QUEUEING ANALYSIS OF BUFFERED SWITCHING NETWORKS

JONATHAN S. TURNER FELLOW, IEEE

Abstract — This paper provides a method for
analyzing the queueing behavior of switching net-
works constructed from switches that employ
shared buffering or parallel bypass input buffer-
ing. It extends the queueing models first intro-
duced by Jenq and later generalized by Szyman-
ski and Shaikh to handle these classes of networks.
Our analysis explicitly models the state of an en-
tire switch and infers information about the dis-
tribution of packets associated with particular in-
puts or outputs when needed. Earlier analyses of
networks constructed from switches using input
buffering attempt to infer the state of a switch
from the states of individual buffers and cannot be
directly applied to the networks of interest here.

Index Terms — packet switching networks, ATM
networks, queueing analysis

I. INTRODUCTION

In a widely cited paper [4], Jenq describes a method
for analyzing the queueing behavior of binary banyan
networks with a single buffer at each switch input.
The method, while not yielding closed form solutions,
does permit the efficient computation of the delay and
throughput characteristics of a switch. A key element of
the analysis is the inference of the state of a single switch
from the state of its two buffers, based on the assumption
that the states of the two buffers are independent. This
independence assumption is not valid but does not yield
gross inaccuracies in the systems that Jenq studied.

Recently, Szymanski and Shaikh [6] have extended
Jeng’s method to switching systems constructed from
switches with an arbitrary number of inputs and an arbi-
trary number of buffer slots. They have also applied it to
systems with different buffering techniques. While these
extensions are useful, it turns out that for many specific
choices of system parameters, the independence assump-
tion mentioned above leads to significant inaccuracies.

We extend the previous work to cover switching sys-
tems in which the buffer slots in a switch are shared
among all the inputs and outputs, rather than being ded-
icated to either particular inputs or particular outputs.
Such systems require an analysis which explicitly models
the state of the entire switch rather than the states of in-
dividual input or output queues. We can also apply our

OThis work was supported by the National Science Foundation
(grant DCI 8600947), Bellcore, BNR, DEC, Italtel SIT, NEC, NTT
and SynOptics.

Figure 1: Recursive Definition of a Delta Network

method to systems using parallel bypass input buffering,
a class of systems that cannot be analyzed directly using
the previous methods. Our technique can also be applied
to the systems studied previously and for some system
configurations yields significantly more accurate results.

In section 2, we review the previous results for switch-
ing systems with input buffering, in order to motivate the
key issues involved in their analysis. In section 3, we show
how to analyze a switching system with shared buffering
and present a variety of performance curves characteriz-
ing such systems. In section 4, we show how our methods
can be extended to switching systems with input buffer-
ing, including systems supporting bypass queueing. Fi-
nally, in section b, we provide numerical comparisons of
the different buffering techniques, describe our computa-
tional experience and suggest some possible extensions to
our work.

II. ANALYSIS OF NETWORKS WITH INPUT BUFFERING

Figure 1 shows the recursive construction of a delta net-
work D, g with n inputs and outputs, constructed from
d-port switches. Such networks provide a single path be-
tween any inputs and outputs, and have log,; n stages of
switching. (We use the term network here to describe the
system as a whole and switch to describe the components
from which the network is constructed.) The delta net-
work is topologically equivalent to such networks as the
banyan and omega networks. The results we describe here
are equally applicable to any of these networks. Delta
networks are often constructed from switches that con-
tain buffering for a small number of packets, with flow
control between successive switches to ensure that the
buffers do not overflow. Figure 2 shows the structure of
a typical switch in which each switch input has a buffer
with a capacity of 3 packets.

Typically these systems are operated in a time-slotted
fashion, with fixed length packets progressing from stage
to stage in a synchronous fashion. Consequently, we can
think of the system as operating in two phases. In the
first phase, flow control information passes through the
network from right to left. In the second phase, packets
flow from left to right, in accordance with the flow control
information. A switch input will allow its predecessor to
send 1t a packet if it has an empty buffer slot currently
or if one of the packets in its buffer will leave during the

Figure 2: Switch with Fifo Input Buffer

second phase of the current cycle. This is called global
flow control, since the flow control decision at a switch
potentially depends on all of its successors in the net-
work. Local flow control is also possible; in this form, a
switch input allows its predecessor to send a packet only
if its buffer has an empty slot. While local flow control
doesn’t make as effective use of a switch’s buffers, it 1s
more straightforward to implement, particularly in high
speed systems where the propagation time required for
global flow control can lead to unacceptable overheads.
Note also, that several packets in a switch may contend
for the same output, but only one will be allowed to pro-
ceed during a given cycle. We assume (as is usual) that
in such a case, one of the contending packets is selected
at random.

One way to analyze the queueing behavior of a buffered
delta network is to explicitly model the state of a sin-
gle input buffer by a discrete time birth-death process
and then model the state of an entire switch by assuming
that the states of its various input buffers are indepen-
dent. A Bernoulli arrival process is assumed and packets
are independently assigned random destination addresses
upon entry to the system. This analytical technique 1s
described in [6]. We briefly review it here for complete-
ness.

Let m;(j) be the steady state probability that an input
buffer in stage ¢ of the network (stages are numbered from
left to right starting with 1) contains exactly j packets,
where 0 < j < 3. Let a; be the probability that a packet
is available to enter a stage ¢ buffer and let ¢; be the prob-
ability that the first packet (assuming there is a packet)
in a stage ¢ buffer can leave during a given cycle. With
these definitions, the transition probabilities for the stage
¢t buffer are as shown below.

(Here, @; = 1 — a; and §; = 1 — ¢;; we use the overline
throughout to indicate the “complement” of the given
probability.) The reasoning is straightforward. If the
queue contains j packets where 0 < j < 3, then the
probability that during the next cycle the queue contains
j + 1 packets is just the probability that a new packet is
available to enter the queue and the packet at the head
of the queue does not leave; this is @;7;, assuming that
arrivals and departures are independent of one another.
Similarly, the probability that during the next cycle the
queue contains j— 1 packets is just the probability that no
new packet is available to enter the queue and the packet
at the head of the queue does leave; that is, @;q;.

If we knew a; and ¢; then, we could easily compute the
state probabilities m;(j). The trouble of course is that
a; and ¢; depend on the state probabilities of the buffers
in the neighboring switches. This leads to an iterative
computational method in which we assign arbitrary initial
values to the state probabilities, then compute «; and
q; for all 7, use these values together with the balance

IEEE TRANSACTIONS ON COMMUNICATIONS

equations for the Markov chain to compute new state
probabilities, and so forth.
We calculate a; using the following equation

a;=1—(1=m_1(0)/d)?

The reasoning is that a packet is available to enter a par-
ticular input buffer of a stage ¢ switch if at least one of the
d buffers in the predecessor is non-empty and has a first
packet for the particular stage i switch of interest. Note
that the states of the predecessor’s d buffers are assumed
to be independent.

Define b; to be the probability that a successor of a
stage ¢ switch can accept a packet. Then,

-

1 —mi41(8)q; 4, for global flow control

Tit1(F) for local flow control
and
d—1
b; d—1 . i
o = Y (U7) moaia - moya e

= =i 2 (D moyaia-mo-

J

Al

= 21— (1= R(O0)/d)Y) = biagg/7(0)

i(0)

The first equality above is based on the observation that
the first packet in a stage ¢ buffer can leave if the successor
it 1s destined for can accept it and it wins any contention
that may occur between i1t and the other input buffers in
the same switch. There are d — 1 other input buffers that
might contend with it, the probability that any one does
contend is 7;(0)/d, and the probability that the given
input buffer wins, when it has to contend with j others
is 1/(j +1).

In realistic systems, each input to the network is sup-
plied with a buffer that is typically much larger than those
in the switches. We can model such a buffer using the
Markov chain shown below, where 3’ is the number of
buffer slots, by is the probability that a stage 1 switch
can accept a packet offered to it (computed according to
the equation for b; given above) and p is the offered load,
that is the probability that a packet 1s available to enter
the buffer.

Finally, we note that a; is computed not according to
the general equation given above but 1s equal to the prob-
ability that the input buffer is nonempty; also, we assume
that the output of the network can always accept a packet
meaning that b = 1, where k& =log,n.

Given the above quantities, we can easily obtain the
common performance metrics of interest. The carried
load, for example, is the probability that a buffer in the
last stage is non-empty and given that it is non-empty,
that it is able to transmit a packet; that is, 7 (0)g;. The
average delay through the network can be calculated by
summing the average delays at each stage. The average

=

TURNER: QUEUEING ANALYSIS OF BUFFERED SWITCHING NETWORKS 3

Figure 3: Throughput of Networks with Fifo Input Buffering (S&S Analysis)

delay at stage ¢ is calculated using Little’s Law. For the
network using global grants we calculate the delay using

1 A
—ai(l — Wi(B))@]Z:%JM(J)

In this expression, the quantity in the denominator of the
initial fraction is the average arrival rate at stage ¢ and
the summation i1s the average queue length. For local
grants, we just substitute a;7;(B) for the expression in
the denominator. The delay in the input buffer can be
calculated in a similar fashion.

The performance curves shown in Figure 3 were com-
puted with this method. The leftmost and center pairs
of plots show the maximum obtainable throughput as a
function of network size for networks comprising switches
of different sizes and varying amounts of buffering. The
rightmost plots show the effect of varying the amount of
buffering for switches with 256 inputs. The curves on the
left show the throughput in the case of local flow control
and those on the right are for global flow control. It’s
interesting to note that the networks constructed from
larger switches have lower throughput when n is large.
This appears to be caused by two mechanisms. First, be-
cause the networks constructed from larger switches have
fewer stages for a given value of n, they have less buffering
overall. Secondly, the head-of-line blocking that occurs in
these networks has a greater effect on the networks made
up of large switches, since a blocked packet can affect
packets with a wider range of destination addresses in
this case.

Figure 4: Switch with Shared Buffering

ITI. ANALYSIS OF NETWORKS WITH SHARED BUFFER-
ING

It’s well known that switching networks in which
buffers are shared among the inputs can yield better per-
formance than those in which buffers are dedicated either
to inputs or outputs. Figure 4 shows a switch in which
packets arriving at any of d inputs are placed in available
buffer slots from a pool containing B slots. Packets are
routed from the shared buffer to the appropriate outputs.
An implementation of such a switch would require a d x B
crossbar to distribute arriving packets to buffers and a
separate B x d crossbar to route packets from buffers to
outputs.

As in the input buffered switch, one can use either lo-
cal or global flow control, but we analyze only the case of
local flow control. There are two additional possibilities
for implementing local flow control which we refer to as
the grant and acknowledgement methods. In the grant
method of flow control, a switch with & empty buffer
slots, grants permission to send a packet to min {«,d}
of its upstream neighbors at the start of an operation
cycle of the switch. If z < d, we assume that = predeces-
sors are chosen at random. Notice that in this method,
a switch supplies grants to upstream neighbors without
knowing which of them has packets to send. This can re-
sult in sending a grant to a neighbor that doesn’t have a
packet, while a neighbor that does have a packet may not
receive a grant. The acknowledgement method of flow
control remedies this fault by allowing all predecessors

with packets to send them. The receiving switch stores
as many as it can in its buffer and acknowledges their
Unacknowledged
packets are retransmitted during a subsequent cycle. The
acknowledgement method requires that the predecessors
hold a copy of a packet pending an acknowledgement, but
allows better buffer utilization overall.

We first analyze a network using the grant method of
flow control. We model each switch as a B 4+ 1 state
Markov chain. We let m;(s) be the steady state probabil-
ity that a stage ¢ switch contains exactly s packets and
we let A;(s1, $2) be the probability that a stage ¢ switch
contains sy packets in the current cycle given that it con-

receipt by means of a control signal.

tained sy packets during the previous cycle.

Let p;(4,s) be the probability that j packets enter a
stage ¢ switch that has s packets in its buffer and let
9i(J, s) be the probability that j packets leave a stage i
switch that has s packets in its buffer. Then

D

0,s0—s1<h<d,s2,B—s1

Ai(s1,82) = pi(h,51)qi(h—(s2—51), 51)

(1)

Let a; be the probability that any given predecessor
of a stage ¢ switch has a packet for it. Then if we let

m = min {d, B — s},
m j m—i
CJal(1—a; J
(J) ()

Z mia(f) [1 = (1= 1/d)]

0<j<B

(2)
(3)

pi(J, s)

a; =

Let b; be the probability that a successor of a stage i
switch provides a grant and let Y5(r, s) be the probability
that a switch that contains s packets, contains packets for
exactly r distinct outputs. Then

2.

JjEr<ds

D

0<h<B-d

> mig(B—h)h/d

0<h<d—1

¢(j,s) =

Ya(r, s) C) W= b))~ (4)

b, = mit1(h) +

()

Y is easily calculated, assuming all distributions of s
packets to the d outputs are equally likely. This is just a
classical distribution problem. For the purposes of calcu-
lation, the following recurrence is all we require.

s=r=0
s>0Ar=0)Vs<r

Ya(rys — 1) 4+ =0y, — 1,5 — 1)
0<r<s

Ya(r,s) =

alys ©

Note that Yy(r, s) is independent of the stage of the switch
in the network. For computational purposes, it 1s most
convenient to merely precompute a table with the values
of Y required; the above recurrence is ideal for this pur-
pose. As in the earlier analysis, we compute performance

IEEE TRANSACTIONS ON COMMUNICATIONS

parameters by assuming a set of initial values for ;(j),
then use these and the equations given above to compute
Ai(s1,82). These, together with the balance equations for
the Markov chain are used to obtain new values of 7;(j)
and then we iterate until we obtain convergence. While
convergence is not guaranteed, our experience has shown
convergence to be fairly rapid except when the offered
load is approximately equal to the network’s maximum
throughput; when the offered load is below this critical
point, convergence is obtained in fewer than 100 itera-
tions, above the critical point convergence typically re-
quires several hundred iterations and in the vicinity of
the critical point, it may require several thousand itera-
tions.

Notice that the calculation of Yy(r,s) given above re-
lies on the assumption that the addresses of the packets
stored within a switch’s buffer are independent. This 1s
not in fact the case. While it is true that the addresses
of packets arriving at a switch are independent (given
the input traffic assumptions), buffered packets are cor-
related as a result of having contended for outputs. The
correlations are strongest when d is small and B large.

We can now easily obtain the performance metrics of
interest. The carried load is given by

d B

S dar(G, s)m(s)

j=0s=0

The average delay at stage ¢ is given by

Sor o 57i(s)
S0 San dpi(d, s)mil(s)

In this expression, the quantity in the numerator is the
average queue length in the stage ¢ buffer and the denom-
inator is the average arrival rate. Total delay is obtained
by summing the per stage delays.

Most of the above analysis carries over to networks that
use the acknowledgement method of flow control. The
only changes required are in the equations for p;(j, s) and
b;. In particular, we have

0 B—-—s<yj
L (;l)ag(l —a;)4 B—s>j
pi(]as) - d L d—h .
Z (h)ai(l—ai)_ B—-s>j

j<h<d

(6)
and
b o= Y. mplh)+ Y. mp(B—h)

TURNER: QUEUEING ANALYSIS OF BUFFERED SWITCHING NETWORKS 5

Figure 5: Carried Load Curves for Networks with Shared Buffering (solid: analysis, dashed: simulation)

Figure 5 shows curves of offered load vs. carried load
for networks with 256 inputs and outputs and varying
switch and buffer dimensions. In the plots 8 = B/d is
the number of buffer slots per switch input, the solid lines
are the analytical results, while the dashed lines are sim-
ulation results. We note that for shared buffer networks,
large switches usually perform just slightly better than
small ones with the same values of 5. The advantage
of the acknowledgement method of flow control is most
pronounced when the number of buffer slots 1s limited, al-
though one would expect a greater benefit in the presence
of unbalanced traffic patterns.

The analysis is optimistic in the sense that it predicts
higher carried loads than the simulation. This is typ-
ical of such analytical techniques. Notice that the an-
alytical results are most accurate when the switch size
is largest and the buffering is smallest. Haifeng Bi [1]
has traced the source of the discrepancy to the indepen-
dence assumption mentioned above. Because the analysis
neglects the correlations among the destination addresses
for packets buffered in a given switch, it overestimates the
number of distinct outputs for which packets are present
in a given state. This in turn, leads to an overestimate of
the number of packets leaving a switch in a given state.
As an experiment, Bi ran modified simulations in which
correlations among packets in a switch were systemati-
cally eliminated by randomly reassigning their addresses
at the start of each simulation cycle. The simulation re-
sults obtained in this way were virtually identical with
the analytical results, meaning that the crucial direction
for further refinement of the analytical models lies in cap-
turing the effects of correlations among packets.

The simulation results given above, are taken from an

extensive simulation study described in reference [1]. The
simulation results consistently reveal the same character-
istics mentioned above for all the queueing models we
study; that is, the analysis overestimates the maximum
carried load and its accuracy is best for networks com-
prising large switches with limited buffering. The simu-
lation and analysis do rank the different buffering tech-
niques consistently making it possible to compare differ-
ent buffering techniques qualitatively using the analytical
methods. We include no further simulation results here.
Interested readers can find further details in [1].

Figure 6 shows curves of average delay. The curves that
become constant for large load give the delay through the
network itself. The curves that rise steeply for large loads
include the delay through the input buffer in addition to
the network delay. We note that for offered loads below
the maximum capacity of a given network the total delay
is generally between 1 and 2 times the number of stages
in the network, yielding an advantage for networks with
large switches. We also note that the maximum network
delay for a given configuration is generally smallest for
G = 1.50r 2. Figure 7 gives maximum throughput curves
for networks with shared buffering of varying size and
buffer capacities.

IV. IMPROVED ANALYSIS OF NETWORKS WITH INPUT
BUFFERING

We now return to the study of networks comprising
switches using input buffering. In addition to switches
that use fifo buffers, we are interested in switches that use
bypass buffering to avoid the head-of-line blocking effects
that limit the performance of systems with fifo buffer-

IEEE TRANSACTIONS ON COMMUNICATIONS

Figure 6: Delay Curves for Networks with Shared Buffering

ing. Two types of bypass buffering are possible. In serial
bypass, the first packets in a switch’s input buffers first
contend for outputs, then the losing input buffers that
contain a second packet are allowed to contend a second
time, those that lose in the second round and have a third
packet are allowed to contend a third time, and so forth.
In parallel bypass, all packets in a switch contend in a
single round with the winners proceeding to the outputs.
This allows more than one packet from a given input to
proceed during a single cycle, allowing potentially higher
performance, although of course each output can carry at
most one packet per cycle. In high speed systems, parallel
bypass is actually somewhat easier to implement, as one
does not have the overhead of multiple contention rounds.
For this reason and because it 1s more straightforward to
analyze, we concentrate here on parallel bypass.

The analysis of a network with parallel bypass input
buffering is similar to that for a network with shared
buffers using the grant method of flow control. In particu-
lar, we need only alter the equations for b; and p;(j, s). As
previously, B is the total number of buffers in a switch
and 8 = B/d. Let Xg(j, s) be the probability that a
given input buffer has j packets given that the switch as
a whole contains s. Then,

> ma(s)(1 = X(5,9))

0<s<B

b = (8)

Next, let Wf(r, s) be the probability that exactly r
input buffers are not full given that a switch contains

exactly s packets. Then,

wior= ¥ Wi ()ada-ars

j<r<d

X and W are easily computed, assuming that when
the switch contains s packets, all distributions of those
packets among the input buffers are equally likely. This
assumption is not really correct, as it neglects correlations
among packets in a given switch, resulting from prior con-
tention for outputs.
quantifying the discrepancy caused by this assumption,;
the results are similar to those cited above. Let zg(s) be
the number of ways to distribute s distinct objects (pack-
ets) among d distinct containers (input buffers), under
the restriction that each container may contain at most
3 objects. Also, let xg(r, s) be the number of ways to
distribute s objects among d containers of capacity 3,

so that a particular container receives exactly r objects.
Then

Bi [1] presents simulation results

X5 (r,5) = 2(r,5)/2(s)

Similarly, if wg(r, s) is the number of distributions that
leave exactly r containers with fewer than 3 objects, then

Wi (r,5) = wi(r)/ (s)
We compute z, z and w as follows,

1 s=0
0 s> df

s .
(Z) 25_1(5 - Z)
0<i<g,s
0<s<dj

TURNER: QUEUEING ANALYSIS OF BUFFERED SWITCHING NETWORKS 7

Figure 7: Throughput Curves for Networks with Shared Buffering

e = ()it

e = () na)”
LY s — (d—1)B)25_ ((d—1)8)

Using these equations, it is straightforward to compute
tables containing the requisite values of X and W.

We now return to the case of an input buffered network
with fifo buffers. Most of the analysis for bypass input
buffering carries over to this case. The two equations
requiring modification are those for a; and ¢;(j,s). Let
Ydﬁ(r, s) be the probability that exactly r input buffers
contain at least one packet, given that the switch contains
s packets. Then, assuming that when a switch contains
s packets, all distributions of the packets among the out-
puts are equally likely, and that the destination addresses
of all packets are independent,

a; = Z mi—1(s) X
> Y (rs) (1= (1= 1/d)") (10)

a(j,s) = ’Z Y7 (h,s) x
jszrihYd(r,h)Q)bﬁ(l—bi)’"‘] (11)

(Once again, the assumption made above neglects corre-
lations among packets, caused by prior contention.) If we

let yg(r, s) be the number of ways to distribute s objects

among d containers so that exactly r containers receive
one or more objects, then

Y[(r,s) = yg(r.s)/23(s)

and yg(r, s) is computed using the recurrence

(})sirtr=15-)

when 0 < r < s < df and r < d; yg(r,s) = 1 when
r:s:OandyS(r,s):0When5<rord<rordﬁ<5
orr=0<s.

Figure 8 gives curves of maximum throughput for net-
works comprising switches with both fifo and parallel by-
pass input buffering, of varying size and buffer capacity.
We note that bypass buffering gives a very substantial
improvement over fifo buffering and that larger buffers
yield a greater improvement in the case of bypass buffer-
ing. It’s also worthwhile to note the differences between
the curves in the top row of Figure 8 to the corresponding
curves in the top row of Figure 3 that were obtained us-
ing Szymanski and Shaikh’s analysis. The prior analysis
is consistently more optimistic than the method described
here. However in many cases the improvement obtained
with the new method is slight.

y§—1 (r,8)+

D

1<i<B,s—(r—1)

yg(r’ 5) =

V. CONCLUSIONS

Figure 9 lists the numbers of the equations used to
compute the key quantities for each of the four buffering

IEEE TRANSACTIONS ON COMMUNICATIONS

Figure 8: Throughput Curves for Networks with Input Buffering

methods analyzed here. Figure 10 compares the max-
imum throughput obtained with the various buffering
methods and networks of varying size, switch dimension
and buffer capacity. We show curves for shared buffer-
ing using both the grant and acknowledgement methods
of flow control. We show curves for input buffering using
local flow control, with bypass queueing and fifo queueing.
We note that shared buffer switches offer clearly superior
performance for a given amount of buffering, but bypass
input buffering performs impressively as well. Fifo input
buffering, performs rather poorly in comparison to the
other methods, but may be acceptable in certain appli-
cations. Interestingly, variation in switch size yields only
small changes in maximum throughput for networks with
the same values of 3, but the reduction in the number of
stages obtained with larger switches yields a significant
economy 1n implementation, as well as lower delays. We
note that the acknowledgement method of flow control
yields only modest improvements over the grant method
when we have uniform random traffic with Bernoulli ar-
rivals. This appears surprising until one realizes that in
the presence of heavy uniform random traffic, all the pre-
decessors of a given switch are likely to have one or more
packets to send it at any one time. We would expect a
greater difference in the face of non-uniform bursty traf-
fic, since in this case, there can be substantial differences
in the instantaneous traffic from the upstream neighbors.

Our computational experience with the method de-
scribed here is quite favorable. In collecting the data
for all the curves shown in this paper, we computed ap-
proximately 900 data points and used a total of 40 hours
of cPU time on a Sun Sparcstation I, with 16 Mbytes of
memory, yielding an average of about 2.67 minutes per

Shared Buffering | Input Buffering

grant ack bypass fifo
Ai 1 1 1 1
Di 2 6 9 9
a; 3 3 3 10
qi 4 4 4 11
b; 5 7 8 8

Figure 9: Equations Used in Various Queueing Models

data point. The program required to compute the results
for input fifo buffering consists of about 8 pages of C4++
code. The memory requirements for this program are un-
der 3 Mbytes when dimensioned for networks with up to
12 stages, switches with up to 32 inputs and a total of
up to 100 buffer slots. The other programs are a little
smaller in both code and memory usage. The switch di-
mension and buffer capacity both have a strong influence
on the running time and memory requirements. We have
computed results for switches with d = 32 and 5 = 3,
but this is about as far as one can reasonably push the
method with typical workstations. Fortunately, this cov-
ers the cases of greatest interest, as larger switches are
difficult to implement. Also, the relative insensitivity of
the results on switch dimension allows one to extrapolate
to networks of larger switches with a good deal of confi-
dence. Since the running time is relatively insensitive to
the total size of the network, it 1s far superior to simula-
tion when modeling networks with hundreds or thousands
of inputs. We note that, the analysis also supports com-
putation of delay distributions, and packet loss rates in

TURNER: QUEUEING ANALYSIS OF BUFFERED SWITCHING NETWORKS 9

addition to average delay and throughput.

As mentioned above, Haifeng Bi [1] has made a care-
ful evaluation of the analytical techniques described here
by comparing them with simulation and has both quan-
tified the discrepancies and identified the crucial con-
tributing factors. Bi also studied networks comprising
switches with output buffering and made a systematic
comparison of output buffering with input buffering. His
work demonstrates that the difference commonly noted
between input buffering and output buffering is less sig-
nificant than commonly assumed. What most authors
overlook is that in a switch with output buffering, the
internal crossbar or bus required to provide access to the
outputs requires greater capacity than the crossbar re-
quired 1n a switch using fifo input buffering. In conven-
tional output buffering, each buffer can receive up to d
packets per cycle, whereas in fifo input buffering, each
buffer can transmit only one packet per cycle. If one
compares conventional output buffering to bypass input
buffering, where each input buffer can transmit multiple
packets in a given cycle, the difference between the two
disappears. Bi has compared generalized forms of input
and output buffering. In his study, there is a parameter
r that limits the number of packets that can be trans-
mitted from an input buffer in a given cycle or received
at an output buffer. His results show that there is very
little difference between input and output buffering when
they operate under the same restrictions with respect to
crossbar access; interestingly in fact, input buffering en-
joys a slight advantage due to “boundary effects” at the
first and last stages of the network.

An interesting extension of this work would be to mod-
ify our methods to allow modeling of systems with global
flow control. This appears difficult and may be of only
academic interest, but nonetheless it would be interest-
ing to compare with the earlier analyses. Extension of our
models to networks with uneven traffic distribution would
also be worthwhile. We expect this could be done follow-
ing the pattern established in [5]. Networks that perform
distribution and/or packet replication are of substantial
practical interest currently [7]. The extension of our
models to cover distribution networks appears straight-
forward; the case of replication is more challenging but
may prove tractable.

Finally, these techniques are directly applicable to the
study of several switching system architectures that are
under development for ATM networks [2, 3, 7]. A detailed
comparison of these systems using the tools we have de-
veloped could have an important practical impact on the
development of emerging networks.

Acknowledgements. My thanks to Hiafeng Bi for pro-
viding the simulation results reported here and for iden-
tifying several errors in an earlier version of the paper.
Also, I thank Ankira Arutaki and an anonymous reviewer
for their careful reading and incisive comments.

REFERENCES

[1] Bi, Haifeng. “Queuing Analysis of Buffered Packet
Switching Networks,” MS thesis, Washington Uni-
versity Computer Science Department, 8/90.

[2] Coudreuse, J. P. and M. Servel. “Prelude: An Asyn-
chronous Time-Division Switched Network,” Inter-
national Communications Conference, 1987.

[3] De Prycker, M., and J. Bauwens. “A Switching Ex-
change for an Asynchronous Time Division Based
Network,” International Communications Confer-

ence, 1987.

[4] Jenq, Yih-Chyun. “Performance Analysis of a Packet
Switch Based on a Single-Buffered Banyan Net-
work,” IEEE Journal on Selected Areas in Commu-

nications, vol. SAC-1, no. 6, 12/83, 1014-1021.

[5] Kim, Hyong Sok and Alberto Leon-Garcia. “Perfor-
mance of Buffered Banyan Networks under Nonuni-
form Traffic Patterns,” Proceedings of Infocom 88,

4/88.

[6] Szymanski, Ted and Salman Shaikh. “Markov Chain
Analysis of Packet-Switched Banyans with Arbitrary
Switch Sizes, Queue Sizes, Link Multiplicities and
Speedups,” Proceedings of Infocom 89, 4/89.

[7] Turner, Jonathan S. “Design of a Broadcast Packet
Network,” IEEE Transactions on Communications,

June 1988.

10

IEEE TRANSACTIONS ON COMMUNICATIONS

Figure 10: Comparison of Buffering Methods

