined as the inability
of a subset of the nodes to gain access to a bus
as quickly as the other nodes under the given
access protocol mechanism. As a result some
nodes experience longer delays than the other
nodes before gaining access.

At low loads, the observed demand for service
is less than the bandwidth available. The low
load range may extend up to about 0.4 of the
channel capacity, depending on the actual
traffic pattern. Because the demand is less than
the unused bandwidth, the unfairness is not an
issue at low loads. At higher loads three types

1.

3.

Latency-Related Unfairness: The
nodes that are closer to the frame
generating head-end have no knowledge of
the REQUEST's that are still in transition.
As a result the distributed queue
maintained by pQDB protocol is not
perfect. Therefore, the latency results in a
type of unfairness which is called
latency-related unfairness. The
latency-related unfairness is predominant
when the load presented on a single bus is
less than the bus capacity. When the DQDB
network is overloaded, two different
persistent types of unfairness may appear.

Access-Related Unfairness Due to
Request Flooding: If the overload
situation is caused by a surge of traffic
demand from the downstream nodes, then
the upstream nodes are at a disadvantage
compared to the downstream nodes. The
earlier nodes along the direction of a bus
may end up heavily blocked for access —
because under the DQDB access mechanism
the overwhelmingly high number of
REQUESTs need to be honored. Honoring
all the REQUEST's also invites a fresh
influx of REQUESTs, if the downstrcam
nodes are sufficiently busy.

Access-Related Unfairness Due to
Message Flooding: If the overload
situation is caused by a surge of traffic
from the nodes closer to the head-end,
then the downstream nodes are at a
disadvantage compared to upstream nodes.
The ability of a node to have more than
one pending request coupled with the
latency creates such a situation. As a
consequence, the busy downstream nodes
may suffer unduly with their access
blocked and with the upstream nodes
claiming an unfair share of bandwidth.

At heavy loads the actual unfairness pattern is

of persistent unfairness may arise.
very dependent on the load distribution pattern
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(state of the network) along the bus, at the
time when the heavy load conditions set in.
This is especially true with large inter-node
distances. In overload situations the unfairness
phenomenon is persistent. Unfairness due to
flooding can be resolved only through the
application of an access protection mechanism.
Because of latency and flooding phenomena, the
high load situation can further be subdivided
into the following categories depending on the
overall load presented to a bus.

e Heavy Load: When the offered load is
heavy but still below the channel capacity
unfairness is caused predominantly by the
propagation latency of the downstream
REQUESTs, rather than by the flooding
phenomenon.

¢ Overload: When the offered load exceeds
the channel capacity, unfairness is caused
predominantly by the flooding
phenomenon, with latency playing a
secondary role.

A protocol aimed at addressing the access
unfairness problem must satisfy a number of
requirements: (i) It should work for both small
and large networks. (ii) It should work for any
number of attached nodes and for arbitrary
internodal distances. (iii) It should resolve both
the latency and the flooding related unfairness.

At low loads there is no unfairness, and the
DQDB protocol is fair enough. Therefore any
suggested protocol should preserve the behavior
of the DQDB protocol at low loads. At heavy
loads any proposed protocol should address the
latency related unfairness by allowing some
extra slots to meet the unseen (yet registered)
demand from the downstream. The unfairness
due to flooding should be resolved by
appropriately reducing the amount of issued
REQUESTs.

As is evident from the previous discussion, one
of the factors that affect the unfairness problem
is the actual topology of the network, defined as
the inter-nodal distance between the active

nodes (i.e. the nodes that are part of the
network and are potential candidates to contest
for access) attached on the bus. The pDQDB
protocol does not provide information about
the topology of the network. In {25] a protocol
called the Dynamic Assessment of Network
Topology (DANT), designed to achieve
dynamic updates of the network dependent
parameters is presented. This protocol provides
in real time information about the active node
population in the network, the length of the
bus segment in downstream of each node and
the distance between successive nodes in the
network. Such information is useful in a
dynamic network environment, in which new
nodes may join and some existing nodes may
leave the network. In [25], an Anticipatory
Demand Scheme (ADs) aimed at resolving the
latency related unfairness and an Access
Protection Scheme (APs) aimed at resolving the
heavy load unfairness due to fiooding are
introduced. Elements of these three
mechanisms are then combined in the 3-Tier
Fairness Protocol, which aims at retaining the
performance of the DQDB protocol at low loads
while improving its performance at normal and
heavy loads by effectively addressing the
various sources of unfairness.

The performance of all the introduced protocols
is studied through a number of detailed
simulations. Two different types of load
behaviors have been studied: in the symmetric
load type, packet destinations are chosen at
random with equal probability; in the equal
probability type, packets are sent on each bus
with equal probability and their destinations
selected at random from among those in the
chosen direction. The effects of both Poisson
and bursty arrival processes were studied. A
detailed description of the simulation studies
can be found in [25]. The overall performance
improvements of the 3-Tier fairness protocol
scheme can be summarized as follows:

e The 3-Tier fairness protocol divides the
load activity in the network into three
different domains and adopts different
access policies to suit the needs.
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e At low loads the 3-Tier fairness protocol
performs exactly as if only the DQDB
protocol were running. This domain
extends up to load values of about 0.4.

e At heavy loads the 3-Tier fairness protocol
produces performance enhancements, with
the domain extending to about a load of
0.75. The performance is very similar to

that achieved with the ADS protocol in this

region. In the case of equal probability
load, a few end-nodes along the bus come
under the influence of and experience a
small increase in their access delays.

o At loads of 0.9 and above, the
characteristics of the APs mechanism come

into play. The performance improvement is

dramatic with symmetric load. With equal
probability load, the end-nodes’ access
delays suffer sharp rises, and all other
nodes have uniform access delays. While
we cannot eliminate this unfairness, it
appears tolerable given the extreme nature
of the traffic conditions.
With multiple packet sized messages and
different network configurations, the 3-Tier
fairness protocol continues to provide
consistently better performance than DQDB.
Performance improves further with
heterogeneous packet sizes. In conclusion, the
3-Tier fairness protocol presents a significant
performance enhancement over DQDB over the
entire range of traffic demand.
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