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Abstract—We consider the problem of arbitrating access to a tree
structured communication channel with large geographic extent, provid-
ing multipoint communication among a set of terminals. In our model,
terminals transmit information in bursts consisting of many packets and
compete for the right to transmit bursts. In the simplest case, the
channel allows only one terminal to transmit at a time; this can be
extended to & concurrent transmitters. The problem resembles con-
tention resolution in local area networks, It is distinguished by the
topology of the channel, the magnitude of the delays imvolved and the
poteatial for multiple transmitters. In this paper, we identify two gen-
eral approaches and several specific assess arbitration algorithms and
make a preliminary assessment of their promise.

I. INTRODUCTION

THE problem considered in this paper is motivated by recent
research on the design of wide-area packet communication
networks supporting high speed multipoint communication [6].
Such multipoint networks are constructed from switching sys-
tems connected in a mesh topology, and having the ability to
replicate packets and forward them over pre-established multi-
point virtual circuits, as illustrated in Fig. 1. The switching
systems used in such networks may lose packets through buffer
overflows or transmission errors which alter the contents of
packets. In the simplest case each multipoint channe! has a single
transmitter and many receivers, and the channel distributes the
signal to the multiple receivers. In this paper we consider the
case where every terminal in the channel can both transmit and
receive on the channel. Each terminal transmits data in the form
of packets, which are replicated by the channel and delivered to
all the other terminals. In typical applications, such as telecon-
ferencing or LAN interconnection, information is transmitted in
bursts comprising many packets and while every endpoint is a
potential transmitter, typically only a few transmit at one time.
Note that each channel is tree-structured and can be considered
in isolation from the remajinder of the network. At the same time
however, because the transmission links may be shared by
several different connections, it is important to ensure that each
connection does not use more than its share of the link band-
width.

Given that the network must provide bandwidth to support
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Fig. 2. Example multipoini communication channel.

each channel, there is the question of how much bandwidth to
allocate. A worst case allocation provides bandwidth for all »
sources in a multipoint channel to transmit simultaneously.
While this may be appropriate in some applications it is unac-
ceptably inefficient if only one or two transmitters are active at
one time. On the other hand, if the network allocates resources
for only a few active transmitters, it must provide mechanisms
to ensure that only a few transmitters can be active at one time.

To make the discussion more concrete, consider the example
channel shown in Fig. 2. This channel serves ten terminals
interconnected by several intermediate nodes. Two terminals are
transmitting bursts labelled « and 8. Note how the burst are
propagated by the intermediate nodes. Also note that each link in
the channel carries both bursts, but in some cases they propagate
in the same direction, while in other cases they propagate in
opposite directions. To provide sufficient bandwidth for any pair
of terminals to transmit simultaneously, the network must allo-
cate bandwidth for two bursts to be carried in both directions on
each internal link. Assuming resources are allocated for just two
transmitiers, the network must provide mechanisms to ensure
that no more than two transmit at a time. Bach link has an
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associated delay. As we are interested in networks with geo-
graphically distributed nodes, delays of tens of milliseconds are
typical.

The necessity of access arbitration arises primarily from the
network’s need to prevent terminals on one channel from usurp-
ing resources allocated to other channels that may be sharing the
same links. However, access arbitration may also be viewed as a
service provided by the network for the terminals, since it
regulates the flow of data info each terminal, in an orderly
fashion.

We note that our problem is similar in spirit to media access
protocols for local area networks, and indeed current LAN
arbitration schemes have given us several useful ideas. (See [4]
for an introduction to popular LAN media access protocols.)
What distinguishes our problem is the tree-structured channel in
which the internal nodes can play an active role in access
arbitration, the relatively long delays involved and the possibility
of having multiple transmitters. These factors have a strong
influence on the performance and implementation of various
solutions, as will be seen in subsequent sections. Previous work
of some relevance to our problem can be found in [1], [5]

Formally, we denote a channel C by a pair (T, &) where
T = (N, L) is an undirected tree with node set N and link set
L; 8:L = Z* ig a function that assigns a positive integer delay
to each link. The nodes of T with only one incident link are
called the ferminals and are collectively denoted by N,; all
other nodes are called internal. We define the disfance between
two nodes u and v to be the sum of the link delays on the path
joining u and v and denote it by &(u, v). Packets transmitted at
one end of a link {u, v} are delivered to the other end after a
delay 8(u, v). We define the diameter of the channel to be the
length of the longest simple path in T joining two terminals and
denote it by A, Packets delivered to a node are replicated and
sent out over all of the other links incident to the node. While in
an actual system, this involves some (relatively small} stochastic
delay, we will neglect it in this paper and assume that the nodes
operate instantaneously. Packets that arrive simultaneousty at a
node are processed sequentially in some arbitrary order. Con-
stant link delays and zero node delays are adopted to simplify the
presentation and are not essential to any of the algorithms
described here; in general, the only essential properties are
sequentiality for links and in some cases for nodes.

Our primary objective is to identify algorithms which can
operate in an environment where packets can be lost and in
which link speeds are high enough that hardware implementation
of access arbitration algorithm is necessary. Two of the five
algorithms we consider (2.2 and 3.1) cannot meet this objective,
but they are worth consideration for the insights they give to
alternative approaches and their possible application to other
environments.

We present two fundamental approaches to access arbitration,

The first, described in Section II, is based on the idea of transmit
permits or {okens; that is a terminal must have explicit permis-
sion to transmit before starting a burst. We given two algorithms
using this approach; one is an essentially passive algorithm that
provides the minimum set of facilities to support token-based
access arbitration and the other, an active token circulation
algorithm that seeks to reduce token latencies by adding intelli-
gence to the internal nodes. The second approach, described in
Séction III, allows terminals to transmit whenever the number of
bursts they can observe from their vantage point is less than the
limiting number; the network then performs arbitration inter-
nally, possibly aborting some bursts in the process, to prevent
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too many burst from being active on a link at one time. We
present three algorithms using this second approach. We con-
clude with a brief assessment of the various methods and suggest
some possible topics for future investigation.

II. Access ARBITRATION UsING TrRaNsMIT TOKENS

Perhaps the most obvious approach to access arbitration in a
tree-structured channel is to supply the connection with some
number k of transmit permits or tckens, and require that a
terminal possess at least one token before being allowed to
transmit a packet. This approach limits the number of simultane-
ous transmitters to k, while allowing the set of transmitters to
vary over time, through the passing of tokens. The network can
allocate bandwidth for k simultaneous transmitters, independent
of the total number of terminals in the connection.

While this strategy seems simple enough, finding a practical
implementation for a high speed packet network is not as
straightforward as it might appear. The reason is that passing of
tokens must be completely reliable; since the underlying network
may lose packets on occasion, a protocol is required that allows
tokens to be passed reliably, while at the same time preventing
terminals from creating new tokens. We consider two algorithms
in this section which take two different approaches to the prob-
lem. The first provides a simple and practical solution that can
be implemented using a set of distributed monitor processes at
the access links connecting the terminals to the remainder of the
channel. In this algorithm, the network plays a passive role, with
the terminals handling most of the work associated with token
passing, while the network provides minimal support for reliable
transmission and prevents token creation by the terminals. The
essential simplicity of the algorithm makes a hardware-based
implementation practical, allowing its use in high speed net-
works. In the second algorithm, the network plays a more active
role, distributing tokens to users based on request messages; this
approach, while more complex can reduce the latency associated
with token passing. On the other hand, this second algorithm
requires reliable control communication, which in our environ-
ment requires an additional protocol to ensure messages are not
lost. This seems to preclude efficient hardware implementation,
limiting the algorithm to networks with lower performance
needs.

A. A Passive Algorithm

In this section, we describe a passive algorithm, which we
refer to as Algorithm 2.1, for support of token-based access
arbitration. Terminals transmit two types of packets, data, and
token packets. Every token packet has three fields, one contain-
ing the foken id, another containing the destination ferminal,
that is the identity of the terminal that is to receive the token and
a third field called the generation identifier, which is described
below. The internal nodes of the channel, replicate all received
packets and propagate them throughout the channel.

The zlgorithm is implemented by a collection of monitor
processes, located at the terminals’ access links, The monitor
processes observe the flow of packets over the channels and are
responsible for preventing a terminal from transmitting a packet
unless it is in possession of a token. The monitor processes, also
prevent creation of new tokens by making sure that terminals
pass only those tokens that are in their possession. The monitors
provide indirect support for reliable token transmnission; if a
terminal passes a token to another and determines that the token
packet was lost, it is allowed to retransmit the packet. The tricky
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do termport?p —relay(p termport ,nodeport)
| nodeport?p —retay(p ,nodeporttermport);
od;
procedure relay(packet p, port from, port to)
if p. typ=data » from=termport + n>0—
nodeporilp;
| p-typ=data » from=nodeport—
termportp;
| p. typ=token + from=termport —
i=p.td;
if szate;=present—
state; .= passing; dest; :=p. dest;
gen; =gem+1; p. gen:=gen;;
n =n=1; nodeportip,
| state;=passing—
p. dest:=dest;; p.gen:=gen;;
nodeportip;

| p. typ=token » from=nodepori—
i:=p.tid;
if p. dest=termid » p. genzgen;—
if state; #present— n :=n+1; fi;
state; = present; gen; =p.gen,
termport!p
| p. desttermids p. genzgen;—
state; :=absent; gen; :=p.gen;
;
end;
Fig. 3. Program for monitor process.

part, is allowing such retransmissions without introducing a
mechanism that allows the user to create new tokens.

Each monitor maintains several variables for each token al-
lowed in the connection. For token i, the variable state; =
present if token i is present at the terminal {meaning the
terminal can use it to transmit packets), state; = absent if token
{ is not present and state; = passing if the terminal is in the
process of passing the token to another terminal. More pre-
cisely, state; = passing if the terminal has transmitted a token
packet for token i and the monitor has not yet received any
positive indication that the token has been received. If state; =
passing, the variable dest, is the identity of the terminal that the
token was passed to; additional token packets can be sent to that
destination, but not others. The variable gen; is the generation
number of token /; the generation number of a token is incre-
mented whenever the token is passed and used to help prevent
replication of tokens. In addition, each monitor has a variable n,
which gives the number of tokens present at the node, and a
variable fermid that uniquely identifies the terminal that the
monitor is associated with.

A program implementing the monitor process is shown in Fig.
3. The program is written using Dijkstra’s guarded command
notation [2]. Input and output are denoted using a variant on
Hoare’s notation for CSP [3]. In particular, portngme?x reads
an item from the named port into the variable x if there is any
data available and portname!x transmits the value of x on the
named port. Each monitor has two bidirectional ports, one for
communication with its associated terminal (fermport) and the
other for communication to the associated internal node (rode-
port).

It is tempting to simplify the algorithm by omitting the token
generation numbers, Unfortunately, such a change allows the
creation of multiple tokens. Consider, for example, if terminal
A sent a token packet to terminal B, which in turn sent a token
packet to C. If this latter packet is not seen by the monitor at A
(because of an error on one of the links between B and A), then
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A might send a second token packet to B. The algorithm
described above uses the token generation number to filter out
this second token packet; without it, the token would be passed
on to B and we would be left in a situation where B and C
possess copies of the same token. Algorithm 2.1 can never enter
a state in which a given token is present at more than one
terminal.

In practice, the mechanism implementing the monitor process
must simultaneously implement monitor processes associated
with other channels that are statistically multiplexed on the same
link. When a packet is received on a link, a logical channel
number is extracted from the packet and used to extract infor-
mation from an internal table that records information about all
the channels using that link. This information includes the state
of the monitor process controlling each channel. This informa-
tion is used to make decisions, then the state is changed if
necessary and written back to the table.

In Algorithm 2.1, the network plays the smallest possible
role, leaving to the terminals, the real work of ensuring that
tokens are reliably exchanged. This approach keeps the network
simple and provides a great deal of flexibility. A variety of token
distribution strategies can be implemented by the terminals; we
note here a few possibilities, without going into detail. One
simple method is to have a logical ring associated with each
token and allow each token to circulate around its ring; the
assignment of terminals to rings can be optimized to satisfy
performance requirements that may vary among the different
terminals. Another method is for one terminal to play the role of
token dispenser, with other terminals explicitly requesting to-
kens when needed. Alternatively, the task of token dispensing
could be distributed, so any terminal with an available token
might respond to a token request that was broadcast to all.

B. An Active Token Distribution Algorithm

While Algorithm 2.1 keeps the internal network mechanisms
fairly simple, it places a lot of the responsibility for token
management on the terminals and may give poor performance as
a result of the token latencies involved. In this section we sketch
an alternative strategy in which the network plays a more active
role, explicitly managing the token distribution so as to reduce
the amount of time that terminals spend waiting for tokens.

In the new strategy, a terminal with data to send must first
request a token, then wait for the network to provide one; once
the token has been assigned the transmission can start; at the end
of the burst, the terminal issues a token release. Note that
terminals do not simply wait for the arrival of a free token
circulating through the connection, but play an active role; this
choice, together with the tree-shaped topology of the connection
permits faster token circulation.

The algorithm is implemented by two types of processes. The
first is a monitor process similar to the one in Algorithm 2.1,
which observes the passage of token control messages and
allows data packets to be sent only when the terminal is in
possession of a token; we omit the details of this process. The
second type of process implements the actual token circulation;
there is one such process for each internal node in the connec-
tion. As we will see, these processes are sufficiently complicated
that a hardware implementation is probably impractical; conse-
quently, we assume that the token circulation processes are
implemented in software. This may limit the token handling
capacity of an actual implementation, but we do not consider
that issue in detail here. We also assume that the various token
control messages are passed between adjacent nodes using a
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do parent?p —circ(p parent)
| child(i y?p —circ(p ,child(i));
od;

procedure circ(packet p, port from)
if p. typ=request + parentznull -
parent'p; R :=R& from;
| p.typ=request  parent=null +T >0—
T =T-1; fromltokp;
| p.typ=request s parent=null » T=0—
R =R& from,
| p.typ=token s R #null —
R[11'p; R =R[2.);
| p.typ=token + R=null s parentznull -
parent'p;
| p. typ=token » R=null «parent=null —
T:=T+1;
fi;
end;
Fig. 4. Program for token circulation process.

reliable communication protocol to prevent token loss. This also
adds additional complexity to the algorithm, which further limits
its potential for application in high speed networks.

The token circulation processes view the tree induced by the
channel as a directed tree. One of the internal nodes is desig-
nated the root of the channel; all other nodes « in the tree have
a unique parent, which is the neighboring node that lies on the
path from u to the root. The root can be any node, but the best
performance is obtained when it is at the center of the tree.
Whenever there are no pending requests for tokens, unused
tokens propagate up the tree to the root. Token requests also
propagate up the tree, but each node maintains a list of token
requests from its subtrees and if a token is received from either
the parent or a subtree, while a request is pending, that token is
used to satisfy the request.

A program implementing a simple version of the token circu-
lation process appears in Fig. 4. The process can receive mes-
sages from the parent, or from any of several children, denoted
child(i). The process at the root has its parent variable set io
null. The variable R is a list of children with pending requests;
R [1] is the first item on the list and R[2 - - + ] denotes the subiist
with the first item removed. The assignment R := Ré&from
adds the value of from to the end of the list. The variable T,
records the number of tokens available at the root. The variable,
tokp is just a packet with the type field set to token.

There are a few aspects of the algorithm that can be improved
upon. Suppose a node 4 has a single pending token request from
a child ¢(/) and has requested a token from its parent. If u
receives a token from one of its children, that token will be used
to satisfy the pending request. When the token requested from
the parent arrives later, it will be returned, assuming no other
requests have arrived in the meantime. The time spent by that
second token traveling to u and back is essentially wasted; it’s
possible that overall performance could be improved, if in this
situation u sent a cancellation packet to its parent. A node
receiving such a packet from one of its children wouid respond
by deleting any pending request for that child and sending the
cancellation on to its parent. If the node no longer had a pending
request for that child (because it had already sent a token in
response to the earlier request), it would simply ignore the
cancellation.

Note also, that as written, the algorithm permits starvation;
that is, it is possible for a node with a pending request to never

get served since the token may stay in another subtree, We can
avoid starvation by constraining the token circulation somewhat.
In particular, whenever a token is received from child(#), the
token is used to satisfy a request from child(f) where j is the
smallest integer greafer than i for which there is a pending
request. If there is no such request, the token is sent to the
parent. With this change, the waiting time of a pending request
is bounded if the time that a terminal holds a token is bounded.
We refer to the algorithm incorporating these two refinements as
Algorithm 2.2,

Ii. CoNTENTION-BASED ACCESS ARBITRATION

The algorithms of the previous section required that a terminal
acquire an explicit transmit permit or token before starting a
burst. In this section, we consider access arbitration algorithms
in which terminals contend for access to the channel by simply
transmitting their bursts at will and allowing the channel to
select the bursts to be delivered. Again our objective is algo-
rithms which admit hardware implementation and are robust in
the face of occasional packet loss, although we also consider
algorithms that fall short of this objective.

We are interested in access arbitration algorithms that can be
implemented by a collection of arbiters; each link having an
arbiter at each of its two ends. Preferably, these should be
simple enough to be implemented within a hardware packet
processor that handles many channels multiplexed on the com-
mon link. An arbiter is a sequential process that monitors the
flow of traffic at its position in the channel and either allows
packets to pass or discards them. Arbiters may also exchange
control packets, but they may not delay user packets. While
practical arbiters require some time to operate, we neglect that
here and assume that they operate instantaneously.

For the purposes of exposition, we assume that the terminals
transmit packets in the form of bursts comprising a siart
packet, zero or more data packets and an end packet. We
assume initially that the start and end packets are never lost, but
we relax this assumption where possible to obtain robust algo-
rithms. Each packet has a source field that identifies the termi-
nal from which it originated. We say that a burst is contending
if the originating terminal has transmitted the start packet, the
start packet has not yet been received by all the other terminals
and no arbiter has yet discarded the start packet. We say that a
burst is active if its start packet has been received by every
other terminal and its end packet has not yet been transmitted,
The set of active bursts at time ¢ is denoted by o(f) and the set
of contending bursts at time ¢ is denoted by y(¢). We say that a
burst is active at a node u, if the start packet of the burst has
been transmitted from u and the last packet of the burst to be
transmitted from u has not yet left u. We denote the set of
active bursts at « at time ¢ by £,(¢). We say that a burst is
received by a terminal u if both the start and end packets of the
burst are received,

Fig. 5 illustrates contention-based access arbitration. It shows
a simple sequence involving burst from a, 4, and b. In the
figure, arbiters are shown as circles with a cross and the
numbers labeling the links give the link delays. The number of
transmitters that are allowed to transmit simultaneously is one.
The notation S,(¢) indicates a start packet from & passing a
given point in the channel at time 7. Similarly, D, (7) indicates a
data packet from & passing a given point and E(¢), an end
packet from a. The sequence starts with a burst sent from a,
which starts to propagate through the channel. Shortly after, a
burst starts from o and the bursts from & and d cross on the
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Fig. 5. Example of contention-type access arbitration.

link joining the two internal nodes. Note that the burst from a
wins the contention and continues to propagate, while the burst
from 4 is not allowed to propagate beyond the central link.
After the burst from @ completes, another burst is started from
b and propagates through the channel without contention.

We can now list the defining properties for an access arbitra-
tion algorithm allowing up to X concurrent bursts.

P, If a packet is transmitted by a terminal u at time t, it
is delivered to terminal v # u by time ¢ + &(u, v) or
not at all.

P, If a terminal v does not receive a packet P because an
arbiter discarded it, it will not receive any packets that
are part of the burst containing p and are transmitted
after p.

P; Acall times ¢, |a(s)} < k and | BLO| = Kk for all
nodes u.

Py If no terminal transmits any packet after time ¢, then
| a(z + A)| = min {k, | a(r)| + |¥()[}.

P; If the start packet of a burst transmitted by u is
delivered to every terminal in N, — {u}, then the
burst is received by every terminal.

We also expect access arbitration algorithms to be fair in the
sense that they not favor some terminals at the expense of
others.

Properties P,-P; have some useful consequences if all bursts
have a duration of at least 2A. In this case, if a terminal x starts
a burst and during the period (¢, ¢ + 2A], there is no time when
k burst are arriving, then the transmitted bursts is received by
all other terminals. To see this, suppose that some terminal fails
to receive the burst and let ¢, be a time at which some arbiter
discards the start packet of the burst (this must occur at some
time by Ps). By P|, <t <1+ A and by P, we must have
B.(t) = k. Since u is propagating & burst at time ¢, x must be
receiving k bursts at time f + 8(u, x). Also, if there is some
time in the interval [#, ¢ + 2A] interval when k bursts are
arriving, the outgoing burst is not received completely by any
other terminal. This follows since the arbiter on the access link
to x must have reached a decision not to propagate the burst
from x and so (by P,) will not propagate the remaining packets
in the burst. Thus, either the burst is completely received by
everyone, or it is received by no one; moreover, the transmitting
terminal can determine which is the case, allowing the possibil-
ity of retransmission at a later time, if appropriate.

A. A Distributed Access Arbitration Algorithm

The first access arbitration algorithm we present allows just a
single active transmitter. Extension to multiple transmitters,
while possible, is complicated. The key idea underlying the
algorithm is that contention between two competing bursts can
be resolved at that point in the channel where the two burst
meet. This requires the cooperation of the pair of arbiters at
opposite ends of the link where the bursts meet, or of the
arbiters at the node where they meet. The arbiters that are not at
the meeting point can respond in a passive way; they simply
allow a later burst to preempt an earlier one that is not yet
finished, since the later burst must be the one chosen by the
arbiters that were at the meeting point. This idea is illustrated in
Fig. 5. The bursts from & and d contend on the central link with
d being blocked at that point. When the burst from a arrives at
the link incident to ¢, the arbiters can allow it to preempt the
burst from d, because it can then be inferred that a contention
has taken place, with the burst from a winning. Most often, the
start packets of bursts cross on some link and the arbiters at
opposite ends of the link must resolve the contention. The
winner resulting from a contention alternates between the two
link directions. This requires a simple hand-shake protocol
between the arbiters, so that they both properly recognize a
contention event and respond consistently. It is also possible for
contending start packets to arrive simultaneously at a node. To
resolve the contention at this point, we add two additional
constraints on the operation of the node. First, we require that
start packets sent to a node from an arbiter be sent to all arbiters
at the node, including the arbiter that first sent it. This serves as
an acknowledgment packet for that arbiter. We also require that
the order in which start packets from a node to an arbiter are
processed, be the same for all arbiters at the node. In a practical
system, this implies that the node arbitrarily serialize start
packets that arrive at about the same time and deliver them in the
same order to all arbiters.

We now describe the arbiters used by the internal nodes.
These can be described as finite state machines with three major
states, stable, in_burst and out_burst; in_burst is a transitory
state, which the arbiter enters upon receiving a start packet from
the link. The start packet is sent to the node and when the node
returns the packet as an acknowledgment, the arbiter goes to the
stable state. Similarly the arbiter enters out_burst upon receiv-
ing a start packet from the node. The packet is sent to the link
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Fig. 6. Transition diagram for internal arbiter.

do linkport?p —relay(p linkport.nodepors)
| nodepori?p —~srelay(p nodeport linkporty,
od;

procedure relay(packet p, port from, port 10)
(1)}  ifp.type {data.end) » p. source=current_trans—»
wlip;
(2) [ state=stable s p. typ=start  from=linkport—
cltrrent_frans = p. source; nodeport'p;
linkporlackp, state = in_burst;
(3) | state=stable s p. typ=start  fromr=nodeport—
current_trans =p. source: linkport'p,
pending :=1; state :=out_burst;
&) | state=in_burst » p. typ=start s from=linkport—
current_trans ;= p.source; nodeporilp,
linkport\ackp,
(5) | stare=in_burst 1 p. typ=start » p. source=currens_trans + from=nodepori—
State =stable;
(6) | stare=out_burst » p. typ=start » from=nodepori—
curreni_trans = p. source; linkpori'p . pending :=pending+1;
(1) | stare=out_burst « p. typ=siart s from=linkport « pending » 1
myturn =—myturn; pending :=pending—1;
(8) | state=out_burst s p. typ=start s from=linkpor: + pending=1 s myturn —
myturn = false; siare := stable;
® | t_burst « p. typ U from=linkport « pending=1 1 = myturn —
current_trans = p. source; nodeporr'p;
myturn :=lrue; siate ;=in_burst;
| state=out_barst s p. typ=ack » from=linkport s pending > 1—
pending :=pending-1,
| state=put_burst + p. typ=ack » from=linkpor: s pending=1—
state = stable;

(10)
an
end: '

Fig. 7. Program for internal arbiter of Algorithm 3.1.

and in the simplest case, when an acknowledgment is received
from the far end of the link, the arbiter enters the stable state.

The arbiters contain several supplementary variables. The
variable current_trans identifies the terminal whose burst is
currently active at the arbiter. The variable my_turn is used to
resolve contention when two start packets cross on a link in
opposite directions. The arbiters at opposite ends of each link
initialize these variables to complementary values to ensure
consistent contention resolution. Each arbiter also has a variable
pending, which counts the number of start packets that have
been sent to /inkport, but not acknowledged (either implicitly or
explicitly). Finaily, each arbiter has a packet ackp, which is just
a packet whose type field is set to ack.

The most subtle part of the algorithm is the part that deals
with contention resolution across a link. The important thing
here is that both arbiters recognize when start packets have
crossed on the link (we call this a contention event). This can be
tricky, since an arbiter may send several start packets before
receiving an indication that any of the packets was received. The
key to recognizing a contention event is sorne form of acknowl-
edgment. It turns out that one need not acknowledge every start
packet, only the ones that are not involved in contention events.
A transition diagram for the arbiter is shown in Fig. 6 and a
program defining the detailed logic in Fig. 7. The numbers
labeling the guards in Fig. 7 correspond to the numbers labeling
the arcs in Fig. 6. Notice that the algorithm does nothing when
stale = in_burst, p.fyp = start, p.source # curreni_trans
and from = nodeport. This case occurs when two or more
bursts arrive at a node at about the same time. The burst that
wins the contention is the one whose start packet exits the node
last.

We use a slightly different arbiter for the terminals. The
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Fig. 8. Transition diagram for terminal arbiter.

do linkport?p —telay(p linkport .nodeport)
| nodeport?p —relay(p nodeport linkport),
od;

procedure relay{packet p, port from, port o)
(1}  if p. typ=data » p. source=current_trans—»
oY
(2} | p.typ=end . p. source=current_irans—
tolp: current_trans=null;
(3} | state=stable « p. typ=start » from=iinkport—
current_trans := p. source; nodeport'p | linkporitackp,
(4) | state=stable s p. typ=start s from=nodeport » current_irans=null —
current_irans = p, source; linkport'p ;
pending :=1; stare := out_burst;
(5) | state=out_burst + p. typ=start » from=linkport s pending>1—
myturn ;== mylurn; pending = pending—1:
(6) | stare=out_burst + p, typ=start « from=linkport s pending=1 s myturn —
myturn =false; siare = stable:
(7 | stare=out_burst s p. typ=start « from=linkport s pending=1 s —myturn —
current_trans := p. source; nodeport'p;
mywrn =[rue; state ;= stable;
(8) | stme=put_burst + p. typ=ack » from=linkport » pending>1=—>
pending :=pending-1;
9) | stale=out_burst + p. typ=ack « from=linkport » pending=1—
stare = stable;
fi;
end:
Fig. 9. Program for terminal arbiter.

terminal arbiter does not allow the terminal to start a burst if
there is another burst already in progress, Since the terminal has
only one incident link (and hence one arbiter), there is also no
need to resolve contention among bursts arriving simultaneously
at the terminal. Consequently, the arbiter can be slightly sim-
pler, having only one transitory state, out_burst. A transition
diagram for the arbiter is given in Fig. 8 and a program in Fig.
9. We refer to the algorithm implemented by the two arbiters
Just described as Algorithm 3.1. Fig. 10 illustrates the operation
of Algorithm 3.1. The figure uses the same notation introduced
carlier with a few additions. First, the notation A ,(¢) indicates
an acknowledgment packet belonging to the burst with source x
passing a given point in the channel at time f. The asterisks at
one end of each link means that the my_turn variable belonging
to the arbiter at the marked end of the link is initially true. The
labels inside the internal nodes indicate the timing and sequence
of events at those nodes. The sequence shown begins with a start
packet sent by terminal b at time 0; this is received at the
internal node on the left where it is replicated and sent cut the
other two incident links. It is also acknowledged on the link back
to b. As the start packet crosses the link to terminal &, it passes
a start packet coming from @. The start packet from & wins the
contention on the link and consequently, propagates through the
channel. At the internal node on the right side it contends with
another start packet coming from ¢ and loses the contention,
allowing that start packet to propagate.

We note without proof that Algorithm 3.1 satisfies properties
P,—P;. P, is satisfied since packets are never delayed by the
arbiters. Property P, is satisfied since the nodes transmit only
well-formed bursts and the arbiters propagate only packets whose
source field matches the variable current trans. Property P, is
satisfied (with & = 1), since only packets with source field equal
to current_trans are propagated. Property P, is satisfied be-
cause if no terminal transmits after time ¢, any terminal active at
time ¢ will still be active at 7 + A, and if no terminal is active at
time #, one of the set of contending terminals at time ¢ (if any)
will be active at ¢ + A, since the arbiters always make consis-
tent decisions.
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Fig. 11. Serializing start packets.

We close with a discussion of some of the basic assumptions
made in this section and their implications for a practical realiza-
tion of Algorithm 3.1. We first address the question of delays.
We have assumed, for simplicity of description, that link delays
are fixed and node delays are zero. Neither of these properties is
essential for a practical algorithm. We do require that links
process packets sequentially (that is, one packet cannot pass
another on a link). We also require that all packets arriving at a
node on a particular link and leaving on another, leave in the
same sequence in which they arrived, and in the case of start
packets, that every arbiter ‘‘see”” start packets coming out of the
node in the same sequence. This last property, can be imple-
mented without difficulty. In a typical network, the node is
implemented as a high speed packet switching fabric (see [6], for
example). The start packets can be serialized by first sending
them to a dedicated seriafizer port on the switch fabric, which
is fed back and then broadcast to all ports in the channel. This is
illustrated in Fig. 11. So long as the total volume of start packets
is not too large, this solution can be effective.

We have also assumed that start, end and acknowledgment
packets can be reliably transmitted. This is essential for correct
operation and to maintain the synchronization of the state infor-
mation at the opposite ends of each of the links. This reliance on
perfect transmission and synchronization makes the algorithm
rather fragile. A practical version would have to incorporate
additional mechanisms to allow detection of and recovery from
synchronization loss. Such additions would probably preclude a
simple hardware implementation.

The intricacy of Algorithm 3.1 suggests that some simplifica-
tion might be achieved by having a single arbiter per link rather
than requiring two. Unfortunately, this observation is mistaken.
Our requirement that one of a set of contending bursts eventually
get access (expressed formally in P,), requires that different
arbiters in the connection make consistent decisions concerning
any given set of bursts. If there were a single arbiter per link,
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Example of operation of Algorithm 3.1.

that arbiter would still have to make consistent decisions with the
arbiters on the links adjacent to it. This is no easier (and possibly
more difficult) than the task faced by an arbiter pair on each
link. Moreover, with an arbiter pair we can exploit the small
time delay through the node to simplify arbitration at the node,
limiting the more complex arbitration to the link where each
arbiter need be concerned with only one other arbiter.

B. A Transparent Algorithm

The algorithms considered up to now all incorporate explicit
control packets to coordinate the access arbitration. As we have
seen, this leads to a number of complications since the operation
of these algorithms depends criticaily on reliable transmission of
control packets. In this section, we modify the algorithm of the
previous section in three ways. First, we eliminate the use of
explicit control packets and instead rely on contention among
data packets. This provides a transparency that makes the algo-
rithm simpler to use and eliminates (in part) the need for
perfectly reliable transmission of control packets. The second
change involves the method used to pick a winner, when two
bursts contend across a link. The algorithm considered here,
uses a fixed priority scheme that sacrifices fairness for the sake
of simplicity. These changes make possible one final simplifica-
tion, involving the arbitration method used to resolve contention
at a node.

The algorithm (called Algorithm 3.2) treats the channel as a
directed tree with one particular node designated as root. All
links then connect a parent node to a child node, with parents
having priority. What this means is that if two nodes start to
transmit at about the same time, the node whose packet first
reaches the nearest common ancestor of the two nodes is given
priority. Once a burst reaches the root of the connection, it is
guaranteed to be successful, since the root is 2 common ancestor
of all the nodes. While this scheme favors nodes that are close to
the root, it appears to allow higher throughput than the fair
scheme and is much simpler to implement. In the following, we
describe the single transmitter version, but in this case, the
extension to multiple transmitters is straightforward.

Two different types of arbiters are required for the algorithm.
For every link, the arbiter nearest the root gives priority to
Packets coming from the node and the arbiter furthest from the
root gives priority to packets coming from the link. We refer to
these two arbiters as near-end and Jar-end arbiters, respec-
tively.

The state diagram of a near-end arbiter is given in Fig. 12,
and the corresponding program is in Fig. 13. The arbiter has
three states: free, up, and down. When in the free state, there is
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Fig. 12. Transition diagram for near-end arbiter.

do finkport?p —relay(p linkport)

| nodepor1?p —relay(p nodeporty.
| timeout —relay(p timeout ),
od;

procedure retay(packet p. port from)
(1) il state=free » from=linkport—
p.lno '=1no; nodeportip;
reset (timer ), state =up;
(2) | stare={ree « from=nodeport—
linkporttp; reset (timer ). staie = down
(3) | state=up + from=linkport—
nodepori'p ; reset (Himer);

@) | state=up s from=timeout —
staze = free;

(5) | state=up »from=nodeport s p.ing <ino =
linkport!p; reset (timer); staie = down

© | down + fr depori—
linkport!p; reset (limer);

o down » from=ti -
stare = free;

end;

Fig. 13. Program for near-end arbiter

no active burst, when in the up state, there is an active burst
coming from the link and when in the down state, there is an
active burst coming from the node. When in the down state,
packets received from the link are discarded. When in the up
state, packets received from the node can preempt the currently
active burst and cause a transition to the down state if the burst
comes from a link whose link number is smaller than the number
of the arbiter’s link (identified by the variable /no). The arbiter
on the link connecting to the node’s parent (which is a far-end
arbiter) always puts a link number of 0 in its packets, allowing it
to preempt bursts from other links., The elimination of explicit
control packets requires that some implicit mechanism be used to
define the end of a burst. We adopt a simple timeout mechanism
for this purpose. In the near end arbiter, the timeout causes a
transition from either the up or down states back to the free
state. The timer is reset whenever a packet is sent. The state
diagram of a far-end arbiter is given in Fig. 14, and the
corresponding program in Fig. 15. In this case, there are just
two states: up and down. A packet received from the link
always causes a transition from up to down. If the timeout
expires, the link reverts to the up state.

The algorithm provides the best performance if the root node
is as close as possible to the geographical center of the connec-
tion. We close with a brief sketch of an efficient distributed
algorithm for finding the center. Let u be a node with neighbors
v,t .0y, (d22). Let x; be the length of a longest path
starting from « and passing through v;. Let y; be the length of a
longest path starting from v, that does not pass through u. Let
y* be the largest of the y,; (for simplicity, assume it is unique),
let x¥ and x¥ be the largest two of the x; and let v* be the
neighbor on the path of length x¥. We note that assuming all
links have strictly positive delay, 2 y* < x} + x¥ implies that u
is on the longest path (the diameter) of the tree and there must be
some # on the diameter that satisfies this inequality. Also, if u
is on the diameter than x¥ < x¥ + &(u, v*)if and only if & is a
center node. Note that there may be two center nodes.

Thus, we can identify the center nodes of the tree if cach node
can learn the values of the x; and ;. This, however, is easy to

®

Fig. 14, Transition diagram for far-end arbiter,

procedure relay(packet p, port from)

(1)  if state=up + frome=nodeport—
linkpore!p

(2) | state=up s from=linkport—
nodeportlp ; state :=down;

(3) | state=down s from=linkpori—
p.ino =0; nodeport!p: reset (timer);

4) | state=down s from=timeout —
state = up;

fi;
end;
Fig. 15. Program for far-end arbiter.

do, so long as each node knows the delay across each of its
incident links. The algorithm is injtiated by the terminal nodes,
each of which simply sends a packet to its neighbor. The packet
contains a field, which is used to carry a delay estimate and the
terminals initialize this field to zero. When an internal node u
receives a packet from a neighbor v;, the delay value in the
packet is equal to y;. The node computes x; by adding &(u, v,).
Once u has received messages from d — 1 of its neighbors, it
sends a packet to the remaining neighbor, containing the largest
¥; value computed so far. Later, when it receives a packet from
the last neighbor, it sends a packet to every other neighbor v;
containing the largest value in {y," -, ¥4} — {¥;}. The algo-
rithm requires exactly 2(n — 1) messages to compute the x; and
¥; for all the nodes where n is the number of nodes in the
channel. By the remarks in the previous paragraph, once this is
done, the center nodes can identify themselves. An arbitrary
tie-breaking rule can be used to pick a unique center node and
for all other nodes u, the neighbor v; for which x; is maximum
is on the path from u to the center.

C. Mulitiple Transmitters and Priorities

The next algorithm we consider offers a simple implementa-
tion supporting multiple transmitters, plus the option of priori-
tized access. It can be implemented with explicit start and end
packets or without them. For simplicity we describe the version
with start and end packets and assume initially that the start and
end packets are transmitted reliably. At the end of the section we
point out how the requirement for reliable transmission of start
and end packets can be eliminated. The maximum number of
simultaneous transmitters is k. We provide priorities for each
burst by including a priority field in each start packet. Once a
burst becomes active, it can be interrupted only by a higher
priority burst. If two bursts of the same priority contend with
one another, an arbitrary but fair decision is made to select the
winner,

We let w(b) denote the priority of a burst b. Priorities have
nonnegative integer values with smaller numbers corresponding
to ‘‘higher priority.”” We define a partial ordering on bursts,
which we denote by the symbol < ; if b, and b, are bursts,
then b, <, b, if w(b)) < w(b;) or w(b)) = n(b,) and b €
aft) and b, ¢ a(t). We define a prioritized access arbitration
algorithm by properties P;-P, given earlier together with one
new property:

P; If no terminal transmits any packet after time 7, then
given any two bursts &,, byea(f) U y(#), b, éa(t +
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do linkport?p —srelay(p ,nodepors)
| nodeport?p —relay(p linkport);
od;

procedure relay(packet p, port o)
if p. typ=start + |B j<k —
w'p; B :=BU(@.priop. rand,p. source);
| p.typ=data+(**p.source)e B —
to'p;
| p.typ=end s (* * p source ) e B~
olp; B :=B-{(**p.source)};
| b.1yp=start 4 |B <k —
x =maxB; y :=(p.priop. rand,p. source);
iy<x =B =Bufy}-ix); tolp; fi;
end;
Fig. 16. Program for internal arbiter of Algorithm 3.3.

As indicated above, start packets now must have a priority
field in addition to the source field that is part of every packet.
In addition, we require a third field called rand to ensure fair
contention resolution; this field if filled with a randomly selected
integer by the terminal arbiter when a start packet is transmitted
from a node.

We now describe an algorithm that implements prioritized
access, which we refer to as Algorithm 3.3. The basic idea is
to use the natural numeric ordering on the triples
(prio, rand, source) to resolve contention in a consistent way.
There are two arbiter types, internal arbiters at all the internal
nodes and ferminal arbiters at all the terminals. Each internal
arbiter monitors the traffic passing through it and if more than k
bursts attempt to pass through it at once, it will cease propagat-
ing the burst with the largest triple. Since the priority field is
treated as most significant, high priority burst are treated prefer-
entially; the random field provides fair treatment of bursts at the
same priority level and the source field eliminates the possibility
of ties, ensuring consistent contention resolution at all arbiters.

Each internal arbiter maintains a set 8 containing triples; one
for every source that is currently authorized to transmit. Each
triple includes the values ( prio, rand, source) transmitted in the
start packet initiating the burst. The arbiter monitors the bursts
passing through it, updates the set B as necessary and discards
packets from sources that are not currently authorized to trans-
mit. A program implementing such an arbiter is given in Fig,
16. In this program, * is used to indicate a “‘don’t care” field.
Terminal arbiters are slightly different, in that they must prevent
a terminal from preempting another burst of the same priority. A
program impiementing a terminal arbiter appears in Fig. 17. We
note without proof that the algorithm satisfies properties P,-P,
and Ps. P, is satisfied since packets are never delayed by the
arbiters. Property P, is satisfied since the nodes transmit only
well-formed bursts and the arbiters propagate only packets be-
longing to bursts in B. Property P, is satisfied since IB| =k
at all times and the packet is propagated only if it belongs to a
burst in B. Property P, is satisfied since the arbiters on a link
always make consistent choices and never discard contending
bursts unless already propagating k bursts. Property P; is
satisfied because the arbiters preempt a burst if and only if a
higher priority burst must be served.

Algorithm 3.3 can be efficiently implemented in a practical
multipoint communication network. The packet processors that
implement the arbiters must maintain a copy of the set B for
every channel passing through them. When a packet is received,
the appropriate set must be retrieved from memory, used to
make decisions and possibly updated, then written back to
memory. The main hardware cost is the memory, which amounts
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do linkport?p —relay(p linkport ,nodeport)
| nodeport?p —velay(p ,nodeport linkport);

od;
procedure relay(packet p, port from, port to)
if p.typ=start B |<k —
olp; B =B {{p.prio,p.randp. source};
| p-typ=data « (** p.source) € B—

tolp,;

| p.typ=end s (** p.source ) e B—
to'p; B :=B—{(**p.source));

[ p-typ=start  |B =k » from=linkport—
X =max B; y :=(p.prio,p. rand,p. source);
if y<x =8 =BUy)-(x); r0'p; §i;

| p. typ=start .« [B j=k 1 from=nodepori—
(x.**)=max 8;
if p.prio<x—8 =B Uy )—{x}; t10'p; fi;

end;
Fig. 17.  Program for terminal arbiter of Algorithm 3.3.

to roughly from 5 to 10k bytes per channel (where & is the
number of simultaneous transmitters).

As with Algorithm 3.1, this algorithm requires reliable trans-
mission of start and end packets. However, the consequences of
packet loss are less severe; a lost start packet lead to a lost burst,
a lost end packet leads to a temporary loss of a portion of the
channel bandwidth. We can reduce the probability of these
events by simply transmitting several start and end packets, to
avoid packet loss due to link errors, and giving control packets
higher priority to avoid their loss due to buffer overflows.
Another approach is to eliminate explicit control packets alto-
gether. In this scheme, we include the prio and rand values in
all data packets and use a timeout in place of an explicit end
packet. The arbiters extend the stored records, to incilude the
time that the most recent packet was received from that source.
When a packet is handled the arbiter first scans B, throwing out
any entries that are too old. It then proceeds in the normal way
to handle the burst.

IV. ConcLusioN

In this paper, we have introduced the problem of access
arbitration in tree-structured communication channels with long
link delays. This is an interesting problem and one of some
importance for communication networks supporting general mul-
tipoint communication. We have introduced two general ap-
proaches to solving the problem, and described five specific
algorithms. We have omitted detailed discussions of correctness
and performance, as our primary purpose is to introduce the
problem and survey several candidate solutions. We close with a
few comments on the relative merits of these solutions,

The token-based algorithms have a built-in latency associated
with token circulation that limits their throughput. This is most
problematical for traffic comsisting of short bursts. The con-
tention-based algorithms avoid this Iatency, but it’s not entirely
clear if this translates into a real difference in throughput.

All but Algorithm 3.1 can be implemented in a practical way,
The critical dependence of Algorithm 3.1 on perfect transmis-
sion of control packets probably makes it unworkable in most
practical settings. Algorithms 2.1, 3.2, and 3.3 admit simple
hardware implementations, while 2.2 is most reasonably imnple-
mented using a programmable processor; while such an imple-
mentation is workable, it would be more costly and have limited
throughput. There is a wide variance in the sensitivity of the
various algorithms to the reliability of the underlying packet
transmission. Algorithm 3.1 is the most delicate while 2.1 and
3.2 are the most robust, operating effectively even in the pres-
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ence of fairly high packet loss rates. Algorithm 3.3, while not
inherently robust can be made robust by transmission of muitiple
control packets or incorporation of control information in data
packets along with introduction of timeouts. Finally, we note
that of the contention-based algorithms, only 3.3 offers the full
functionality of multiple transmitters, although 3.2 can be ex-
tended to accommodate this.

Based on this preliminary assessment, we conclude that Algo-
rithms 2.1, 3.2, and 3.3 show the most promise and bear further
study. There are several possible directions for future research.
Perhaps the most important is to formulate a reasonable perfor-
mance model to use in assessing the throughput and delay
characteristics of the token passing approach versus the con-
tention-based approach. In the case of token passing, one must
consider alternative token circulation strategies. In the case of
contention-based algorithms, we need to distinguish different
kinds of throughput; one that counts only bursts received by all
terminals and another that gives ‘‘partial credit’” to bursts
received by some subset of the terminals. We note that in
general, the most interesting performance questions arise in the
context of short bursts.
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