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QUEUEING ANALYSIS OF BUFFERED SWITCHING NETWORKS

Jonathan S. Turner
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Washington University, St. Louis

ABSTRACT

This paper provides a method for analyzing the queueing behav-
ior of switching networks constructed from switches that employ
shared buffering or parallel bypass input buffering. It extends the
queueing models first introduced by Jenq and later generalized by
Szymanski and Shaikh to handle these classes of networks. Qur
analysis explicitly models the state of an entire switch and in-
fers information about the distribution of packets associated with
particular inputs or cutputs when needed. Earlier analyses of net-
works constructed from switches using input buffering attempt to
infer the state of a switch from the states of individual buffers and
cannot be directly applied to the networks of interest here.

I. INTRODUCTION

In a widely cited paper [2], Jenq describes a method for ana-
lyzing the queueing behavior of binary banyan networks with a
single buffer at each switch inpui. The method, while not yield-
ing closed form solutions, does permit the efficient computation
of the delay and throughput characteristics of a switch. A key ele-
ment of the analysis is the inference of the state of a single switch
from the state of its two buffers, based on the assumption that
the states of the two buffers are independent. This independence
assumption is not valid but does not yield gross inaccuracies in
the systems that Jenq studied.

Recently, Szymanski and Shaikh [3] have extended Jenq’s
method to switching systems constructed from switches with an
arbitrary number of inputs and an arbitrary number of buffer
slots. They have also applied it to systems with different buffer-
ing techniques. While these extensions are useful, it turns out that
for many specific choices of system parameters, the independence
assumption mentioned above leads to significant inaccuracies.

We extend the previous work to cover switching systems in
which the buffer slots in a switch are shared among all the in-
puts and outputs, rather than being dedicated to either particu-
lar inputs or particular outputs. Such systems require an analysis
which explicitly models the state of the entire switch rather than
the states of individual input or output queues. We can also ap-
ply our method to systems using parallel bypass input buffering,
a class of systems that cannot be analyzed directly using the pre-
vious methods. Qur technique can also be applied to the systems
studied previously and for some system configurations yields sig-
nifcantly more accurate results.

In section 2, we review the previous resulis for switching sys-
tems with input buffering, in order to motivate the key issues
involved in their analysis. In section 3, we show how to analyze
a switching system with shared buffering and present a variety
of performance curves characterizing such systems. In section 4,
we show how our methods can be extended to switching systems
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Figure 1: Recursive Definition of a Delta Network

—8—

Figuze 2: Switch with Fifo Input Buffer

with input buffering, including systems supporting bypass queue-
ing. Finally, in section 5, we provide numerical comparisons of
the different buffering techniques, describe our computational ex-
perience and suggest some possible extensions to our work.

II. APPROXIMATE ANALYSIS oF NETWORKS WITH INPUT
BUFFERING

Figure 1 shows the recursive construction of a delta network
D, 4 with n inputs and outputs, constructed from d-port switches.
Such networks provide a single path between any inputs and out-
puts, and have log;n stages of switching. The delta network
is topologically equivalent to such networks as the banyan and
omega networks. The results we describe here are equally appli-
cable to any of these networks. Delta networks are often con-
structed from switches that contain buffering for a small number
of packets, with flow control between successive switches to ensure
that the buffers do not overflow. Figure 2 shows the structure of
a typical switch in which each switch input has a buffer with a
capacity of § packets.

Typically these systems are operated in a time-slotted fashion,
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Figure 3: Throughput of Networks with Fifo Input Buffering (S&S Analysis)

with fixed length packets progressing from stage to stage in a
synchronous fashion. Consequently, we can think of the system
as operating in two phases. In the first phase, flow control in-
formation passes through the network from right to left. In the
second phase, packets flow from left to right, in accordance with
the flow control information. A switch input will allow its prede-
cessor to send it a packet if it has an empty buffer slot currently
or if one of the packets in its buffer will leave during the second
phase of the current cycle. This is called global flow control, since
the flow control decision at a switch potentially depends on all
of its successors in the network. Local flow control is also possi-
ble; in this form, a switch input allows its predecessor to send a
packet only if its buffer has an empty slot. While local flow con-
trol doesn’t make as effective use of a switch’s buffers, it is more
straightforward to implement, particularly in high speed systems
where the propagation time required for global flow control can
lead to unacceptable overheads.

One way to analyze the queueing behavior of a buffered delta
network is to explicitly model the state of single input buffer by
a discrete time birth-death process and then model the state of
an entire switch by assuming that the states of its various input
buffers are independent. This technique is described in [3]. We
briefly review it here for completeness.

Let m;(7) be the steady state probability that an input buffer
in stage i of the network (stages are numbered from left to right
starting with 1} contains exactly j packets, where 0 < j < . Let
a; be the probability that a packet is available to enter a stage i
buffer and let ¢; be the probability that the packet at the front
of a stage ¢ buffer can leave during a given cycle. With these
definitions, the transition rates for the stage i buffer are as shown
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Here, @; = I — a; and §; = 1 — ¢;. The reasoning is straightfor-

ward. If the queue contains j packets where 0 < j < B, then the
probability that during the next cycle the queue contains j + 1
packets is just the probability that a new packet is available to
enter the queue and the packet at the head of the queue does not

leave; this is a;7;, assuming that arrivals and departures are inde-
pendent of one another. Similarly, the probability that during the
next cycle the queue contains j — 1 packets is just the probability
that no new packet is available to enter the queue and the packet
at the head of the queue does leave; that is, T@ig;.

If we knew a; and ¢; then, we could easily compute the state
probabilities m;(7). The trouble of course is that ¢; and ¢; depend
on the state probabilities of the buffers in the neighboring switch
elements. This leads to an iterative computational method in
which we assign arbitrary initial values to the state probabilities,
then compute a; and ¢; for all , use these values together with
the balance equations for the Markov chain to compute new state
probabilities, and so forth.

We calculate a; using the following equation

ai = 1= (1=7_1(0)/d)?

The reasoning is that a packet is available to enter a particular
input buffer of a stage i switch if at least one of the d buffers in the
predecessor is non-emply and has a first packet for the particular
stage i switch of interest. Note that the states of the predecessor’s
d buffers are assumed to be independent.

Define b; to be the probability that a successor of a stage i
switch can accept a packet. Then,

e

1—m11(F)7;4, for global flow control

Tir1(B8) for local flow control
and
R S W C RS AP (1 =7 (d-1)-j
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b;

W(l - (l - -fi(o)/d)d) = bia£+1/'??.'(0)

The first equality above is based on the observation that the first
packet in a stage i buffer can leave if the successor it is destined for
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Figure 4: Switch with Shared Buffering

can accept it and it wins any contention that may occur between
it and the other input buffers in the same switch. There are d—1
other input buffers that might contend with it, the probability
that any one does contend is 7;(0)/d, and the probability that
the given input buffer wins, when it has to contend with J others
is 1/(j +1).

In realistic systems, each input to the network is supplied with
a buffer that is typically much larger that those in the switches.
We can model such a buffer using the Markov chain shown be-
low, where 8 is the number of buffer slots, bp is the probability
that a stage 1 switch can accept a packet offered to it {computed
according to the equation for &; given above) and p is the offered
load, that is the probability that a packet is available to enter the
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Finally, we note that a; is computed not according to the gen-
eral equation given above but is equal to the probability that the
input buffer is nonempty; also, we assume that the output of the
network can always accept a packet meaning that by = 1, where
k=log:n.

The performance curves shown in Figure 3 were computed with
this method. The top four curves show the maximum obtainable
throughput as a function of switch size for networks with switches
of different sizes and varying amounts of buffering. The bottom
two curves show the effect of varying the amount of buffering for
switches with 256 inputs. The curves on the left show the through-
put in the case of local flow control and those on the right are for
global flow control. It’s interesting to note that the networks con-
structed from larger switches have lower throughput when n is
large. This is caused by head-of-line blocking effects that affect
the larger switches more severely and because the smaller number
of stages in these networks means that the total buffering available
is smaller.

II1. ANALYSIS OF NETWORKS WITH SHARED BUFFERING

1t’s well known that switching networks in which buffers are
shared among the inputs can yield better performance than those
in which buffers are dedicated either to inputs or outpuis. Fig-
ure 4 shows a switch in which packets arriving at any of d inputs
are placed in available buffer slots from a pool containing B slots.
Packets are routed from the shared buffer to the appropriate out-
puts. An implementation of such a switch would require a d x B
crossbar to distribute arriving packets to buffers and a separate
B x d crossbar to route packets from buffers to outputs.

As in the input buffered switch, one can use either local or
global flow control, but we analyze only the case of local flow

control. There are two additional possibilities for implementing
local flow control which we refer to as the grant and acknowl
edgement methods. In the grant method of flow control, a switch
with z empty buffer slots, grants permission to send a packet to
min {z, d} of its upstream neighbors at the start of an operation
cycle of the switch. If < d, we assume that z predecessors
are chosen at random. In the acknowledgement method of fiow
control, all predecessors with packets to send are permitted to
send them. The receiving switch stores as many as it can in its
buffer and acknowledges their receipt by means of a control signal,
Unacknowledged packets are retransmitted during a subsequent
cycle. The acknowledgement method requires that the predeces-
gors hold a copy of a packet pending an acknowledgement, but
allow better buifer utilization overall.

We first analyze a network using the grant method of flow con-
trol. We model each switch as a B+ 1 state Markov chain. We Jet
%i(5) be the steady state probability that a stage 1 switch contains
exactly s packets and we let A(sy,s;) be the probability that a
switch with s, packets during a given cycle contains s, packets in
the subsequent cycle.

Let pi(j,s} be the probability that j packets enter a stage §
switch that has s packets in its buffer and let ¢;(7, 5) be the prob-
ability that j packets leave a stage i switch that has s packets in
its buffer. Then

2

max{0,43—5,}<h<d

Ai(s1,82) = pi(h, s1)qi(h — (82 — 1), 81)

Let a; be the probability that any given predecessor of a stage
i switch has a packet for it. Then if we let m = min {d,B - s},
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0gj<8
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Let b; be the probability that a successor of a stage i switch
provides a grant and let Yy(r, s) be the probability that a switch
that contains s packets, contains packets for exactly r distinct
outputs. Then

a(j,s) = Ya(r, s)( " )#i(1 - )3
,-gg%{a,.] ’ (’)
b = Z mip1(h) + z i1(B — W)k/fd

0<h<B-d 0<h<d—1

Y is easily calculated, assuming all distributions of & packets to
the d outputs are equally likely. This is just a classical distribution
problem. For the purposes of calculation, the following recurrence
is all we require.

1 s=r=0
0 (s>0Ar=0)vs<r
EYa(r, s ~ 1)+

Ll Dyir—1,5-1) 0<r<s

Ya(r,s8) =

Note that Yy(r,s) is independent of the stage of the switch in
the network. For computational purposes, it is most convenient
to merely precompute a table with the values of ¥ required; the ™
above recurrence is ideal for this purpose. As in the eatlier anal-
ysis, we compute performance parameters by assuming a set of
initial values for 7;(j), then use these and the equations given
above to compute A;(s;,s2). These, together with the balance
equations for the Markov chain are used to obtain new values of
#i(j) and then we iterate until we obfain convergence.

E
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Figure 5: Throughput Curves for Networks with Shared Buffering

above to compute Ai(s1,82). These, together with the balance
equations for the Markov chain are used to obtain new values of
#;(j) and then we iterate until we obtain convergence.

Notice that the calculation of Yj(r,s) given above relies on
the assumption that the addresses of the packets stored within
a switch’s buffer are independent. This is not in fact the case,
While it is true that the addresses of packets arriving at a switch
are independent, buffered packets are correlated as aresult of hav-
ing contended for outputs. The correlations are strongest when
d is small and B large. Simulation studies described in [1] show
that the analysis is very accurate for large d (16) and moderate
buffer size (B = 2d)}, but suffers significant inaccuracies for small
d (2) and large bufler size.

Most of the above analysis carries over to networks that use
the acknowledgement method of flow control. The only changes
required are in the equations for p;(j, s} and ;. In particular, we
have

0 ifB—s<j
) (el(1 - a:)-i fB—s>j
pi(j, 8) = A P
z a}(l—a)* fB—s2>j
i<hgd
and
o= Y, w4+ Y mpa(B-h)
0<h<B~d 1<h<d—1
d—1Y , 1)er
[ > ( , )“m(l - a;1)4Y
0<r<h-1
i (d - 1) r (d=1)=r
+ ai1(1—aig1)
ngrgar T T LA )

Figure § gives maximum throughput curves for networks with
shared buffering of varying size and buffer capacities. In the plots
A = B/d is the number of buffer slots per switch input. We note
that for shared buffer networks, large switches usually perform
just slightly better than small ones with the same values of 8.
The advantage of the acknowledgement method of flow control is

most pronounced when the number of buffer slots is limited, al-
though one would expect a greater benefit in the presence of un-
balanced traffic patterns. Also, we note that throughputs of 80%
or more can be obtained As before, we note reduced throughput
with larger switch sizes. However, for # = 3, we obtain through-
puts over 80% even for the largest networks.

IV. IMPROVED ANALYSIS OF NETWORKS WITH INPUT BUFFER-
ING

We now return to the study of networks comprising switches
using input buffering. In addition to switches that use fifo buffers,
we are interested in switches that use bypass buffering to avoid the
head-of-line blocking effects that limit the performance of systems
with fifo buffering. Two types of bypass buffering are possible. In
serial bypass, the first packets in a switch’s input buffers first
contend for outputs, then the losing input buffers that contain a
second packet are allowed to contend a second time, those that
lose in the second round and have a third packet are allowed to
contend a third time, and so forth. In parallel bypass, all packets
in a switch contend in a single round with the winners proceeding
to the outputs. This allows more than one packet from a given
input to proceed during a single cycle, allowing potentially higher
performance. In high speed systems, parallel bypass is actually
somewhat easier to implement, as one does not have the overhead
of multiple contention rounds. For this reason and because it is
more straightforward to analyze, we concentrate here on parallel
bypass.

The analysis of a network with parallel bypass input buffering is
similar to that for a network with shared buffers using the grant
method of flow control. In particular, we need only alter the
equations for b; and p;(j, s). Let X% (j,5) be the probability that
a given input buffer has j packets given that the switch contains
s. Then, -

b= Y ma(s)(1 - X2(8,6))

0<e<B

Next, let Wf (r, 5) be the probability that exactly » input buffers
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Figure 6: Throughput Curves for Networks with Input Buffering

are not full given that a switch contains exactly & packets. Then,

pGe)= ), Wf(r,s)c,)a{.'u_a,.)r-i

jgred

X and W are easily computed, assuming that when the switch
contains s packets, all distributions of those packets among the
input buffers are equally likely. Let zg (s) be the number of ways
to distribute s distinct objects (packets) among d distinct con-
tainers (input buffers), under the restriction that each container
may contain at most § objects. Also, let a:g (r, 8) be the number
of ways to distribute s objects among d containers of capacity B,
so that a particular container receives exactly r objects. Then

XB(r,8) = af(r, )/ (s)

Similarly, if w4 (r, &) is the number of distributions that leave ex-
actly r containers with fewer than § objects, then

Wf(r, 5= wg (r, s)/zg(s)

We compute z, z and w as follows,

1 ifs=0
0 if s >dp
40 = ':)zg_l(s-i) if0<s<df
a<i<min{8,2}
A = ($)dat-n
8 =
) = (D) (g g) - @=rIBL @)

Using these equations, it is straightforward to compute tables
containing the requisite values of X and W.

We now return to the case of an input buffered network with
fifo buffers. Most of the analysis for bypass input buffering carries
over to this case. The two equations requiring modification are
those for a; and g¢:(#,5). Let Yf (r,s) be the probability that
exactly r input buffers contain at least one packet, given that the

switch contains s packets. Then,

& = E %i-1(8) Z Yf(r, s)(1-(1-1/d))
0<eB 0<r<min{d,s}
W) = X Yo X vale(})pia- bt

j<hEmin{d,e} j<r<h

If we let 35(r, s) be the number of ways to distribute s objects
among d containers so that exactly r containers receive one or
more objects, then

Y{(r,8) = i (r, 8)/24(s)

and y/3(r, 8) is computed using the recurrence

> (ae=re-n

1<i<min{g,—(r=1))

la(f: 8) = yg-1(r$ 3) +

when0<rgsgdﬁandrSd;yﬁ(r,s):lwhenr: s=0and
Yi(r,s)=0whens<rord<rordf<sorr=0<s.

Figure 6 gives curves of maximum throughput for networks
comprising switches with both fifo and parallel bypass input
buffering, of varying size and buffer capacity. We note that bypass
buffering gives a very substantial improvement over fifo buffering
and that larger buffers yield a greater improvement in the case
of bypass buffering. It’s also worthwhile to note the differences
between the curves on the left side of Figure 6 to the correspond-
ing curves on the left side of Figure 3 that were obtained using
the more approximate method of analysis. The two correspond
closely only when 8 = 1. In all other cases, the earlier analysis is
t00 optimistic, and in some cases by a substantial margin.

V. CONCLUSIONS -

Figure 7 compares the maximum throughput obtained with the
various buffering methods and networks of varying size, switch di-
mension and buffer capacity. We show curves for shared buffering
using both the grant and acknowledgement methods of flow con-
trol. We show curves for input buffering using local flow control,

<
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Figure 7: Comparison of Buffering Methods

bypass queueing and fifo queueing using both the earlier method
of analysis and our method. We note that shared buffer switches
offer clearly superior performance for a given amount of buffering,
but bypass input buffering performs impressively as well. Fifo in-
put buffering, performs rather poorly in comparison to the other
methods, but may be acceptable in certain applications. Interest-
ingly, variation in switch size yields only small changes in maxi.
mum throughput for networks with the same values of £, but the
reduction in the number of stages obtained with larger switches
yields a significant economy in implementation, as well as lower
delays. We note that the acknowledgement method of flow control
yields only modest improvements over the grant method when we
have uniform random traffic with Bernoulli arrivals. We would ex-
pect a greater difference in the face of non-uniform bursty traffic,
but cannot confirm that expectation at this time.

In reference [1], Haifeng Bi presents detailed simulation studies
to quantify the inaccuracies inherent in the analysis described here
as well as that of Szymanski and Shaikh. In general, he found that
the analysis used here are uniformly more accurate than earlier
analyses, but in some cases (small d, large B or g}, the differ-
ences are quite small. Both analyses are optimistic in the sense
that they overestimate the maximum throughput that a network
can support. As an experiment, Bi ran modified simulations in
which correlations among packets in a switch were systematically
eliminated by randomly reassigning their addresses at the start
of each simulation cycle. The simulation results obtained in this
way were virtually identical with our analytical results, meaning
that the crucial direction for further refinement of the analytical
models lies in capturing the effects of correlations among packets.

Bi also studied switches with output buffering and made a sys-
tematic comparison of output buffering with bypass input quene-
ing. His work demonstrates that the difference commonly noted
between input buflering and output buffering is less significant
than commonly assumed. What most authors overlook is that in
a switch with output buffering, the internal crossbar or bus re-
quired to provide access to the outputs requires greater capacity
than the crossbar required in a switch using fifo input buffering.
Bi has compared generalized forms of input and output buflering
under conditions in thich the crossbars have the same capacity.

His results show that under these conditions, there is very little
difference between the two, and interestingly, input buffering en-
joys a slight advantage due to “boundary effects” at the first and
last stages of the network.
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