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The Advanced Networks Group

The Advanced Networks Group of the
Computer and Communications Research
Center is concerned with new communication
technologies that can support a wide range of
different communication applications in the
context of large public networks and private.
Fast packet or ATM networks promise a far
more flexible communications infrastructure
than is currently available. The Advanced
Networks Group is in particular concerned with
systems that are capable of supporting
ubiquitous multicast communication, suitable
for applications such as video distribution,
voice/video teleconferencing and LAN
interconnection. We have developed an
experimental switching system supporting links
operating at 100 Mb/s and have devised
economical switch architectures that can
support link speeds in excess of a gigabit per
second and having total throughput exceeding a
terabit per second.

Our work spans a variety of particular topics
including switching system design and analysis,
performance evaluation of switching systems
and networks, multicast connection
management, algorithms for multicast routing,
buffer and bandwidth management in the
presence of bursty traffic, internetworking of
high speed networks, design of high speed
transport protocols, multimedia applications
and image and video compression. The design
of computing platforms that are better suited
for multi-media applications is a major topic of
current interest, OQur research program includes
a strong experimental component, which
includes experimental switching platforms as
well as protocol and application software
implementatijons. The experimental work is a
crucial element of the overall research program,
exposing detailed issues not apparent in higher
level studies and providing a strong focus for
the other activities.
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Executive Summary

1992 has been another busy year for the
Advanced Networks Group with good progress
in several different areas. During the past year,
ANG has produced over ten papers in refereed
Jjournal and conference proceedings, over fifteen
university technical reports, three MS theses
and one doctoral thesis. Washington University
presented four papers at Infocom in 1992, more
than any other single organization.

Daring this year, Paul Min has joined ANG.
Paul is a professor of electrical engineering and
has research activities in several areas including
adaptive non-hierarchical routing, SONET
network design and switching system analysis.
His graduate students are Alex Chandra,
Anurag Maunder, Ammar Rayes, Hossein Saidi
and Peter Yan. Also, joining the group was
Xiaolin Bi. Fengmin Gong completed his
doctoral degree and accepted a research
position at MCNC in North Carolina. Deepak
Bharghava, Millind Buddhikot, Chuck Cranor,
Zubin Dittia and Christos Papadopoulos all
completed MS degrees this year. While Deepak
has left for a position at BARRA, a software
development company in Berkely, CA, the
others will all be staying to complete doctoral
degrees.

This has been an exciting year, as some of
ANG’s early work is now finding commercial
application. SynOptics Communications
announced in October its ongoing R&D
relationship with ANG and Washington
University’s Applied Research Laboratory. This
collaboration has led to a set of six chips that
implement the broadcast packet switch
architecture and are expected to be used in
commercial products in the near future. The
fall InterOp trade show featured several
announcements of ATM products for local
networks and many more are expected in the
spring InterOp. Washington University and
Ascom Timeplex also announced a new R&D
relationship involving both ANG and ARL.
This is a crucial next step in Washington

University’s plans to create an ATM campus
network and we look forward to working with
Ascom Timeplex over the next several years.
ARL demonstrated our prototype switch, along
with a variety of video and image applications
at the Radiological Society of North America’s
annual conference and trade show in Chicago
this year, attracting a lot of favorable attention.
We have had dozens of groups visiting
Washington University to see our
demonstration network in action and the work
has gotten a lot of notice in the trade press,
During the last year, the ATM Forum has
developed into a crucial standards body for the
emerging local ATM market. ARL has played a
leading role in helping the Forum develop
multicast signaling standards that will take full
advantage of ATM’s ability to support flexible
multicast communication.

Our plans for Project Zeus continue to develop.
The Computer Science Department has been
awarded a grant of $250,000 to create a
multimedia ATM network in the department.
While this falls short of the original request, it
should still allow us to provide ATM .
connectivity to every faculty member’s desktop
workstation, a step that we feel is crucial to
stimulating the development of novel,
multimedia applications. It will also permit the
University’s campus computing organization to
develop the necessary expertise to deploy,
operate and maintain local ATM networks
across the campus. Fiber is being put in place
on both campuses to link various groups into
the developing Zeus network. The departments
of Radiology, Farth and Planetary Sciences,
Biology and Architecture will be among the
first to join Computer Science in the Zeus
network.

The Advanced Networks Group’s research
agenda continues to include (1) design and
analysis of switching systems, (2)
internetworking and end-to-end protocol issues
and (3) network performance and traffic



engineering. We are now also putting a lot of
attention into multimedia applications and the
design of computing platforms that incorporate
cell switching concepts internally, in order to
facilitate handling of real-time applications.
The short articles that follow cover a variety of
specific topics. More detailed accounts of these
activities appear in the appendix.

Our Industrial Partaership Program currently
has eight members. Acom Timeplex joined in
September and Goldstar Information and
Communications, one of Korea’s most
important electronics companies joined at the
end of 1992. We welcome them both and look
forward to a productive relationship. The
annual funding provided by the IPP is now
$400,000 and our NSF funding is about
$150,000. While our funding continues to be
adequate, the need to develop new projects and
funding sources continues. We have, together
with the Applied Research Laboratory, applied
for a planning grant from the Corporation for
National Research Initiatives to develop a
detailed proposal for a gigabit testbed. In
addition, we have applied for a grant from the
Defense Advanced Research Projects Agency
for gigabit technology development. While both
of these are still pending, they have survived
the initial screening stage giving us some cause
for optimism.



Refinements to the Broadcast Packet Switch

Jonathan Turner

During the last year we have made several
refinements to the broadcast packet switch
architecture in order to improve its
performance and cost-effectiveness in large
configurations. One of these refinements centers
around the possibility of congestion arising in a
routing network due to a poor assignment of
multicast copies to Broadcast Translation
Circuits. This s illustrated in Figure 1, which
shows a broadcast packet switch constructed
with four port switch elements and carrying one
point-to-point connection from input 5 to .
output 3 with a data rate equal to 48% of the
internal switch data rate, and one multicast
connection from input 11 to outputs 2,5,7,12
and 15 with a data rate of 64% of the switch
data rate. The numbers adjacent to selected
links in the networks show the load on those
links. Note that in the first stage of the copy
network, traffic distribution spreads the load as
evenly as possible. The numbers shown within
the Broadcast Translation Circuits (BTC), at
the center of the figure, give the destinations for
the multicast cells passing through each specific
BTC. A different assignment of destinations to
BTCs can result in very different loading in the
routing network. In particular, if the cells for
outputs 15 and 5 are interchanged, some of the
routing network link loads increase from 32% to
64%. There are connection configurations that
can make the load on the internal links equal to
+/n times the load on the external links, where
n is the size of the networks.

In the origiral architecture, this link
overloading was avoided by including
distribution stages in the routing network to
spread the traffic evenly. While this approach
solves the problem, it increases the cost of the
routing network substantially. An alternative
approach is to assign the copies of cells to
multicast connections intelligently, in order to
avoid internal link overloading. We have
developed an algorithm for assigning copies
which relies on certain properties of the routing

network’s topology to minimize traffic
imbalances within the routing network. We
describe it here for a connection with fanout f
equal to a power of two, although it can be
readily extended to arbitrary fanouts.

First we note that for any given copy of a
multicast cell, the alternate paths that the copy
can take on its way to the output pass through
BTCs that are n/f apart from one another.
This means that each individual copy is
distributed in the ideal fashion. The distinct
copies of a particular original multicast cell
appear at f consecutive BTCs. The destination
assigniment algorithm seeks to maintain disjoint
paths between these different copies to the
largest extent possible. This can be done as
follows.

 Let R(z,j) be the number obtained by
representing z as a base d number with j
digits, then reversing the digits (here, d is
the dimension of the switches used in the
routing network).

¢ Let yo,...,ys_1 be the routing network
outputs that are to receive copies of the
multicast cell, where y; < y;4y for all 4.

¢ Within each group of f BTCs where the
different copies of a multicast original can

appear, assign y; to BTC R(3, [log, f1).

We can show that for d = 2 and fanouts that
are powers of 2, this algorithm maintains a load
of < 28 on each routing network link and
conjecture that in general, the load is bounded
by 8 + 6, where 8 is the maximum load on the
external links supported by the switch and /8
is the fraction of the overall traffic due to
multicast traffic.

The second area we have sought improvements

in the broadcast packet switch architecture is in
reducing the amount of memory required in the
BTCs. In the original architecture, because the
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Figure 1: Loading in Broadcast Packet Switch

copy network distributes load when not
copying, copies of a small fanout connection can
appear at any copy network output and hence
require an entry in every BTC. If we route
copies of cells to a particular set of BTCs
instead of distributing them randomly, a given
connection consumes memory only in those
BTCs. This allows corresponding entries in
different BTCs to be used for different
connections.

Let o=1l< fi< fa<--< f, =n. Wesay a
connection belongs to fanout class ¢ if its fanout
exceeds f;_y but not f;. If the copy network
routes connections in class ¢ to a specified range
of f; outputs, a given broadcast channel
number can be used for n/ f; different class i
connections. If ¢ maximizes f;/(fi—; + 1), all
connections have fanout f;_y + 1 in the
worst-case. In this case, we can have

mn/(fi_1 + 1) different connections and we use
fi BTC entries for each one. To handle the
worst-case then, mn(f;/ f;~1) total entries are
enough. (In the original architecture, there is
only one class and we need mn?/2 BTC entries

to handle the worst-case situation.) If f;/ f;—; is
the same for all 7, then the number of classes is

108 £:/fi1) M-

Thus, we can cut the amount of memory needed
to 2mn, using lgn levels. Since, mn words are
required in any case to describe an arbitrary
collection of multicast connections mn total
destinations, this is approaching the optimum.
Unfortunately, fanout f connections now
require consecutive sets of BTCs with sufficient
unused bandwidth. To prevent blocking at the
BTCs, we need an additional speed advantage
proportional to the number of fanout classes.

The trade-off between the number of BTC
entries and the network complexity (resulting
from the increased speed advantage) is
illustrated for several examples in the following
table.

r | BTC entries | network complexi ty
1 O(mn?) O(nlog, n)
2 O(mn3/2) O(nlogyn)
Iglgn | O(mn!+1/16len) | O(n(log, n)(Iglgn))
lgn | O(mn) | O(n(logan)(ign))



For n = 219, Iglgn is 4 and n1/818" js 16.

In practice most multicast connections have
small fanout and we can get better performance
in practice by designing for this case. So how
much memory is needed to handle the ‘expected
case’ rather than the worst-case? To answer
this we need a probability distribution for the
frequency of connections with different fanouts.
There are two natural distributions that are
worth considering. First, assume that for any i,
the number of connections with fanout in the
interval [2¢=? 4 1,2f] is twice the number in the
interval [2¢ 4 1,2¢+1]. The justification for this
is that because the connections in the larger
fanout class use roughly twice the output
bandwidth of connections in the other class,
there is “only room” for half as many of them.

Because smalier fanouts are more common, we
can get better memory utilization by making
the boundaries defining the small fanout classes
closer together at the expense of wider spacing
for the larger fanout classes. For example, if
fanout classes are defined by the intervals

[22'_1 + 1,22'], we can handle the expected
case with O(mn) table entries and network
complexity of O(m(logn)(iglgn)).

Another fanout distribution is obtained by
assuming that each of the mn output VCIs
selects with equal probability from among the
mn input VCIs (where each input VCI can be
chosen mulitiple times). It’s straightforward to
show that under this assumption, when mn is
not too small, the expected number of
connections with fanout > Ig mn is less than 1.
Hence, two fanout classes with a boundary at
lg mn requires O(mnlogmn) BTC table entries
with a network complexity that is O(nlogn).
By going to more levels, we can reduce the
number of BTC entries required. In particular,
with lglglgmn levels we need O(mn) BTC
entries and network complexity

O(n(logn)(1glglg mn))
In practice, we expect switching networks to
support a few hundred ‘public service’

broadcast sources with large fanouts and the
remainder will be small. It seems likely that the

second of the fanout distributions described:
could be a good model for the small fanout
connections, suggesting that two fanout classes
are indeed sufficient. Under this assumption, it
can be shown that the worst-case load in the
copy network is at most 8 + &' + B, where 6/
is the fraction of the total traffic due to
multicast connections whose fanouts are not
powers of 2 and B is the maximum rate of any
connection. Multiplexing several copy network
outputs through a common BTC can improve
memory efficiency of small fanout connections
further, reducing the memory requirement. by
up to the multiplexing factor.



Advances in Multipoint Switching

Jonathan Turner and Ellen Witte Zegura

In [31], Jordan and Masson derived conditions
under which a Clos network is nonblocking for
multipoint circuit-switched connections. While
the resulting networks are asymptotically
cheaper (in terms of crosspoint count) than a
crossbar, they are generally too complex to be
of much practical interest. In [59], Yang and
Masson showed that the number of crosspoints
can be drastically reduced if one drops the
requirement that existing connections can be
augmented without rearrangement. Multipoint
networks that are nonblocking for new
connections, but may block when augmenting
existing connections, are called nearly
nonblocking [38]. Because augmentations can
always be handled by rearranging the affected
connection (without disturbing anything else),
nearly nonblocking networks can be of practical
value. The key idea that Yang and Masson use
to reduce the crosspoint count is to restrict the
branching of multipoint connections in the first
half of the network to prevent excessive early
branching from blocking new connection
requests.

We have generalized Yang and Masson’s result
to the multirate environment [58], in which
different connections can be multiplexed on a
switch’s internal data paths, so long as the total
data rate of the connections does not exceed
the internal data path speed. This allows Yang
and Masson’s ideas to be directly applied to
ATM switching systems being developed by
several companies, including NEC, Fujitsu and
France Telecom. In the process, we have
reformulated Yang and Masson’s proof to make
it more transparent and reveal the central role
played by an embedded set covering problem.

The key ideas can be understood by considering
the three stage case. To set up a new
connection from a given input z to a set of
outputs Y, one starts by identifying the middle
stage switches that are accessible from z (that
is, the paths between them and z have
sufficient unused bandwidth to accommodate

the new connection). For each of these middle
stage switches, we identify the set of accessible
third stage switches connected to outputsin Y.
To set up the connection, we need to select
middle stage switches whose sets of accessible
third stage switches cover the set of third stage

. switches with outputs in Y. To avoid excessive

branching in the first stage switch, we want to
do this using as few middle stage switches as
possible. When the Clos network has sufficient
expansion in the first and third stage switches,
each third stage switch is accessible from a
large number of second stage switches, making
it possible to find a suitable covering using a
simple greedy covering algorithm. It is shown
in [58] that the three stage Clos network with n
inputs and outputs, d X m crossbars in the first
stage and m X d crossbars in the last stage is
nearly nonblocking when

m > 222 10 + (/)

where f is a restriction on the fanout allowed in
the first stage switches and 1/8 is the speed
advantage of the network’s data paths, relative
to the external links. By selecting a value of f
to minimize the above expression, we can
reduce the requirement on m. Alternatively, if
we prefer to fix m we can rewrite the inequality
as

1B > 1+ 22(7 4 (n/ )

and select f to minimize the required speed
advantage. For example, with n = 256,

m =d =16, and f = 3 we find that a speed
advantage of 6.5 is sufficient, as opposed to 16
if we do not restrict the first stage fanout. The
result is easily extended to asymmetric
networks and with more difficulty to networks
with an arbitrary number of stages. See [58] for
details.

In [38], it was shown that a nearly nonblocking
network can also be constructed by cascading a
pair of Benes networks, with branching



restricted to the second of the two networks.
The resulting network requires the same speed
advantage as the component Bene# networks
require to be nonblocking for point-to-point
traffic. For example, a 256 port network
constructed from two three-stage Benes
networks with 16 port switches requires a speed
advantage of three. This network has five
stages, since we can combine the last stage of
the first Bene network and the first stage of
the second one. We have recently discovered
that we can eliminate one more stage from this
network, while maintaining the nearly
nonblocking property at the cost of some
increase in the required speed advantage. The
cost of the resulting network turns out to be
only slightly lower than the original, assumng
cost is proportional to speed advantage, but
could be advantageous in situations where the
number of stages required by the original
network is problematical.

To make the four stage network nearly
nonblocking, we need a speed advantage that is
large enough to ensure that from any input z,
there is some accessible second stage switch
from which all the fourth stage switches are
accessible. We call a second stage switch
heavily loaded if the total traffic on its output
ports exceeds (1 + €)3d where d = /7 is the
size of the switches and € is a constant to be
determined. Because the total traffic exiting all
the second stage switches is at most fn, the
number of heavily loaded switches is limited.
The network is nearly nonblocking if the speed
advantage is large enough to ensure that every
first stage switch can reach some lightly loaded
second stage switch and that every lightly
loaded second stage switch can reach all of the
fourth stage switches. If we restrict branching
of connections to the last three stages, this
occurs wher 1/8 > 3 + ¢ and

14+ €2 (1-8)/(1~2B). By combining these
inequalities and solving for 8 we find that a
speed advantage of 2/(1 — 1/1/5) = 3.62 is
enough to make the network nearly
nonblocking.

In the general case, a nearly nonblocking

network is constructed by cascading a delta
network and a Bene3 network with branching
occurring only in the Bene# network. For n
port networks constructed from d port switches,
the resulting network has 3k — 2 stages
(assuming we merge the last stage of the delta
network with the first stage of the Benes
network), where k = log; n. For comparison,
the nearly nonblocking Benes network with
fanout restriction requires 2k — 1 stages and the
pair of cascaded Benes networks requires 4k — 3
stages. The required speed advantage drops
with the number of stages but the 3k — 2 stage
network gives the lowest cost, assuming cost is
proportional to speed advantage.
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Analysis of Blocking in Multipoint Networks

Ellen Witte Zegura

Analysis of blocking probability in circuit
switching networks with point-to-point
connections has been studied for years and is
fairly well-understood. In many situations, a
simple model such as that proposed by Lee [34]
in 1955 is adequate. More precise results can be
obtained using an exact analysis such as the
one developed by Pippenger [46] for uniform
series-parallel networks. While these analyses
do not-capture dynamic traffic effects or the
impact of routing algorithms on blocking
probability, they are useful for understanding
the impact on blocking of various architectural
choices and for making comparisons among
competing configurations.

During the last year, we have formulated a
general model for analyzing blocking
probability in circuit switching networks that
allows us to derive approximate blocking
probabilities for series-parallel networks. The
analysis is exact for series networks (networks
like the delta network which have just one path
between any input and output), but is
approximate for the general series-parallel case.
This appears to be the first attempt to analyze
blocking probability for multipoint connections.

Figure 2 illustrates the series and parallel
operators for corstructing networks. The series
operator constructs a network Ny X N; from
two component networks and the parallel
operator constructs a network N; M N, M- N3
from three component networks. Many
practically interesting networks can be
constructed by repeated applications of the
series and parallel operators. Such networks are
called series-parallel networks.

We can determine the blocking probability in
series-parallel networks, by showing how, given
the blocking probability for the component
subnetworks, we can calculate the blocking
probability for networks using the series and
parallel operators. Pippenger [46) did this for
point-to-point connections. His “traffic model”

is based on two key assumptions; first, that
each output of the overall network is busy with
some fixed probability p and that these
probabilities are independent; second, that if a
component crossbar in the network has r busy
outputs, all possible ways that these can be
connected to the crossbar’s inputs are equally
likely. A consequence of these assumptions is
that the busy-idle status of two links in the
same stage of any uniform series-parallel
network are independent.

For multipoint connections, it is natural to
make essentially the same assumptions, but
now in each crossbhar, multiple outputs can be
connected to the same input. We think of each
busy output of a crossbar selecting at random
from among the crossbar’s inputs, without
regard to whether they have been previously
selected or not. Unfortunately, under these
assumptions the busy-idle status of two links in
the same stage are no longer independent of
one another. This can be shown by a simple
example. Consider a three stage Benes network
constructed from 2 X 2 crossbars and assume
that all the outputs are busy (p = 1). If one
input of a third stage switch is idle, then the
other must be busy so their status is clearly not
independent. Unfortunately, there appears no
way to capture the dependencies among links
short of a complete enumeration over the states
of the network, so we have proceeded to
approximate the blocking probability by
assuming that the states of different links in the
same stage are independent, then exploring the
effect of this assumption on the accuracy of the
resulting estimate by comparison with
simulation.

The analysis is similar in spirit to Pippenger’s
analysis for the point-to-point case, We show
how the series and parallel constructions affect
the blocking probability, giving a
straightforward recursive procedure for
computing blocking probability estimates. We
have also generalized the model to permit more
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Figure 3: Multipoint Blocking Probability in Beneg Networks

control over the way branching occurs in
networks. This involves the introduction of a
fanout function f(:). The fanout function
affects the way branching occurs at a crossbar.
We think of the crossbar’s busy outputs being
sequentially connected to inputs, selecting from
among the busy inputs with probability f(i),
where { is the number of busy inputs at the
time a selection is made. Selecting f(i) = i/d
gives the basic model described above, f(i) = 0
gives Pippenger’s model, and f(i) = ai/d for

0 < a < 1 gives a family of models with varying
amounts of branching.

We have evaluated the blocking analysis by
comparing it to simulation for Bene# networks
of various size. Some typical results are shown
in Figure 3. These results are for Benes
networks with 16 ports, constructed from
crossbars with d = 2 and d = 4. Networks with
small crossbars are particularly difficult, as the

independence assumption introduces the
greatest error in these cases. The left hand plot
shows the probability of blocking when
connecting to an idle input, the middle plot
shows the probability of blocking when
connecting to a busy input and the right hand
plot shows the probability of blocking when
connecting to an arbitrary input. We note that
the analysis tracks the simulation results
closely. The crossovers reflect the fact that the
approximations introduced by the independence
assumption are in some cases optimistic and in
other cases pessimistic.
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Improved Analysis of Shared Buffered Networks

Giusseppe Bianchi and Jonathan Turner

In a widely cited paper [30], Jenq describes a
method for analyzing the queueing behavior of
binary banyan networks with a single buffer at
each switch input. The method, while not
yielding closed form solutions, does permit the
efficient computation of the delay, throughput
and packet loss performance of a network.
Szymanski and Shaikh [53] extended Jenqg’s
method to switching systems constructed from
switches with an arbitrary number of inputs
and an arbitrary number of buffer slots.

Turner [56] developed a similar method which
can be applied to switching networks with
shared buffering. Recently, Pattavina and
Monterosso [39] developed a new approach
which is based on an exact model of a single
shared-buffer switch element. This model, while
more accurate is computationally intractable
for networks constructed from large switches.
We have recently developed a series of
improvements to Turner’s method which rival
the accuracy of Pattavina and Monterosso’s
method while maintaining the computational
effectiveness of Turner’s method.

The analysis is for delta networks (see [56])
constructed from switches with d input and
output ports. We use n to denote the number
of network inputs and outputs and let

k = loggn denote the number of stages in the
network. Each switch used to construct the
network is assumed to have a single shared
buffer with B buffer slots. Packets from ary
input can be placed in any available buffer slot
and packets can proceed from any buffer slot to
the desired output. Packets arriving at the
inputs to the network are assumed to be
assigned independent random output addresses.
We have obtained results for several different
methods of flow control; local and global grant
flow control as well as local and global
acknowledgement flow control.

Pattavina and Monterosso refer to Turner’s
method as the scalar method, since it

represents the state of a shared buffer switch,
by a single number giving the number of
packets that are stored in the switch’s buffer.
This leads to a computationally efficient model,
but does require the introduction of an
assumption concerning the distribution of
addresses of the stored packets. Pattavina and
Monterosso, on the other hand, maintain a
state vector that records the number of packets
addressed to each output, leading to a much a
larger state that precludes the application of
their method to networks constructed from
large switches (say larger than 4 x 4).

The scalar method of queueing analysis
computes the number of ocutputs for which a
switch has packets (called the active outputs)
using the assumption that if s packets are
stored in a switch’s buffer, that the outputs
those packets are to take are independent of one
another. To understand the implications of this
assumption, it’s helpful to compare the vector
and scalar methods for binary switches (d = 2).
Figure 4 shows the Markov chain corresponding
to the vector model of a two port switch, with
five buffer slots. In the illustration, a state (%, j)
represents a switch in which i packets are
destined for output 0 and j are destined for
output 1. In the scalar method, a state
corresponds to the sum s = i + j, so that the
states of the scalar method correspond to sets
of states in the vector method that lie along a
common diagonal, as shown in the figure.

If a switch is in state (%, j) (vector method)
where i or j but not both are equal to zero,
then there is one active output. We refer to
these as boundary states. The scalar method
calculates the probability of these boundary
states relative to the non-boundary states along
a given diagonal by assuming that the packet
destinations are independent. This can be
interpreted as assigning probabilites to the
states along a given diagonal according to a
binomial distribution. In particular, given that
there are s packets in a switch, the probability
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Figure 4: Comparison of Vector and Scalar Methods for Binary Switches

assigned to state (3,7) is (£)(1/2) (where
s=1+7).

Closer study reveals that the distribution of the
probabilites of states along a diagonal are more
closely approximated by a uniform distribution.
This makes intuitive sense if we consider the
steady-state situation for a heavily loaded
switch. In this case, one expects that the state
of the switch would move back and forth along
a diagonal as packets come and go. While there
would be some movement across diagonals as
well, the predominant movement would be
along a diagonal. Since there is equal
probability of moving in either direction along a
diagonal, one would expect the distribution
along a diagonal to be approximately uniform.
This reasoning leads to the uniform scalar
method in which, when determining the
number of active outputs that a switch has, we
assume that the set of states of the underlying
vector method corresponding to a given state of
the scalar method are equally likely.

The accuracy of the uniform scalar method
turns out to be only slightly better than that of
the original scalar method, although the
uniform method is generally conservative
whereas the original is generally optimistic.
However, the uniform assumption plays a role
in the more sophisticated methods we turn to
next. The first of these, called the
bidimensional method, expands the state of a

switch to include a second variable giving the
number of active outputs that the switch has.
One still must make an assumption regarding
packet destinations in order to compute the
state transition probabilities, but the resulting
method is highly accurate, albeit at a higher
computational cost.

The final method we have studied is called the
interval method. In this method, the state
consists of the number of packets in the buffer
together with an approximate representation of
the number of active outputs. More specifically,
we keep track of which of several disjoint
intervals contains the number of active outputs.
In the simplest case, there are just two intervals
and the method tracks whether the number of
active outputs is above or below a given
threshold. Surprisingly, this threshold method
can yield results that are competitive with the
bidimensional method in accuracy, while being
nearly as fast as the scalar methods. The one
drawback is that the accuracy is highly
dependent on the choice of threshold. We have
used simulation to determine the best choice of
threshold for a variety of different switches, but
would prefer a less ad hoc method of
determining the best choice. We are considering
a variant of the threshold method in which the
threshold is determined adaptively as the
analysis is carried out. The threshold would be
adjusted so as to make the probability of being
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above the threshold roughly equal to the
probability of being below the threshold. The
same idea could be applied to the more general
interval method.

More details on this work can be found in [3].



Near Optimal Configuration of ATM Networks

Andy Fingerhut and Jonathan Turner

The problem of configuring low cost
communication networks that satisfy a given
set of traffic requirements has been studied in
depth, in the context of telephone and
conventional data networks. The choices that
network managers make when purchasing and
deploying communication equipment can have a
profound effect on the cost of the network and
the performance delivered to the network’s
users. The emergence of ATM networks in the
last several years has introduced two important
new considerations in network design. First,
because ATM networks offer the ability to
configure multipoint virtual circuits, network
designers need to take this into account when
selecting an appropriate network configuration.
Second, because ATM networks are designed to
handle arbitrary mixtures of traffic types, there
is little usable statistical information that a
network designer can bring to bear. We have
developed a framework in which to address ATM
network design problems and have obtained a
number of useful results that we plan to
incorporate into a network design tool.

There is a variety of ways one can formulate the
network design problem. Different formulations
focus attention on different aspects of the
problem, bringing certain features to the fore,
while suppressing others. For ATM network
design, we prefer formulations in which we
design networks that can handle an arbitrary
‘set of user requests meeting specified
constraints. That is, with respect to network
traffic we take a worst-case point of view, rather
than a probabilistic one. This is motivated by
our observation that in ATM networks, the
diversity of the applications and our limited
understanding of how they will be used makes
it difficult to obtain usable statistcal predictors.

One formulation of the problem is as follows.
We are given a complete graph, G = (V, E),
where each vertex represents a switching
system. For each vertex pair (u,v), we have a
value ¢(u,v) that represents the cost per unit

capacity for installing a link from u to v. For
each vertex u, we are also given a source
capacity, a(u) and a sink capacity, w(x) These
give upper bounds on the total traffic that can
originate or terminate at each vertex. Our
objective is to assign a capacity 7(u,v) to every
vertex pair (u, v) that minimizes the cost of the
network (defined as 3, ,) ¢(u, v)7(¢, v)), while
supporting any traffic configuration permitted

by the source and sink capacities. A set of

capacities that yields a network supporting all
possible traffic patterns is termed a nonblocking
network.

The source and sink capacities of a switch can
be used to represent the total raw bandwidth
associated with the terminal interfaces that the
switch supports. Alternatively, we might
specify lower values for the source and sink
capacities, based on estimated upper bounds on
the amount of traffic that might originate or
terminate at a switch. While detailed statistics
for ATM networks are hard to obtain, we
believe that such gross statistics as the total
traffic entering or leaving the network from a
given switch can be estimated with reasonable
accuracy.

Given this formulation of the network design
problem, we can find a lower bound on the cost
of an optimal nonblocking network by solving a
minimum cost maximum flow problem. The
solution of this problem is a worst-case traffic
configuration whichk must be supported by any
nonblocking network. To determine how close
we can come to the lower bound, we have
carried out a series of random experiments in
which the vertices of the network graph

G = (V, E) are placed at random in a unit
square and the pairwise Euclidean distances are
used as costs. For random graphs with up to
100 vertices, we computed the lower bourd on
the optimal nonblocking network cost and then
constructed a nonblocking network consisting of
a single central vertex and direct links to all the
others. For this configuration, the required link
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capacities are easy to compute. We iterated
over all possible choices of the central vertex
and selected the lowest cost alternative. This
simple approach gives remarkably good results,
typically yielding networks with costs that are
within a few percent of the lower bound. We
have also proved analytically, that for problem
instances created randomly on a unit disk, that
as the number of vertices gets large, the ratio of
the star network cost to the lower bound
approaches one with high probability.

We can extend this simple formulation in two
important ways, in order to allow a more
flexible specification of the traffic. First, we
introduce pairwise traffic constraints, u(u, v) for
switches u and v, allowing a network designer
to specify upper bounds on the amount of
traffic originating at one switch and terminating
at another. This allows the designer to express
the fact that certain pairs of switches have only
limited need to communicate. We also allow
the network designer to specify disjoint subsets
W,...,V; of the switches and specify source
and sink capacities for the subsets. Such a
source capacity limits the amount of traffic that
can originate within the subset and terminate
outside it. Similarly for the sink capacities.
This allows designers to express the fact that
clusters of switches may have lots of internal
traffic but limited external traffic, reflecting
natural “communities of interest.” This idea
can be extended to aribtrary cluster hierarchies
and we can again compute a lower bound on
the cost of an optimal nonblocking network
satisfying the specified constraints using
minimum cost maximum flow techniques.
Again, we have found that simple network
designs that directly reflect these hierarchies
and are easy to construct can closely
approximate the lower bound. Also, because
these networks are tree-structured, they admit
only one path between any pair of vertices,
making them nonblocking for arbitrary
multipoint traffic, as well as point-to-point
traffic.

Our current formulations of the network design
problem leave out two important

considerations. First, they treat the collected
link capacity between two switches as 2 single
large link, rather than as multiple small links,
which is a more realistic point of view. To
capture this in our models, we need to
introduce the notion of a single link capacity
and the notion of a maximum data rate for 2
single virtual circuit. The cost of a nonblocking
network under these conditions depends
critically on the ratio of the link rate to the
maximum connection rate. If this ratio is one,
the nonblocking network cost can be infinite,
since a link carrying an infinitesimal amount of
traffic can block a new maximum rate
connection. If the ratio is two (the links are
twice as fast as the fastest connection), a link
must be at least half full in order to block a
connection. In this case the worst-case
bandwidth fragmentation requires at most a
doubling of the network cost over that
determined in our current problem formulation.

Our problem formulations also fail to account -
for constraints on the amount of transit traffic a
switch can support. Switches typically have a
limited number of ports and the simple
tree-structured networks which we have shown
can closely approximate the optimal
nonblocking network, can require more total
throughput than real switches may be able to
provide. One approach to addressing this
problem is to devise general methods for
decomposing large switches in a network design
into multiple smaller switches, with only a
small increase in cost. If this can be done in a,
general way, it could yield a general method for
converting an idealized network design into one
that can realized from real switches, while
retaining the low cost of the original.
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Performance Evaluation and Visualization System

Einir Valdimarsson

The evaluation of switching systems is a
complex task, because there are many different
components which interact in subtle and
unexpected ways. Simulation is an essentjal
tool for deriving insight into the way systems
perform, as it allows the designer to reproduce
the precise conditions under which a system
will be used, while allowing him or her to
observe the system’s behavior at either a
macroscopic or microscopic level.

Unfortunately, the design of effective simulators
for switching systems is a time-consuming
chore, since each switching system has its own
set of characteristics and idiosyncrasies that
must be captured, and since careful
programming is necessary to achieve acceptable
performance for system configurations of
practical interest. To address this difficulty, we
have designed and implemented a general
purpose switching system performance
evaluation tool. The tool includes the following
features.

¢ A graphical user interface that can be used
to create switching systems with arbitrary
interconnection topologies.

A variety of switching elements, including
buffered switching elements with or
without flow control, various buffer
organizations and queueing disciplines.
Sorting elements and other unbuffered
elements are also supported.

Various other components, including
multi-channel bursty traffic sources, buffers
and lookup tables.

The ability to run the simulation forward
by single-stepping or many steps at a time.

Visualization of the simulation, both
through the animation of packets moving

through the system and real-time display of

various user-specified performance curves.

While the system continues to undergo
refinements to increase it’s generality and
improve both the performance and
user-interface, it has become sufficiently stable
that it has been used to support a graduate
course in switching system design and analysis
(CS 577) and has been exported to a few users
outside the university. We invite others to use
it as well and can make it available via ftp for
those who wish to try it out.

The challenge in designing a tool like this is to
find the right balance between the competing
objectives of generality and performance. For
example, because the system allows users to
specify networks with arbitrary topology, the
question of how to route packets to the proper
outputs becomes an issue. Real switching
systems can use simple routing methods
because they depend on a knowledge of the
topology, but this approach does not really
work in a general simulation environment. We
have addressed this so far, by supplying a
variety of different switching element types and
allowing the default routing to be modified by
direct manipulation of a set of routing tables.
A more general approach would allow users to
specify the routing algorithm directly, making
it possible for them to use their knowledge of
the context in which a switching element is
used to permit a simple description. The user’s
algorithmic description could be compiled and
dynamically linked into a running simulation to
yield an implementation that is easy to use,
completely general and fast in execution. The
same kind of issue arises in switching elements
that replicate packets belonging to multicast
connections.

Another example of the trade-off between
generality and performance arises in the
collection of performance statistics. We want to
allow users to plot a variety of different
performance parameters. So far, we are
addressing this need by collecting many
different basic statistics all the time and then
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using these statistics to generate a variety of
different kinds of plots, at the user’s request.
Ideally, the system would collect only those
statistics needed to generate the plots that a
user has specified. However, making run-time
decisions about what statistics to collect leads
to poor performance, Again, the best
alternative seems to be to generate code that
will collect the desired statistics, in response to
the user’s plot specification, then compile and
link that code into the running program. This
approach may be incorporated into future
versions of the system. )

Another direction we are pursuing is the
incorporation of analytical methods into the
simulation tool. There are a variety of methods
that have been developed for the steady-state
analysis of multistage switching networks.
These can be used to obtain steady-state
distributions of various performance
parameters, including buffer occupancies, delay,
packet loss and so forth, under both uniform
and non-uniform traffic conditions. To facilitate
the use of such methods, we have generalized
methods designed for uniform traffic to the
non-uniform traffic situation and have devised
the first queueing analysis of networks that
replicate packets for multicast communrication.
While these methods have not been used for
this purpose in the past, they can also provide
insight into transient traffic phenomena,
particularly in the context of a tool supporting
real-time visualization. It may also be possible
to switch back ard forth between simulation
and analytical modes. Analysis can be used to
generate a steady state distribution, from which
an intial state can be selected for simulation.
Or, steady state analysis can be initiated from
a state obtained via simulation, in order to
obtain an understanding of the possible ways in
which the system might evolve from that point.
Such a combination of simulation and analysis
promises to open up new ways of understanding
the performance of complex systems.
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Cost-Based State Dependent Routing

M.A. Rayes and P.S. Min

The routing of traffic is one of the key functions
in the management of telecommunication
networks. It consists of the decision rules the
network uses upon the arrival of a call. The
essential features of these decision rules include
how to decide when an arriving call should be
rejected, how to determine the set of available
paths for an incoming call, and finally how to
select one out of this set to transmit the call
over. Addressing these components in a routing
policy requires consideration of several
performance factors such as network blocking,
switching complexity, robustness to network
element failures (e.g, switch or link failure),
robustness to design errors (e.g.,
under-engineered capacity), performance of
multi-class traffic, information exchange
protocols, and ease of dimensioning.

Currently, a significant majority of the routing
policies in circuit switched networks are Fixed
Alternate Routing (FAR) schemes. These
routing schemes use the available set of routes
in some predetermined sequence. These
schemes have been in place for some time in
public telephone networks and were
implemented to take into account the
constraints imposed by the processing capacity
of switching entities (e.g., eletromechanical
switches or old analog switches), as well as the
limited sophistication in information gathering
techniques of network information such as
occupancy, or exogenous traffic intensity.
However, the widespread incorporation of
intelligent switches (e.g., 5SESS or DMS100) and
digital transmission combined with common
channel signaling has made possible more
sophisticated routing schemes which are
real-time adaptive and based on network state
information.

Dynamically controlled routing (DcR), a
feature of Northern Telecom’s dynamic network
controller system is planned for the
Trans-Canadian network, Dynamic Alternate
Routing (DAR) was developed by British

Telecom which plans to adopt it, and
Real-Time Network Routing (RTNR) is a
state-dependent routing scheme with quantized
network state information which has been
implemented by AT&T. Bellcore has developed
State-Dependent Routing (spR) and is
currently conducting field-trials for the purpose
of demonstrating its efficacy for Local Area
Transport Areas (LATA’s).

The nature of the routing decisions in
state-dependent routing schemes is considerably
more complicated than that in FAR. In FAR,
there is a predetermined sequence of paths. The
next path in the sequence is chosen only if the
current path is determined to be in a blocked
state. Thus, this decision is based only upon
the state of the single, currently considered
path. On the other hand, the decision to route
a call in state-dependent routing schemes
depends on the state of multiple paths. This
added complexity along with the random nature
of the demand and the multiple interactions
that occur in the topologically rich structures of
networks makes analysis particularly difficult
even for moderately sized networks.

On the other hand, state-dependent routing
schemes seem to offer much improvement in
terms of performance. They improve network
blocking in many of the scenarios we studied,
and such improvement is maintained even as
the size of the network increases. They provide
the ability to withstand mismatches between
the network capacity and the level of offered
traffic, and provide robustness in the network
performance to changing traffic. The
survivability and self-healing properties of the
network in the presence of failures are seen to
be natural advantages of the state-dependent
routing schemes. We also observed that
multi-class traffic with differing grade of service
requirements could be easily accommodated.
These percéived advantages of state-dependent
routing schemes have spurred the increased
interest.
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However, despite the clear trend of technology
towards state-dependent routing, the level of
knowledge about the complex dynamic
behaviors that these schemes generate in the
network appears very limited. Much of the
published literature on the subject of
state-dependent routing consists of discussions
of the feasibility of implementation and the
development of reasonable (but not necessarily
accurate) performance evaluation algorithms to
compute network blocking. We note that while
the reduced network blocking is an important
benefit, it does not characterize the entire
benefit of the state-dependent routing schemes.
For example, other features of the schemes such
as robustness to component failures, robustness
to under-engineered network capacity,
additional processing complexity required at
switching nodes, complex network management
function such as gathering traffic information
and state occupancy, survivability, tandem
switch loading due to increased multi-link calls,
coping with (possibly) coexisting FAR schemes,
Jjust to mention a few, are equally important
and need comprehensive study in order to
reflect the overall benefits of these
state-dependent schemes.

The main thrust behind our work is to provide
a thorough understanding of many issues
associated with a certain class of
state-dependent routing schemes in )
circuit-switched networks, which is illustrated
below.

In practice, most state-dependent routing
schemes specify the routing policies in terms of
cost functions which are, in turn, functions of
the state of the network; at state s(2) under a
certain routing policy, a routing decision is
made by evaluating the cost function for each
of the feasible actions in A,(;. A network state
(1) is defined as

([4,71(2), z1(t), z2(2), 23(2), ..z K (2)) where

(i, 7}(t) denotes the origin-destination pair
corresponding to the last call arrival before
time ¢ and where z(t) denotes the number of
busy trunks in link & at time t.

The cost functions chosen for this purpose are

usually based on some routing principles. This
practice conforms to a suggestion made by {1)
that given the complexity of state-dependent
routing it is more reasonable to formulate
sound routing principles rather than aim for
optimality in routing. Such routing schemes
using cost functions are referred to as cost-based
routing (CBR). Almost all of the currently
considered state-dependent routing schemes
belong to the class of CBR. For the last two
years, we have worked closely with Bellcore in
investigating sDR, the Bellcore’s version of CBR
to be implemented in the regional telephone
networks in the USA.

Below, we summarize some results attained
during our work in 1992. The description here
is purposely concise to present the overall
picture of the project. A more detailed
description can be found in [47].

e Accurate Performance Evaluation

Algorithm. Blocking probability for the

. network is often the quintessential measure
of the grade of service provided by a
routing scheme. The blocking probability
for FAR is usually calculated by a
fixed-point method known as the Erlang
approximation method. This method has
been found to be computationally efficient
even for large networks.

Calculation of blocking probability in the
case of CBR is considerably more
complicated since it depends not on the
state of a single, currently considered path
but rather on the states of multiple paths.
The main difficulty introduced by cBR is
the complex patterns in the traffic
intensity incident upon various portion of
the network, which are dependent upon the
entire state of the network. During 1992,
we devised a way to determine the
state-dependent traffic patterns of any
arbitrary CBR scheme in a computationally
efficient way, resulting in development of
fixed point algorithms for cBR with highly

accurate estimation of blocking probability. -

Initial implementation of this fixed point
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algorithm (for arbitrary cBR schemes with

general network connectivity) has

computational complexity of O(C2N4)

where C is an upper bound on the capacity

of a link and N is the number of nodes.

This complexity would be too high to be
“useful for large networks.

In order to be able to carry out analyses of
various performance measures in the
network, it is essential to have available a
performance evaluation algorithm that is
accurate and has reasonable complexity for
large networks. We were able to improve
upon the initial complexity to O(C2N?)
under very realistic assumptions. As a
result, we can now calculate the blocking
probability of networks with more than one
hundred nodes which correspond to
realistically sized LATA’s in a populated
metropolitan area in the USA. We are
currently investigating the possibility of
further reduction to O(CN) using some
form of diffusion approximation.

Traffic Patterns, Occupancy, and
Link Cost. An important characteristic
of a routing scheme is the pattern of traffic
it generates. For example, the efficiency of
the routing scheme can be visualized by
the fraction of carried calls that uses
multi-link paths. Obviously, the most
efficient use of network capacity is to
allocate as many calls as possible to
one-link paths as possible.

We observed in simulation studies that the
rate of traffic using one-link pathsis
constant for small values of state cost and
drops rather rapidly above a certain
threshold. To explain this phenomenon, we
developed an asymptotic model (as the
network size gets large) for the calls using
one-link paths. Qur model predicted
accurately the behavior of such calls with
respect to the values observed in the
network via numerical studies. Similarly,
we also developed an asymptotic model for
the calls using multi-link paths. These two
models together gave us an excellent tool
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for studying the dynamic behavior of
traffic under varying capacity of the
network. More detail can be found in [47).

Another important characteristic of a CBR
scheme is the shape of its cost function,
and its effect on the routing decision. As a
specific instance, we studied the cost
function of SDR. It has a knee-like shape
for one-link paths and the cost for two-link
paths is derived from the convolution of
the two one-link paths that it consists of.
We developed an analytic model for such
cost functions.

Dynamics Due to Network Size.

With increasing N, it is possible to
increase the sizes of the set of paths for
each origin-destination pair. As reported in
(47], however, for FAR there is not
necessarily a gain in network performance,
such as blocking probability, when the size
of the network in terms of N increases. We
studied the impact of increasing the
number of paths in CBR. The results
reported in [47] show that this ability to
use the entire network as a single resource
is one of the most important benefits of
CBR.

Network Survivability. Another
important potential advantage of
state-dependent routing is its anticipated
ability to recover reasonable performance
in the face of link or switch failures.
Intuitively, since all paths for an -
origin-destination pair are potential
candidates for a call, a failure in a link or a
switch ought not to result in a substantial
degradation of performance. Moreover, one
may expect that this degradation does not
all devolve upon the origin-destination pair
directly linked by the failed link but is
shared by all the origin-destination pairs
which utilize this link in their routing set.
In our study, we observed that CBR is quite
resilient to link or switch failures. The
survivability of CBR may be the strongest
motivation behind CBR.



Multi-channel Switching in Broadband ATM Networks

H. Saidi and P.S. Min

While strong consensus exists on ATM within
the broadband community, some difficult
technical challenges lie ahead. One such
problem is the development of a switching
methodology that can support the very high
bandwidth transmission associated with
lightwave technology. The transmission rate
over optical fibers has reached tens of gigabits
per second and is likely to increase in the
coming years. On the other hand, the
processing speed of electronic switches remains
substantially slower. Such a mismatch between
the two quantities creates a natural bottleneck
at the switching nodes in the network.

Multi-channel switches have been proposed and
studied in the literature [15] [29} [35] [36] {45]
[49], as a means of alleviating the processing
speed constraint of elecironic switches in
broadband networks. Multi-channe] switches
can provide higher performance (e.g.,
throughput, blocking probability, delay) by
exploiting the concept of trunk grouping.
Instead of being routed to a specific output
channel, a packet is routed to any channel
belonging to an appropriate trunk group. In
ATM, a session is established by the assignment
of a virtual circuit. The virtual circuit is
defined in terms of a specific channel between
the two end points of the session. However,
many of the benefits associated with
connection-oriented services do not require that
the connection be specified at the channel level;
it is sufficient to specify the path of the
connection, not the specific channel within the
path. This implies, among other things, that a
packet can be routed to any output channel of
a switch within a group of outputs, provided
that it eventually leads to the same end point.

As the demand for new applications soars,
greater variability in bandwidth and traffic
characteristics (e.g., session duration,
burstiness) is expected. The advantages of
statistically sharing a higher channel capacity
under such conditions are well known. For

example, it increases the link efficiency by
reducing the burstiness in the incoming traffic.
Bit pipes of higher rates are formed which allow
a number of applications to share bandwidth by
dynamically allocating bandwidth. Assuming
that the exogenous traffic intensity per channel
is fixed, a larger trunk group size is less likely
to incur blocking for a single ATM cell, for a
burst of cells, or for a request for setting up a
new session. Similarly, other performance
measures such as cell delay, probability of
buffer overflow, and congestion would improve
when multiple channels are grouped together as
a single resource.

Another important benefit of multi-channel
switching is the ability to provide super-rate
switching. Applications requiring peak rates
greater than a single ATM channel capacity
would suffer high cell loss probability unless
these applications can be assigned over multiple
channels. Trunk grouping would be a natural
way to deal with such a problem. In reality, a
trunk group may correspond to a single fiber
operating at ar extremely high rate, and
multi-channel switches can provide a means of
transporting this bit pipe across broadband
networks without requiring complex
multiplexing/demultiplexing functions at each
switching node.

Cross-point complexity in multi-channel’
switches can be low. We illustrate such a
possibility based on the following consideration:
Given N inputs and N outputs, let us construct
a switch that provides at least one path
between every pair of input and output
channels. A switch based on the banyan
network would require log: N interconnected
stages, each consisting of (N/2) 2 x 2 switching
elements. On the other hand, if the
requirement is changed such that each input is
connected to any of the outputs in the same
group, then the number of stages of the same
switch can be reduced.
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Assume, for example, that two outputs of the
individual switching elements at the last stage
of the Banyan network are bundled into a
group such that there are (N/2) trunk groups
of two channels each. Then the switching
function at the last stage is unnecessary since
ATM cells arriving at these switching elements
car be switched to any of the two outputs. In
this case, the banyan network with logaN —1
stages would suffice. We can continue this
argument to show that for 2-"N trunk groups
(r < logaN), the resulting multi-channe] switch
requires r fewer stages than the original
point-to-point switch.

One interesting result obtained during 1992 as
part of our multi-channel switching work
concerns a specific switching architecture that
is internally non-blocking. The switching
architecture proposed by [45] is an example of a
non-blocking multi-channel switch employing
the Batcher-banyan network. Strictly speaking,
[45] is 2 non-blocking point-to-point switch; this
switch can be used as a point-to-point switch,
but when it is used in a multi-channel mode,
the performance (viz., throughput and output
contention probability) can be improved. There
is no reduction in the hardware complexity.

In fact, any non-blocking, point-to-point switch
is a non-blocking multi-channel switch. Using a
point-to-point switch as a multi-channel switch
does not capitalize on some significant benefits

of multi-channel switching, such as reduction in
the hardware and control complexities.

Lemma. Let 5]=[0,1,2,...,K -2,k — 1]
and 3 =[N-1,N-2,N-3,...,K +1,K].
(For K > N, §{ =[0,1,2,...,N—2,N — 1] and
3 = ¢. Similarly, for X < 0,
2=[N-1,N-2,N-3,...,1,0] and Si=¢.)
Now let §; be the sequence S} @ v and let S
be the sequence 5} @ v where v is any number
0<v< N-1and @ is addition modulo N.

Define § = (s0,31,82,...,3n_1) to be a
sequence of N integers such that §; and S, are
subsequences of §. Then, the N-input inverse
omega network canr simultaneously realize the

set of N connection requests in the form of
r(i,8;) for i = 0,1,2,..., N — 1 where r(a, b) is
the connection request between input a and
output b,

We illustrate the application of the above
lemma to broadband switching using the
following example. Assume that the outputs of
a switch are partitioned into four trunk groups
which are labeled as Xoo, Xlo, Xu, and XOI-
Xoo has assigned to it output channels
0,1,2,...,k — 1, and for Xy, the output
channels are between ko and kg + k; — 1, for
X11, the output channels are between kg + k1
and ko + k1 + k2 — 1, and finally for Xo1, the
output channels are between kg 4 k; + k5 and
ko + k1 + ko + k3 — 1. Assume

ko + k1 + k3 + k3 = N. Suppose that during a
particular cell slot, input channels belonging to
set Yoo need to routed to Xopo. Similarly Y3,
Y11, and Yy, are to be connected to X0, X711,
and Xo;, respectively.

If a cardinality constraint is not violated by any
group (i.e., card(Yyo) = card(Xyo), and so on),
such a connection request can be satisfied by
the following scheme: Consider the two staged
binary sorting network shown in Figure 5,
where each stage corresponds to the
non-blocking binary sorter defined in the
lemma.

At the first stage, separation into two groups is
done based on the first bit of the group index
(e.g., 0 for Yyo and Yy, and 1 for Yy and ).
This implies that Ypo and Yy are aggregated
together with its i*» member from the top
routed to output ¢ for i = 0,1,2,....ko+ k3 — 1,
and Y1; and Yy are aggregated with the jt*
element routed to output N — 1 — j for
J=0,1,2,...,k + k3 — 1. Then the lemma
guarantees a non-blocking connection at the
output of the first stage as shown in Figure 5.
In Figure 5, a sample instance of a two digit
group index is shown on each input link. To
show the propagation through the network, we
also show the identity of the connection by
indicating the input channel number within the
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11(4) 00(7) 11(3)
01(5) 10(6) 11(4)
10(6) 11(4) 01(5)
00(7) 11(3}) 01(1)

Stage 1 Stage 2

Figure 5: Non-Blocking Multi-Channel Switch for Four Trunk Groups

parenthesis next to the group indices.

Separation into four trunk groups is completed
by applying the birary sorter again at the
second stage. At the second stage, however, we
group the connection requests based on the
second bit of the group index (e.g., 0 for Yoo
and Y19, and 1 for ¥y, and Y3;). This now
implies that Ypo and Yjg are aggregated and Yo,
and Y1, are aggregated together. Connections
to proper outputs are shown at the output of
the second stage. The resulting connection
accomplishes the connection request for the
four trunk groups.

So at least in theory, non-blocking connections
to any multiple groups in the form of 27

(r < logaN) can be achieved by cascading r
binary sorting networks as shown in Figure 6.

In fact, the above argument suggest an
alternative way to construct a non-blocking
point-to-point switch by setting r = logs N. To
resolve possible output contention, the switch
requires concentration network followed by
another banyan network each with log, N
stages,
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Figure 6: Non-Blocking Multi-Channel Switch for 2" Trunk Groups
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Congestion Control in Multimedia ATM Networks

Andreas D. Bovopoulos, Seyyed M-R Mahdavian and Apostolos Dailianas

High speed networking is promising to
transform the nature of communications in the
context of both public and private networks. In
part this advancement is made possible by the
development of the Asynchronous Transfer
Mode (ATM) technology, which promises a far
more flexible infrastructure than is currently
available. The introduction of the ATM
technology together with the deployment of
fiber optic networks will result in an
infrastructure capable of handling gigabits of
multimedia (for example, voice, video, data)
traffic in a very efficient way.

We are currently focusing in the development of
traffic engineering rules for the efficient support
of multimedia traffic. Typical media differ not
only in terms of their time behavior, but also in
their quality of service (Qos) requirements from
the network. Current research has focused on
the study of problems related to the
multiplexing of traffic. The broad approaches
taken focus on the cell loss incurred on a
particular multiplexed cell stream.

For services which result in the transmission of
information in blocks (bursts), such as in file
transfers, the emphasis has been in trying to
support multiplexing schemes which would
result in preservation of bursts. Whereas these
approaches aim at addressing the intuitive
requirements for integrity of the burst, none so
far has been able to correlate the performance
requirements to the intrinsic information
content of the media stream in a general and
direct way. One of our research efforts aims at
addressing this problem. We recognize the fact
that cell loss cannot describe the information
loss for a particular cell stream. To cope with
this we introduce a new criterion called the
virtual (information) loss, which measures the
_ effect of lost cells on the integrity of the
information in the whole burst.

In the sequel a random variable is represented
by a symbol with a tilde “” on top, while a

particular value of a random variable is
represented by the symbol alone. For example,
7 represents a random variable, while m
represents a particular value of this random
variable,

The transmission of an arbitrary block of 7
cells may result in a loss of 7 cells at a cost
fi(m, D). As a first approximation it is assumed
that f depends on the magnitude of loss,
regardless of the precise location of the lost
cells within the block. If different blocks are
assigned different cost functions, the cost
function will also be stochastic. However, for
simplicity, it is assumed that f; = f for every i,
such that f is a fixed function.

The virtual loss of a transmission is defined as
follows [51):

def Ef (i, )

~ Ef(rm,m)
where E refers to the expectation over the
probability space of /2 and #. If /& and ¥ are
discrete random variables, the virtual loss
becomes:

_ Sup (o, )P(mv) _ Ty fm,v)P(m,)
S Fmy mYB(m, 1) = 3o S, )P ()

where P(m, v) is the joint distribution of i and
7 and P(m) is the marginal distribution of .

|4

Virtual loss has the following properties:

1. If f is a non-decreasing function of v
(which is natural because more loss implies
more cost), then 0 < V < 1, because
0 < f(m,v) < f(m,m) for all m,v.

2. If one defines the cost function to be
f(m,v) = v, i.e. the cost of v losses is just
v regardless of the size of the block, then
V = Ei/E7 which is simply the loss rate.
This property is important because it
shows that under the worst case condition
where no natural blocks of information can
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be identified, an arbitrary block division
together with the above cost function gives
the usual loss rate measure.

3. If f represents the amount of information
which is effectively lost in a block, e.g. the
size of the block in file transfers wher part
of the block is lost due to channel
impairments, then the virtual loss
represents the average rate of the
information flow which is effectively lost.

Virtual loss has been used to compare the
performance of reservation and non-reservation
techniques [51). Numerical results have shown
that under certain circumstances, reservation
may be a good protocol to protect the
transmission chanrnel against massive cell loss.
These circamstances include:

o The traffic (and therefore the loss) at the
multiplexer being high.

o The frequency of variation of the
background traffic being comparable to
that of the channel under consideration.

¢ The rate threshold being properly chosen.

If these conditions do not hold, however, the
use of reservation may result in greater quality
degradation.

We also attempt to develop comprehensive
end-to-end admission control and resource
allocation algorithms. Finally a problem we are
currently studying is the effect of successive
multiplexing stages on the traffic characteristics
of a particular traffic stream.
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SYMPHONY: An Architecture for Distributed Multi-

media Systems

Andreas D. Bovopoulos, R. Gopalakrishnan, Saied Hosseini-Khayat

With the computer becoming more of a tool for
interactive communication, designing the
communication and computing components in
isolation of one another is inadequate and
inappropriate for offering multimedia services.
The SYMPHONY design described herein, is
based on the proposition that in order to
provide multimedia services with performance
guarantees effectively, an architectural design
must be integrated with respect to these three
aspects:

o Hardware design (Architecture Integration)
¢ Protocol support (Service Integration

o QOS specification (Performance
Integration)

Given the above requirements, the design goals
for the SYMPHONY architecture are
formulated as :

1. Translate the high transmission rates
provided by the network into application
level throughput

2. Develop an architectural framework for
integrating subsystems such as processors,
storage, and digital I/O devices for
different media and design uniform and
efficient hardware and software interfaces .
between subsystems.

3. Allow negotiation of performance
parameters and provide guaranteed
performance of various subsystems used by
an application.

4. Provide protocol support for
communicating and processing digital
streams of different media types with
media and application specific performance
requirements.

Hardware Organization

To preserve the high data rates provided by the
network transport within the computer, the
SYMPHONY architecture uses a separate
network backplane, implemented as a pair of
unidirectional buses. To be able to handle the
high processing requirements for multimedia
data, SYMPHONY is organized as a collection
of autonomous units that perform network I/O
independent of each other over the network
backplane. Each unit negotiates usage of a bus,
according to the bandwidth and delay
requirements of the network traffic it sources or
sinks. The salient features are retaining the
ATM cell as the unit of data transfer on the
network backplane, and to provide guaranteed
access to the backplane for periodic data
streams. This is similar to the approaches
described in [48] and [32]. Apart from the
guarantees provided by the network backplane,
end-to-end QOS preservation requires that
predictable performance is provided by each
device for local processing, as well as the I/0
interconnect (I-Bus) for inter-device transfers.
Therefore the architecture requires an
application to negotiate service requirements
with each device, as well as the I/
interconnect. The hardware architecture
requires appropriate choices for the operating
system (OS) as well as the protocol processing
architecture in order to achieve the design goals.

Operating System Architecture

The shift towards a multiprocessor architecture
and the modifications to the I/O subsystem,
necessitate changes to the OS structure. The
OS must hide the functional asymmetry of the
hardware from the application programs. A
distributed operating system is proposed for
SYMPHONY, in which each unit manages its
own resources and provides its services through
an interface. Each local OS is based on a
microkernel that provides mechanisms for
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processes and interprocess communication using the IPC mechanism described earlier.-
(IPC). Depending on the functionality required,
other facilities such as filesystem support may
be provided. Two important features of the
operating system is support for real time
scheduling of periodic streams [33], and
resource management mechanisms that provide
QOS guarantees. A real-time microkernel 28]
can be used to meet the former requirement.
The IPC mechanism is similar to the remote
procedure call, and is based on object method
invocation. The reason for this choice is that it
kas high level language support, and can be
implemented efficiently because of the
proximity of the endpoints.

Protocol Processing Architecture

Multimedia applications have diverse and
demanding transport requirements such as high
throughput, low delay, and low delay jitter. In
addition, they require communication
primitives that model their complex
interactions, such as multipoint sends and
receives, temporal synchronization mechanisms,
and QOS control mechanisms. We adopt a
compositional approach to organizing protocols
(26, 41, 50]. This allows fine tuning of protocol
mechanisms, and offers structured mechanisms
based on the object paradigm to develop and
use protocols. The protocol processing
architecture is designed to take advantage of
the hardware and OS architectures [27]. The
availability of sufficient processing power on.
each unit, and the ability of the network
backplane to stream network data directly to

~ each device, favors the strategy of moving
protocol modules into the data stream path,
rather than copy data into the address space of
the protocol process. Thus the “in-band”
processing is optimized, and the “out-of-band”
processing is implemented by a decentralized
control mechanism implemented using the IPC
mechanism provided by the OS. This approach
also exploits the inherent coarse grain
parallelism in applications that allows media
sireams to be processed concurrently. The
architecture is implemented using server and
client objects that perform control functions
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Experimentation with TCP /IP Protocols

Christos Papadopoulos, Guru Parulkar

There has been considerable debate in the
research community regarding the suitability of
existing protocols such as Tcp/1p for future
applications over high speed networks. One
group of researchers believes that the Tcp/1p
protocols are suitable and can be adopted for
use in high speed environments. Another group
claims that the Tcr/IP protocols are complex
and their control mechanisms are not suitable
for high speed networks and applications. This
research project was motivated by the above
controversy. The objectives are the following:

¢ Characterization of the performance of
TCP /1P protocols when used for
communication intensive applications.

¢ An attempt to investigate the scalability of
TCP /1P protocols to future networks and
applications.

The IPC under study is the implementation in
SunOS 4.0.3, which is heavily based on 4.3BSD.
The Ethernet controller is the AMD AM7990
LANCE. In this environment IPC resides in the
kernel and is organized in 3 layers: (1) the
socket layer, which is a buffered interface to the
applications; (2) the protocol layer, where the
Internet protocols reside grouped in domains;
and (3) the network interface layer, which
contains the device drivers for the network
hardware interfaces. In the current
implementation, as data travels through these
layers, it may be queued at four separate
points: (1) at the send socket buffer awaiting
transmission by the protocol; (2) at the send
network interface awaiting transmission to the
network; {3) at the receive protocol queue,
awaiting reception by the protocol; and (4) at
the receive socket buffer, awaiting delivery to
the application. Figure 7 depicts the four
queueing points with respect to the iPC layers.
During transmission, data is copied from the
application address space to the kernel address
space and from the kernel to the network.
During reception, data is copied from network

to kernel and then back to the application.
Therefore, IPC requires two intermediate data
copies during communication. Moreover, the
CcPy will scan the data once during transmission
and once during reception to compute CRcC.

We feel that the study of the behavior of the
queues may provide insight into the operation
of IPC. Therefore to monitor queue activity
probes were inserted in the kernel. The probing
mechanism developed is comprised of a number
of small probes monitoring data entry and data
exit from each queue. Each probe produces a
record with minimal information every time the
state of a queue changes (i.e. data is added or
deleted). The location of each probe is depicted
in Figure 7. The records are stored temporarily
in the kernel address space to minimize
overhead. At the end of each record collection,
a user process reads the data out of the kernel
into a file. A variety of filters are then applied
to the file to extract the required information.

Results

Experiment 1. Several experiments were
performed in order to assess the performance of
the IPC mechanism. Some results were obtained
by measuring performance from the
application’s point of view. In the first
experiment the 1pC throughput between
processes on separate machines was measured
when large segments of data were transferred
from one machine to the other. During the
experiment the size of the socket buffers (both
send and receive) was varied in order to observe
the effect on throughput. The results showed
that throughput increases as the buffers are
increased from the 4K default size to the
maximum of 51K. The biggest increase comes
with the buffers set at 16K, with slight
improvements thereafter. Throughput was
measured at 5.8 Mbps with 4K buffers, 7.2
Mbps with 16K buffers, with a maximum of 7.5
Mbps with maximum size buffers, which is :
quite good on a 10 Mbps Ethernet. It is
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interesting to note that the bottleneck which
prevented higher throughput was traced to the
network driver rather than the protocol, as one
might suspect.

Experiment 2. In the second experiment
the probing mechanism was used to get a better
understanding of the behavior of 1pc. The
experiment had two parts. In the first part, a
large chunk of data was sent through a
unidirectional connection and traces were
produced showing the flow of packets across the
various IPC layers. The traces indicated that
the protocol layer can process packets faster
than the network layer can pass them on to the
Ethernet. In addition to the traces, queue
length and queue delay plots were also produced
from the same data. The queue length plots
showed clear queueing at the network interface
(during sending) confirming the network layer’
s inability to keep up with the protocol layer.
On the receiving end, the plots showed that the
IP queue never built up (during reception) and
introduced a very low delay. The receive socket
queue however, showed significant queueing.
Therefore, the measurements show the
bottleneck on the transmit side to be the
network, and on the receive side the data
delivery to the application from the socket

layer. The protocol processing for the sending
and receiving side was measured to be about
370 microseconds for the sending side, and
about 260 microseconds for the receiving side.

In the second part of the experiment, a
unidirectional connection was set up again, but
only enough data to fit in a single packet was
sent in order to isolate and measure the packet
delay at each layer. A number of isolated
packets were sent over a period of time, allowing
enough time in between for each packet to
reach its destination and the acknowledgment
to come back. This allowed the measurement of
processing for each individual packet at each
layer. The data in each packet was 1024 bytes.
The results show that on the sending side the
socket processing including data copy is about
280 microseconds, the protocol processing
increases to about 443 microseconds, and the
network interface delay is about 40
microseconds. On the receiving side the IP
queue delay is about 113 microseconds, the
protocol processing about 253, and the receive
socket processing about 412 microseconds.
Memory to memory copy for 1024 bytes was
measured to be about 130 microseconds.

Experiment 3. The third experiment
investigated the effect of the receive socket
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queueing on the protocol operation, and
especially on acknowledgment generation. It
was determined that TCP acknowledges data in
one of two cases: (1) whenever enough data is
removed from the receive socket buffer as a
result of the application performing a read; and
(2) when the delayed acknowledgment timer
process runs. For bulk data transfer however,
the latter is much less significant. It was
observed that data arrived in fast bursts from
the sender and could accumulate in the socket
buffer of the receiving machine. In extreme
cases the whole window burst would accumulate
in the buffer. The effect is more prominent with
a slow, or otherwise loaded receiver. It was also
observed that most acknowledgments were
generated when the receive buffer became
empty, since the application was trying to
receive as much data as possible. This leads to
the situation where a burst does not get
acknowledged until all the data is passed to the
application. Until this happens, the protocol is
idle awaiting the reception of new data, which
comes only after the receive buffer is emptied
and the acknowledgment goes back to the
sender. Therefore, idle periods are introduced
during bulk data transfer which are equal to
the time to copy out the buffer plus one round
trip delay for the acknowledgment.

Experiment 4. The fourth experiment
investigated the behavior of the various queues
when the host machines were loaded with some
artificial load. The experiment was aimed at
determining which parts of the 1Pc mechanism
are affected when additional load is present on.
the machine. The experiment was performed by
setting up a unidirectional connection, running
the workload, and blasting data from one
machine to another. Throughput measurements
were performed, and showed that throughput
dropped dramatically as the background load
on either the server or the client was increased.
Figure 8 shows the behavior of the 1PC queues
during data transfer with background load. It
clearly shows that the receiving application is
not scheduled often enough to read data out of
the socket buffer, with the result that after the

window is fully open, the bursts fill up the
buffer completely, which then empties and an
acknowledgment is generated. This behavior
exacerbates the acknowledgment starvation
discussed in the previous experiment.

Conclusions

The above experiments suggest that some
further turning may be required before TcP is
used successfully in high-speed networks. The
reduction in acknowledgments could be
especially harmful during congestion window
opening on high-bandwidth, high-delay

‘networks. The situation will be even worse if

the TCP large windows extension is
implemented, resulting in the slow start
mecharism becoming too slow. Moreover, TCP
could degrade to a form of stop-and-wait
protocol, with the sender sending bursts at an
unnecessarily high rate, since the receiver
cannot keep up. Communication ir this
environment is also shown to require a large
portion of the CPU to sustain high throughput.
The arrival of new faster processors means that
more CPU power could be devoted to
communication, but future network speed is
expected to increase faster than processor
speed. Moreover, it is questionable whether a
significant portion of CPU power should be
allocated for protocol processing instead of
computation. Details of this study are
presented in [43, 44].
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Segment Streaming IPC for Network Pipelines

Fengmin Gong, Guru Parulkar

There are two main motivations for using a
network to distribute a computational task
across more than one machine. The first is to
make use of advanced data and computing
resources that are not available on the local
machine. Secondly, by distributing a
computation among multiple machines a
speedup in performance (e.g., throughput) can
be achieved due to concurrency. There are two
well-recognized techniques for achieving
concurrency by simultaneous operation on
multiple computing elements: parallelism and
pipelining. In the parallelism approach, a
hardware structure is replicated many times
and each replica executes in parallel different
parts of the large computation; pipelining
technique splits the hardware structure into a
sequence of substructures (called stages)
corresponding to phases of the computation
task and allows all stages to operate
simultaneously on different parts of the
computation. Thus, a network pipeline has the
potential to allow both speed up in
performance due to concurrency and access to
remote resources. In fact, pipelining is the most
effective approach to achieving concurrency
when the computation itself consists of
sequential steps.

Pipelining has been successfully used at
different levels within a machine, but use of a
pipeline as a model for network computing is
new. This paradigm is worth exploring because
it very well characterizes an important class of
network computing and visualization
applications, as explained in the following
paragraphs.

Scientific visualization, as defined in the 1987
NSF report Visualization in Scientific
Computing, is a method of computing which
transforms symbolic information into geometric
information, enabling researchers to gain better
insight into their simulations and computations.
The NSF report has identified a large number of
scientific and engineering applications that can

benefit from visualization. A significant class of
these applications have a computation model
that contains the following general steps:

Data computing. This is the step in which
the discipline-specific computation takes
place. Numerical simulation and image
scanning are two examples. This step
generates the original scientific data that
needs to be visualized for human
interpretation.

Data preparation. This stage derives
visualization data from observational,
experimental, or simulation data. For
example, for visualization of a simulation,
additional data points may be interpolated
to transform an irregular grid into a
regular one so that certain visuvalization
algorithms can be applied.

Visualization mapping. This stage
constructs abstract visualization objects
from the data derived at the previous
stage. Specifically, it maps the derived
data (e.g., pressure, temperature, and
intensity) to the attributes of the visual
representation (e.g., geometry, color, and
opacity) for graphics rendering.

Graphics rendering. Abstract visualization
objects generated in the last step are
rendered into images for display at this
step. The actual operations may include
image processing, surface rendering, and
volume rendering.

User interaction. The user interacts with the
entire computation through the image
display and input devices such as a
keyboard, a mouse, and a set of dials.
Interpreting user input and interfacing
with the rest of the computational stages’
are functions of this stage. The user
interaction functions are often
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implemented on the same machine where
the graphics rendering takes place.

Clearly, the first four major tasks have to be
sequential. Therefore, an efficient model for
implementing such applications is to distribute
different stages of the computation onto
separate machines interconnected through a
pipeline on a very high speed internetwork
(vasi), as shown in Figure 9. The figure shows
four major pipeline stages on four separate
machines, although in practice a change in the_
configuration of these stages may be needed
due to constraints of compute power or
communication bandwidth.

In a network pipeline such as the one described
above, interstage communication incurs
significant delay due to the physical
distribution of pipeline stages. The slowest
stage becomes the bottleneck and limits
pipeline speed. In order to achieve efficient
pipelining, the interstage communication has to
satisfy a number of conditions:

e A pipelined network computing application
typically involves a large number of data
segments of considerable size. These
segments have to be streamed through the
pipeline with minimum delay to allow
overlapped processing. '

e Computation and communication speed
should be well balanced for optimal
utilization of both resources.

e An application should be able to specify its
error tolerance requirements to the 1pc
mechanism and the IPC mechanism should
enforce it only to the degree that is
necessary to satisfy the requirements, thus
avoiding any unnecessary error control
overhead.

o Buffer overflow in the pipeline should be
avoided because loss of partially processed
data due to overflow may require restarting
the pipeline from an eazlier stage, thus
wasting computing cycles and introducing
unnecessary (and unacceptable) delay.

Existing 1PC mechanisms and underlying

" communication protocols do not have the

functionality to meet these demands.
Significant progress is being made in the
development of high-ipeed packet switching
networks, internetworks, and host-network
interfaces. This development sets the stage for
the development of IPC facilities that are
necessary for converting the high bandwidth of
networks into high performance for distributed
applications. To provide efficient interstage
communication for a network pipeline, we have
proposed an IPC solution which consists of three -
important parts: a segment streaming IPC
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paradigm, a two-level flow control method, and
an application-oriented error control method.
We summarize segment steaming in this section.

Segment streaming

We have proposed a new IPC primitive called
segment sireaming, especially for efficient
pipeline communication. It allows exchange
with high bandwidth and low latency of a large
number of data segments among processes.
Segment streaming works as follows: An
application process starts a segment stream by
making a system call (sond_stream); the
transport protocol mechanism then establishes
the stream with the remote system through a
single request-response procedure; from then on
each segment will be transmitted when ready
without the latency of further request or setup.
Moreover, the send_stream call supports a set
of options which allow applications to specify
their particular error and flow control
requirements. The key idea of segment
streaming is to maintain an efficient and
continuous flow of data items throughout the
pipeline by (1) reducing the overhead associated
with local interactions between the application
process and the communication process, (2)
minimizing the overhead for stage-to-stage (i.c.
end-to-end) communication setup, and (3)
providing error and flow control functions that
can be easily tailored to the application needs.
Segment streaming is invoked through a
send-stream system call. Logically speaking, the
call takes the following form:

send-stream(group, host, access, options)

where group is the name of the group of
segments to be transferred as a stream; host is
the host where the segment group is sent to;
the access structure contains information such
as process name and authorization code that
will be used to determine the remote
communicating process and verify access
permission. The options are used to specify a
number of modes for streaming operation:

Repeated/Sequential Transfer: This option
allows the application to specify if the

stream consists of repeated transfers of a
single segment or sequential transfer of
segments in a group.

Loss Tolerance: An application specifies its
loss tolerance which will be satisfied by the
error control mechanism with minimal
overhead. The exact tolerance specification
and details of the error control mechanism
are presented in a subsequent section on
error control.

Flow Control Mode: This option allows the
application to specify the flow control
methods to be used with the stream. Flow
control determines when to initiate the
transmission of each segment in the stream.
This transmission can be initiated at fixed
time intervals (interval synchronized),
triggered by the execution of a specific
program call (program synchronized), or
determined by a two-level flow control
mechanism which will be deseribed in a
subsequent section on flow control.

Send-stream works as follows. Upon invocation
by an application process, a local control block
for the stream is created and a request packet is
sent to the remote host through a connection
which is established by calling the network
service. The packet contains the name of the
segment group and destination user and process
information. After an acceptance is received
from the remote host, a confirmation packet is
sent, followed by a series of data packets which
correspond to segment(s) as they are streamed.
There is no further end-to-end request or setup
overhead for the whole segment group.

Figure 10 is a high level view of send-stream
operation. The actual time elapsed ¢ between
two successive segment transmissions is
determined by the particular flow control
method used.

In segment streaming, the synchronization
between the sender process and the
communication process takes on the form of a
producer and consumer. A tag associated with
each segment indicates if the segment is ready
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for transmission by the communication process
and if it tan be released by the sender process.
A segment buffer space for both computation
and communication is reserved for each segment
streaming application at an initial setup time.
Access to the shared buffer space as well as the
tags are protected through semaphores. On the
receiving side also, the application process and
underlying communication system (kernel and
transport protocol) have a producer-consumer
relationship using shared preallocated segment
buffers with tags.

It is clear that segment streaming allows
overlapping between intrastage computation
and interstage communication. This provides a
necessary condition for efficient operation of the
pipeline. Applications can specify their error
and flow control requirements through the 1pc
primitive that allows the underlying protocol to
avoid unrecessary overhead. For a typical
distributed pipeline application, the sequential
transfer mode will be used. The error tolerance
can be determined from the amount of
redundancy in the data, the delay requirement
of the application, and how efficiently the
application can cope with loss of data by itself. *
The flow control option should be set to
activate the two-level control mechanism in
order to avoid overflow in the presence of user
interactions as well as speed fluctuations in
pipeline stages. A segment stream will be
established between a pair of neighboring
stages. A segment group is defined as the set of
data items to be processed, with each data item
corresponding to one segment. Detailed
specification of segment streaming can be found
in [20, 22).
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An Application-Oriented Error Control Scheme

Fengmin Gong, Guru Parulkar

The new generation of high-speed networks will
interconnect machines with very high
bandwidth over long distances. The high data
rates and long propagation delays result in very
large bandwidth-delay products. This large
bandwidth-delay product has a number of
implications on strategies for error control: (1)
Time for end-to-end control actions {(minimum
of one round trip delay) becomes very
significant with respect to the high data rate;
and therefore, frequent end-to-end control
actions should be avoided. (2} It becomes very
difficult to achieve efficient error control using
only timer-based loss detection, because high
data rates make it more difficult to set timers
accurately and also make it costly to have an
inaccurate timer. (3) It becomes very expensive
to recover erroneous packets through
retransmission.

On the other hand, new applications, such as
pipelined network computing and visualization,
require high bandwidth and low latency
_communication with performance guarantees.
They also deal with different types of data
streams (e.g., voice and video streams, image
sequence, and data set) which have very
different error tolerances. It is thus highly
desirable to have a flexible service interface
provided by the transport leve] that allows the
application to accurately specify its error
tolerance and thus avoid unnecessary and long
recovery delays due to retransmissions.

Existing transport protocols provide only two
classes of error control to applications. In one
class, no error control function is provided, and
it is up to applications to decide if error control
is needed and do it by themselves as necessary.
The second class of error control provides 100%
reliability, i.e., the transport protocol requests
retransmission for every lost or corrupted
packet regardless of the error tolerance of the
application or the “cost” involved.

perform frequent end-to-end control due to
their use of small data granularity. Clearly,
such error control strategies are not appropriate
for the new applications.

A new application-oriented error control scheme
has been developed that provides efficient error
control for a class of pipelined network
computing applications. This scheme has been
evaluated using analysis and simulation, and it
has been implemented in software inside

SunOS 4.0.3 kernel. The following paragraphs
summarize the key features of the error control
scheme and present some selected results.
Details of this work are available in [20, 24].

Characterization of application error
tolerance '

The first requirement for designing an efficient
error control scheme is a suitable
characterization of the application’s error
tolerance. Specifically, it should be powerful
enough to describe detailed distribution of
tolerable errors, e.g., within a data segment. It
should also be expressive enough to describe a
wide range of error tolerances (e.g., from
tolerating no error to tolerating all errors). In
the proposed scheme, the application specifies
its error tolerance as a triplet (W, E, B), which
is interpreted by the error control mechanism as
follows:

1. For every W packets transmitted, there
can be no more than E packet lost when
delivered to the application process at the
receiver.

2. Among the lost packets there cannot be
more than B packets with consecutive
sequence numbers.

The error control mechanism will perform
retransmissions as necessary to satisfy the

Furthermore, existing error control schemes rely application error tolerance.

heavily on timers for loss detection and have to
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Error detection and recovery

Packet losses must be detected before their
recovery can be done. Since the receiver has to
make the final decision for accepting a segment
according to the application error tolerance,
loss detection is also performed at the receiver
to avoid extra information exchange between
the sender and the receiver.

Two mechanisms are used to ensure early
detection of losses. First, each packet from the
sender to the receiver contains a field called the
shipment sequence number, which uniquely
identifies the sequence in which a packet is sent
out at the sender. At the receiver, a-gap
detection mechanism checks the shipment
sequence number of all incoming packets and
detects a loss if there is a gap (i.e., a hole) in
the sequence number. In addition to the gap
detection mechanism, the receiver also uses a
loss timer. The purpose of the timer is to
detect very long bursts of losses, in which there
may be no subsequent packets to enable
detection of gaps. The timer is set when a
connection is established and reset upon
reception of any packet. The timer value should
be relatively long (e.g. equivalent to the time
for transmitting several segments).

Once loss detection is made, recovery from the
loss involves three steps: (1) The receiver still
has to determine which lost packets need to be
requested for retransmission. (2) The request
information needs to be passed to the sender.
(3) The sender needs to verify the request and
retransmit the necessary packets.

The packets that have been successfully
received are marked with a “1” in the
corresponding position of a packet-presence
bitmap. At the time of a loss detection,
retransmission request list needs to be
generated from the packet-presence bitmap and
the application error tolerance. The
retransmission list is created by scanning
through the packet-presence bitmap and
artificially setting “1” to the positions where
loss of the packet does not viclate the
application error tolerance.

Acknowledgement scheme

With any retransmission-based recovery
scheme, there are two pieces of information
concerning the state of the receiver that must
be available to the sender: (1) which packets
have been correctly received so that the buffer
at the sender can be released, and (2) which
packets need to be retransmitted. Since loss
detection is made at the receiver in the
proposed scheme, the receiver has to send
explicit information about what packets need to
be retransmitted as well as which segments
have been correctly received.

The proposed scheme uses two types of
acknowledgments. The first type is positive
acknowledgment (PACK) and it is used to
inform the sender that certain segments have
been accepted and can be released; A PACK can
acknowledge a single isolated segment or it can
acknowledge a contigrous block of segments if
the block is the next expected in sequence.
Selective negative acknowledgment (SNAK) is
the second type of acknowledgment. It is
mainly used to request packet retransmissions
from the sender. However, it also carries a
segment sequence number that informs the
sender of the acceptance of all segments with
sequence numbers below this number. The
proposed scheme also transmits SNAK messages
to the sender periodically so that long delays
can be avoided should a SNAK get lost. Periodic
transmission of a SNAK stops when the
corresponding segment is successfully accepted.

Performance results

The performance of the error control
mechanisms has been evaluated using both
analysis and simulation. Simple analyses are
performed in order to gain insight into the
mechanisms and to provide verification for the
simulation model. Discrete event simulations
are used for more detailed study with a wide
range of operational parameters, Example
results of the simulation study are presented
here. For details see 20, 24].

Maximum Segment Delay with Bursty
Loss. Figure 11 shows the trade-off between
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Figure 11: Maximum Erd-to-End Delay with Variable Tolerance

the loss tolerance and the maximum segment
delay achievable under bursty losses. In the
simulation, bursty loss is modeled using two
alternating states: a good state with fixed
duration of 300 ms and a bad state with an
exponentially distributed length. To maintain
the readability of the plot, only the result for a
mean bad state duration of 180 ms is included.
The set of four curves represent the maximum
delay vs. loss probability relationships for four
different loss tolerances. The following can be
observed from the plot:

¢ Similar to the results under random losses,
as the application tolerance increases from
(256,0,0) to (256,256,256) the maximum
segment delay shows significant decrease
accordingly, despite the fact that segment
size is larger (256 packets). With larger
segment sizes, more packet losses will fall
within one segment and thus reduce the
impact of loss on maximum segment delay.

o As the bad state loss probability
approaches 1 the differences among the
three lowest tolerance settings diminish.
This is not surprising for the following
Teasons: '

— All three tolerances will be violated
under the same condition because
every packet will be lost once in a bad
state. - )

— Recall that the retransmission
strategy will request retransmission
for all the packets lost in a burst from
the point the tolerance is violated,
which are almost all the packets ever
lost for all the three tolerance settings.

— Once the three tolerance settings lead
to the same number of segment '
retransmissions, waiting time due the
round trip delay affects them the
same way.

Additional results with different bad state
durations have shown that: (1) As the bad
state duration increases, the tolerance vs. delay
trade-off becomes much more significant as an
indirect result of increased impact of bursty loss
on the maximum delay; (2) When the bad state
duration is decreased, the reduction in
maximum delay with increasing tolerance
becomes less. However, with bad state.duration
as short as 15 ms the trade-offs with the same
set of tolerances as used above are still
appreciable.

41



1.0

0.9

Throughput Efficency
0.8

0.7

& ———  BadetSmsped.Te-5 \
4 = Badel0ms.pal.Ge-4 \
Bada120ms, pu2 S04
R eve—eme BadalB0mE, Pl Te-4

08

-25 20

| 1 T 1

-5 -1.0

Bad State Loss Probability {10°x)

Figure 12: Throughput Efficiency Comparison

Throughput Comparison with SNR
Scheme. SnR is a transport protocol
developed in AT&T Bell Laboratories {40]. It
has been shown that the SNR error control
scheme out performs those used in existing

scheme under random loss conditions.
Throughput efficiency, average delay, and
maximum delay are all collected for each of the
simulations. All the comparison results showed
superior performance by the proposed scheme

protocols [17]. Figure 12 shows a comparison of over the SNR scheme.

throughput efficiency between the proposed
scheme (in line style) and sNR scheme (by
discrete points). There are four sets of data
corresponding to four different mean bad state

durations. As expected, there is little difference

between the two schemes when bad state loss
probability is very low (< 10~3); but as bad
state loss probability increases, the proposed
scheme performs better and better than the
SNR scheme; the difference will reach a
maximum before it starts to diminish as the
bad state loss probability approaches 1. The

diminishing difference is also expected, because

when almost every packet is lost in the bad
state, selective retransmission at the packet
level has very little advantage over
retransmission at the block (segment) level. It
should also be noted that, the performance
advantage of the proposed scheme increases
with longer bad state duration.

Simulations have also been done for comparison

of the SNR error control and the proposed
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Two-Level Flow Control for High-Speed Networks

Fengmin Gong, Guru Parulkar

There are many proposed end-to-end flow
control schemes and some of them have been
implemented in transport protocols [16, 40].
For example, a sliding window scheme is used
in TCP and a rate control scheme is used in
NETBLT [11). However, the emerging high speed
networks (e.g., ATM) and new applications (e.g.
pipelined network computing and visualization)
have changed many assumptions on which the
design of existing schemes have been based.
Examples of such assumptions are: the
networks provide only unreliable
datagram-oriented services, they have relatively
small bandwidth-delay product, and the
network applications require 100 % reliability.
It is unrealistic to expect that the existing
schemes would support efficient communication
in the new environment.

Flow control has two priciple objectives. First
of all, flow control ensures that the data traffic
from the application will not exceed the
negotiated rate with the underlying network;
otherwise, the network may not guarantee the
level of service needed for the application.
Secondly, the pipeline flow should be
maintained close to the rate of the bottleneck
stage in order to avoid any buffer overflow. A
two-level control mechanism designed to
achieve these objectives has the following
features (Figure 13):

The two objectives of flow contro} address
different levels of data granularity, namely, the
rate agreement at the packet level, and the
interstage (end-to-end) flow at the segment
level. A two-level control mechanism is
introduced to achieve the two objectives.

Rate Control: A rate control mechanism is
adopted to regulate the traffic at the
interface according to the specification
agreed upon at the underlying network
connection setup. In exchange, the
underlying network provides a guaranteed

level of service in terms of bandwidth,
packet loss probability, and delay. This is
critical for the target applications.

Window Control: A simple window
mechanism is used for stage-to-stage flow
control. A window of size W at instance ¢
defines a segment sequence number space
[4,i+1,...,i+ W —1]. The sender can
transmit a segment only if its number lies
within this space. Only the receiver can
advance the window by increasing either i
or W. This credit-based scheme ensures
quick control activation and deactivation in
response to load fluctuation or user
interactions.

Avoiding Congestion Complication:
While rate control does help the congestion
control in the underlying network, the
windowing mechanism performs end-to-end
flow control. This avoids adverse
interactions that may take place when an
end-to-end window is overloaded with flow,
error, and congestion control functions (as
in the case of the Internet protocol TcP).

A detailed specification of the proposed two
level flow control scheme is presented in [20].

Performance results

Given the design of the two-level flow control
scheme, a few important performance questions
need to be examined. (1) How can the
importance of rate control be justified
quantitatively? (2) How does the window
control perform given that the rate is
guaranteed? (3) Is it necessary for the size of
the receiver’s buffer to be as large as the
window? These questions have been explored,
but we present results for only the last one here.
See {20, 25] for a complete set of performance
results on the proposed flow control scheme.

Buffer Requirements. It should be pointed
out that the sending buffer size always has to
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be at least as large as the window size. The
receiving buffer, on the other hand, can have a
different size than the end-to-end window size.
In particular, we would like to use a smaller
receiving buffer if possible due to the constraint
of physical memory sizes. For example, if we
have a transcontinental connection with a
bandwidth of 1 Gbps, with a round trip delay
of 100 ms the bandwidth-delay product is 1
Gbps x100 ms = 12.5 megabyte. According to
the result above, the window requirement is
2.5 % 12.5 = 31.25 megabyte under practical
network conditions. Even by today’s standards
this is a significant memory requirement for a
workstation.

Indeed, under error-free conditions, the
receiving buffer requirement is usually much
smaller than the window size. However, when
there are errors or when the speeds of the
protocol and the application do not match
perfectly, data segments may have to be

dropped or overwritten if no additional buffer
slots are provided. An interesting question is:
how effective it is to advertise larger windows
for achieving higher performance? Hard ack
and soft ACK are two types of acknowledgment
strategies that can be used when the receiver is
advertising a window larger than the actual
receiving buffer available. To this date, there
has been no performance study done for these
strategies, to the best of the our knowledge.
The hard ACK and soft ACK strategies will be
defined first and all results should be
interpreted with respect to these definitions.

Let (n,n+1,...n 4+ W = 1) be the current
window of size W that the receiver has
advertised to the sender. Let B be the actual
buffer size and by assumption, B < W.

Figure 14 illustrates how the hard ACK strategy
works with W = 8 and B = 4. We can see that
the receiver simply discards any segments with
segment numbers outside the range [n..n 4 3).
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Figure 16: Advertising Larger Windows

All segments accepted will be acknowledged
with certainty.

The soft ACK strategy, however, will save a
segment into the receiving buffer as long as it is
inside the current window [n,n+ 1,...n 4 7]
and there is space available for the segment, as
shown in Figure 15. Because of retransmission
and resequencing inside networks, a scenario
like the one shown in the figure can occur. In
this case, segments n + 2, n + 5, n + 6, and

n + 7 arrived at the receiver before segments n,
n+ 1, and n 4 3, and filled up the buffer. In
order to deliver the next contiguous block of

data to the application, some of the saved
segments (e.g., n+ 5, n +6, and n 4 7) will
have to be discarded to make room for
segments n, n + 1, and n + 3. This means that
when those out-of-order segments are received,
they could only be acknowledged with a special
message indicating their successful arrival at
the receiver but the sender should not release
those segments until further acknowledgment is
received. The name soft ACk reflects exactly
this special requirement.

Three simulation experiments have been
conducted to (1) quantify the advantage of
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advertising larger windows, (2) compare
quantitatively the hard ACK and soft Ack
strategies.

Larger Window Advantage.

Figure 16 shows simulation results that
compare the throughput efficiencies achieved
when the end-to-end window size is the same as
the receiving buffer size, and when larger
windows are used with a hard ACK strategy.
The window size is fixed at 2.5 X w, (normalized
end-to-end propagation delay). The vertical
axis represents the throughput efficiency and
the horizontal axis is the logarithmic value of
random packet loss probability. Clearly, by
advertising larger windows than the actual
buffer size, significantly higher throughput is
achieved. This holds for the whole range of loss
probability studied and for buffer size as small
as 1/4 of the bandwidth-delay product. In
particular, over 70% higher throughput is

. achieved by advertising the larger window for a
buffer size of 0.25 X w, when loss probability is
10-5,

The key advantage of advertising larger
windows is that it allows the sender to continue
transmitting data to fully utilize the
connection. Although a segment may be

dropped when it finds no buffer space upon
arrival at the receiver, such an event is not
expected to occur very often because data will
normally arrive successfully in sequence at the
receiver and get consumed immediately, thus
freeing the buffer space.

Hard ACK versus Soft ACK.

Figure 17 compares the throughput
performance between the hard Ack and a soft
ACK strategy. At any time, the end-to-end
window size is fixed at 2.5 X w, and only buffer
sizes are varied. The results from the hard ack
strategy are plotted using lines while the soft
ACK results are shown as discrete symbols.

From Figure 17 we see that when buffer size is
equal to the window size, that is 2.5 X w,, the
two strategies perform exactly the same (the
solid line and the circles match) because
segments are not discarded at the receiver due
to lack of buffer space. But as the actual buffer
size decreases, performance of the soft ACK
strategy deteriorates dramatically. The most
significant drop in throughput occurs when the
buffer size is reduced to 0.5 X w,. The
performance difference between the two
strategies remains significant until the loss
probability approaches 10~1, by that time the
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hard ACK performs a$ bad as the soft ACK due
to the tremendous loss. The simulation results
also show that the maximum segment delay for
the hard Ack scheme is much lower than that
for the soft ACK. The soft ACK strategy was
found to be susceptible to an interesting
abnormal behavior that periodically saves and
then discards sequences of segments, which
explains the poor performance observed.
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