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Abstract � This paper describes several meth�
ods for analyzing the queueing behavior of switch�
ing networks with �ow control and shared bu�er
switches� It compares the various methods on the
basis of accuracy and computation speed� where
the performance metric of most concern is the
maximum throughput� The best of the methods
accurately predicts throughput for multi�stage
networks constructed from large switches �� �
ports��

Index Terms � packet switching networks� ATM net�
works� queueing analysis

I� Introduction

In a widely cited paper ���� Jenq describes a method for
analyzing the queueing behavior of binary banyan net�
works with a single bu�er at each switch input	 The
method� while not yielding closed form solutions� does
permit the e
cient computation of the delay� throughput
and packet loss performance of a network	 Szymanski and
Shaikh ��� extended Jenq�s method to switching systems
constructed from switches with an arbitrary number of
inputs and an arbitrary number of bu�er slots	

Turner �
� developed a similar method which can be
applied to switching networks with shared bu�ering	 Re�
cently� Pattavina and Monterosso ��� developed a new
approach which is based on an exact model of a single
shared�bu�er switch element	 This model� while more
accurate is computationally intractable for networks con�
structed from large switches	 In this paper we describe
a series of improvements to Turner�s method which rival
the accuracy of Pattavina andMonterosso�s method while
maintaining the computational e�ectiveness of Turner�s	

The analysis considered here is for delta networks
�see �
�� constructed from switches with d input and out�
put ports	 We use n to denote the number of network
inputs and outputs and let k � logd n denote the number
of stages in the network	 Each switch used to construct
the network is assumed to have a single shared bu�er with
B bu�er slots	 Packets from any input can be placed in
any available bu�er slot and packets can proceed from
any bu�er slot to the desired output	 Packets arriving
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at the inputs to the network are assumed to be assigned
independent random output addresses	
Typically these systems are operated in a time�

slotted fashion� with �xed length packets progressing syn�
chronously from stage to stage	 Low level �ow control
mechanisms regulate the �ow of packets between stages
to prevent packets from being lost due to bu�er over�ow	
Consequently� we can think of the system as operating
in two phases	 In one phase� �ow control information
passes through the network from right to left	 In the
other phase� packets �ow from left to right� in accordance
with the �ow control information	 There are several types
of �ow control that can be used	 In local �ow control�
the �ow control signals that a switch sends to its up�
stream neighbors depend only on the number of empty
bu�er slots in the switch� while in global �ow control�
the �ow control signals may also depend on the signals
received from downstream neighbors	 In grant �ow con�

trol� the �ow control signals grant the upstream neighbor
permission to send a packet� while in acknowledgement

�ow control� the signals acknowledge successful receipt
of a packet and let the sender know that he can safely
discard a retained copy	 Consider a shared bu�er switch
employing local�grant �ow control and assume that the
number of unoccupied bu�er slots is x	 The switch grants
permission to send to min fx� dg of its upstream neigh�
bors at the start of an operation cycle of the network	
If x � d� we assume that x predecessors are chosen at
random	 For most of this paper we focus on local�grant
�ow control� although in Section 
� we will consider the
other variants as well	 Local�grant control is the easiest
to implement and appears to have most practical interest
while global�acknowledgement control provides the best
performance	
Turner �
� models a network of shared bu�er switches

by modeling a shared bu�er switch as a B � � state
Markov chain	 We review this result brie�y here	 Let
�i�s� be the steady state probability that a stage i switch
contains exactly s packets and we let ��s�� s�� be the
probability that a switch with s� packets during a given
cycle contains s� packets in the subsequent cycle	 In the
steady state�

�i�s�� �
X

��s��B

�i�s���i�s�� s��

Let pi�j� s� be the probability that j packets enter a
stage i switch that has s packets in its bu�er and let

�
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Figure �� Throughput of Single Stage Networks

qi�j� s� be the probability that j packets leave a stage i
switch that has s packets in its bu�er	 Then

�i�s�� s�� �
X

� � j� � d

s� � j� � j� � s�

pi�j�� s��qi�j�� s��

Let ai be the probability that any given predecessor of a
stage i switch has a packet for it	 Then�

pi�j� s� � B�j�minfd�B � sg� ai�

ai �
X

��s�B

�i���s�ai�s� �i � ��

where B�j� n� x� �
�
n

j

�
xj�� � x�n�j and ai�s� is de�ned

as the probability that a predecessor of a stage i switch
has a packet for it� given that the predecessor has s cells	
We take a� to be the o�ered load and we approximate
ai�s� by �ai�s� � � � �� � ��d�s for i � �	 Note that
this approximation assumes that the destinations of the
packets in a switch are independent of one another	

Let bi be the probability that a successor of a stage i
switch provides a grant and let Yd�c� s� be the probability
that a switch containing s packets� contains packets for
exactly c distinct outputs	 An output of a switch is called
active if the switch contains some packet which is to be

sent out using that output� so Yd�c� s� is the probability
that a d port switch with s packets has c active outputs	

qi�j� s� �
X

j�c�d�s

Yd�c� s�B�j� c� bi�

bi �
X

��s�B

�i���s�minf�� �B � s��dg

We assume that network outputs can always accept pack�
ets and model this by letting bk � �	
We can approximate Y by assuming that all distribu�

tions of s packets to the d outputs are equally likely	 This
is just a classical distribution problem	 For the purposes
of calculation� we can use the recurrence

�Yd�r� s� �
r

d
�Yd�r� s� �� �

d� �r � ��

d
�Yd�r � �� s� ��

when � � r � s� �Yd�r� s� � � when s � r � � and
�Yd�r� s� � � otherwise	 Note that Yd�r� s� is independent
of the stage of the switch in the network	 For compu�
tational purposes� it is most convenient to merely pre�
compute a table with the values of �Y required� the above
recurrence is ideal for this purpose	 We compute per�
formance parameters by assuming a set of initial values
for �i�j�� then use these and the equations given above
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Figure �� Packet Loss in Single Stage Networks

to compute �i�s�� s��	 These� together with the steady�
state equations for the Markov chain are used to obtain
new values of �i�j� and we iterate until we obtain con�
vergence	 This type of analysis is referred to as the scalar
method	
We can now easily obtain the performance metrics of

interest	 The carried load is given by

���d�
X

��j�d

X
��s�B

jqk�j� s��k�s�

The average delay at stage i is given by
PB

s�� s�i�s�Pd

j��

PB

s�� jpi�j� s��i�s�

In this expression� the quantity in the numerator is the
average queue length in the stage i bu�er and the denom�
inator is the average arrival rate	 Total delay is obtained
by summing the per stage delays	 The packet loss rate is
the ratio of the o�ered load minus the carried load to the
o�ered load	

The scalar method is reasonably fast� even for switches
with large values of B and d	 The computation is dom�
inated by the time required to compute the transition
probabilities �i	 If m iterations are required for conver�
gence� this is proportional to m�B�d�d� logd n� while the

time required for simulation is proportional to m�n logd n�
where m� is the number of simulations steps required to
get accurate results	 Typicallym �� m� and the elemen�
tary step in the analysis is faster to compute than the el�
ementary step in the simulation �which typically involves
making some routing decision on a packet data structure
and moving it from one queue to another�	 Moreover� for
networks with more than � stages d� � n� so the anal�
ysis� computational advantage grows with network size	
While convergence is not guaranteed� our experience has
shown convergence to be fairly rapid except when the of�
fered load is approximately equal to the network�s max�
imum throughput� when the o�ered load is below this
critical point� convergence is obtained in fewer than ���
iterations� above the critical point convergence typically
requires several hundred iterations and in the vicinity of
the critical point� it may require several thousand itera�
tions	
Notice that the calculation of Yd�r� s� given above� and

the calculation of ai rely on the assumption that the ad�
dresses of the packets stored within a switch�s bu�er are
independent	 This is not in fact the case	 While it is true
that the addresses of packets arriving at a switch are in�
dependent �given the input tra
c assumptions�� bu�ered
packets are correlated as a result of having contended for
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Figure �� Comparison of Vector and Scalar Methods for Binary Switches

outputs	 The correlations are strongest when d is small
and B large	 The independence assumption causes the
analysis to overestimate the maximum throughput	 This
is illustrated in Figure � which shows the maximum load
that can be achieved by single stage networks for various
values of d and B	 Note that the throughput predicted
by the scalar method can exceed that of the analysis by
more than ���	 Figure � shows the packet loss expe�
rienced in several single stage networks as a function of
o�ered load	 Note that for larger amounts of bu�ering�
the scalar method can grossly under�estimate the loss rate
when compared to simulation	

One comment regarding our use of results for single
stage networks	 While in practice� we are mainly inter�
ested in applying our analytical methods to multistage
networks� we use results for single stage networks to make
detailed comparisons among methods	 This allows us to
separate the issues surrounding the modeling of individ�
ual switches from the inter�stage issues that a�ect all the
models in the same way	 This will become clear in the
�nal section of the paper where we give results for multi�
stage networks	
Monterosso and Pattavina ��� have developed an exact

model of a shared bu�er switch which they call the vec�

tor method	 In this approach� the state of a switch is
represented by a vector �s�� � � � � sd�� where sj denotes the
number of stored packets for output j	 The drawback
of this method is of course that the number of states
grows exponentially with d and the number of transi�
tion probabilities is roughly the square of the number of
states	 While Pattavina and Monterosso have taken care
to avoid explicit representation of redundant states� a �

port switch with �� bu�er slots still has about �� thou�
sand states and there are more than �� million transition
probabilities	 In the scalar model� on the other hand� the
same switch has �� states and fewer than ���� transition
probabilities	 These considerations limit the applicabil�

ity of the vector method to networks constructed from
small switches �d � ��	 The objective of this paper is to
develop an analytical method which rivals the accuracy
of the vector method while retaining the computational
e�ectiveness of the scalar method	 We describe three
techniques	 The �rst is a variant of the scalar method�
which we call the uniform scalar method	 The second
method models the state of a switch using two variables
and is called the bidimensional method	 As we will see�
the bidimensional method is more accurate but also more
computationally expensive	 Consequently� we have devel�
oped a third method called the interval method which is
intermediate in both accuracy and speed	

II� The Uniform Scalar Method

The scalar method of queueing analysis computes the
number of active outputs that a switch has using the as�
sumption that if s packets are stored in a switch�s bu�er�
that the outputs those packets are to take are indepen�
dent of one another	 To understand the implications
of this assumption� it�s helpful to compare the vector
and scalar methods for binary switches �d � ��	 Fig�
ure � shows the Markov chain corresponding to the vector
model of a two port switch� with �ve bu�er slots	 In the
illustration� a state �i� j� represents a switch in which i
packets are destined for output � and j are destined for
output �	 In the scalar method� a state corresponds to
the sum s � i� j� so that the states of the scalar method
correspond to sets of states in the vector method that lie
along a common diagonal� as shown in the �gure	
If a switch is in state �i� j� �vector method� where i or

j but not both are equal to zero� then there is one ac�
tive output	 We refer to these as boundary states	 The
scalar method calculates the probability of these bound�
ary states relative to the non�boundary states along a
given diagonal by assuming that the packet destinations



bianchi and turner� improved queueing analysis of shared buffer switching networks �

Figure �� Comparison of Probabilities for Diagonal States

are independent	 This can be interpreted as assigning
probabilities to the states along a given diagonal accord�
ing to a binomial distribution	 In particular� given that
there are s packets in a switch� the probability assigned
to state �i� j� is

�
s

i

�
�����s �where s � i � j�	

Figure � plots these probabilities as a function of i�
when s � �� �the solid curve with the peak at ��	 The
dashed curve in the �gure is a measured frequency distri�
bution taken from a simulation of a � port switch with a
�
 packet bu�er and an o�ered load of ����	 In this sim�
ulation� the frequency of the various states of the vector
method were recorded� and the relative frequencies were
plotted for those states �i� j� with i� j � ��	 �When the
o�ered load is ����� these states account for almost all
of the probability	� Note that the binomial assignment
grossly under�estimates the probability of the boundary
states �i � � and i � ���	 Also� note that the rela�
tive frequencies of the states on the diagonal appear to
be well�approximated by a uniform distribution� that is
equal values for all probabilities along a given diagonal	
An intuitive justi�cation for this can be found by con�
sidering the steady�state situation for a heavily loaded
switch	 In this case� one would expect that the state of
a switch would move back and forth along a diagonal as
packets come and go	 While there would be some move�
ment across diagonals as well� the predominantmovement
would be along a diagonal	 Since there is equal probabil�
ity of moving in either direction along a diagonal� one
would expect the distribution along a diagonal to be ap�
proximately uniform	 This reasoning leads to the uniform
scalar method in which� when determining the number of
active outputs that a switch has� we assume that the set
of states of the underlying vector method corresponding
to a given state of the scalar method are equally likely	
The equations for the uniform method are similar to

those for the original scalar method	 In fact� the only

things we need change are our approximations �ai�s� and
�Yd�c� s�	 De�ne� 	�s� d� to be the number of ways d dis�
tinct non�negative integers can add up to s	 For example
	��� �� � 
 because there are 
 di�erent ordered triples
whose sum is �	 It is easy to show that

	�s� d� �

�
s� d� �

d� �

�

There are 	�s� d��� states of the underlying vector model
in which a switch with s cells contains no cell for some
particular output	 Hence� by the uniform assumption�
a switch with s cells in its bu�er has no cell for some
particular output with probability 	�s� d����	�s� d�� and
�ai�s� � � � 	�s� d � ���	�s� d�	 Similarly� if we �x some
subset A of the outputs of a switch� then if jAj � c� the
number of states in the underlying vector model in which
A is the set of active outputs is 	�s � c� c�	 So by the
uniform assumption� the probability that A is the set of
active outputs is 	�s � c� c��	�s� d� and

�Yd�c� s� �

�
d

c

�
	�s � c� c�

	�s� d�

The values of 	 can be pre�computed and stored in a
table� so the amount of computation required for the uni�
form method is essentially the same as for the original
scalar method	 Figure � shows the maximum through�
put for single stage switches computed using the uniform
method	 The uniform method under�estimates the maxi�
mum throughput of these networks by a substantial mar�
gin and so is only marginallymore useful than the original
method	 Nonetheless� as we shall see in the next section�
it provides the basis for another method that is consider�
ably better	
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III� The Bidimensional Method

The two scalar methods attempt to use a single number
to summarize the state of a switch	 To obtain better
accuracy� the bidimensional model keeps track of both
the number of packets in a switch and the number of
active outputs	
Let the state of a switch be a pair �s� c� where s is the

number of packets and c is the number of active outputs	
Then

�i�s�� c�� �
X

�s��c��

�i�s�� c���i��s�� c��� �s�� c���

���s�� c��� �s�� c��� �X
� � j� � d

s� � j� � j� � s�

pi�j�� s��qi�j�� c��R�s�� c�� j�� j�� c��

where R�s�� c�� j�� j�� c�� is the probability that if a switch
is initially in state �s�� c�� and then j� packets arrive and
j� leave� that the new state has c� active outputs	 Note
that in the bidimensional method� the the number of cells
that leave �qi� depend not on the number of stored cells
but just on the number of active outputs	
To compute R� we consider an imaginary intermediate

state following the departure of the j� packets leaving
the switch� but before the arrival of the j� entering pack�
ets	 The probability that there are exactly c active out�
puts in this intermediate state is R�s�� c�� �� j�� c� and the
probability that we go from an intermediate state with c
active outputs to a �nal state with c� active outputs is
R�s� � j�� c� j�� �� c��	 This leads to the recurrence	

R�s�� c�� j�� j�� c�� �X
��c��j��c�c�

R�s�� c�� �� j�� c�R�s� � j�� c� j�� �� c��

Note that R�s�� c�� �� j�� h� is independent of j� and that
R�s� � j�� h� j�� �� c�� is independent of both s� and
j�	 So if we de�ne S�s� c�� j� c�� � R�s� c�� �� j� c�� and
T �c�� j� c�� � R�x� c�� j� �� c��� the sum above is equal to

X
��c��j��c�c�

S�s�� c�� j�� c�T �c� j�� c��

To determine S�s� c�� j� c��� we introduce the term min�

imally active to describe an output for which there is
exactly one packet and note that if exactly c of the c�
active outputs are minimally active that we will end up
with c� active outputs if and only if exactly c�� c� of the
j packets that leave belong to minimally active outputs	
This occurs with probability

�
c

c� � c�

��
c� � c

j � c� � c�

���
c�
j

�

Let A be any �xed subset of the set of active c� active
outputs	 If jAj � c� then there are 	�s � �c� � c� c� � c�
states of the underlying vector model in which A is the set

of minimally active outputs	 Since there are 	�s� c�� c��
states of the underlying vector model in which the c�
outputs are active� the probability that A is the set of
minimally active outputs is

	�s � �c� � c� c� � c��	�s � c�� c��

These observations yield the approximation

�S�s� c�� j� c�� �
X

���c��s�c�c�

�
c�
c

�
	�s � �c� � c� c� � c�

	�s � c�� c���
c

c� � c�

��
c� � c

j � c� � c�

���
c�
j

�

We can compute T exactly� using the recurrence

T �c�� j� c�� �
c�
d
T �c�� j � �� c��

�

�
��

c� � �

d

�
T �c�� j � �� c� � ��

when c� � c� � c�� j and the boundary case T �c� j� c� �
�c�d�j 	 It remains only to give the equations for p and q	

pi�j� s� � B�j�minfd�B � sg� ai�

ai �
X
s�c

�c�d��i���s� c�

qi�j� c� � B�j� c� bi�

bi �
X
s�c

�i���s� c�minf�� �B � s��dg

For computational purposes� �S and T can be pre�
computed and stored in a table	 �S is the larger of the
two and consumes � Mbytes for d � �
� B�d � �	 In fact�
one can go further and pre�compute R	 This will save
time during the iterative computation of the steady�state
probabilities but requires substantially more memory ���
Mbytes for d � �
� B�d � ��	
The maximum throughput predicted by the bidimen�

sional method is shown in Figure �	 Notice that it closely
tracks the simulation results� over�estimating slightly for
small d and under�estimating slightly for large d	 Figure �
shows the loss predicted by the bidimensional method	
Again note the close match with the simulation results	

IV� Interval and Threshold Methods

While the bidimensional method o�ers a big improve�
ment in accuracy over the scalar methods� it has a sub�
stantially higher computational cost	 We can reduce the
computational cost by keeping less detailed information
about the number of active outputs	 The interval method

divides the range ��� d� into two or more intervals and
keeps track of the probability that the number of active
outputs is in a particular interval	
Let �s� C� denote a switch state where C � �
� h� is an

interval	 Then�

�i�s�� C�� �
X

�s��C��

�i�s�� C���i��s�� C��� �s�� C���
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Figure �� Running Times of Analysis Methods

�i��s�� C��� �s�� C��� �
X
c��C�

Z�c�� s�� C��

X
� � j� � d

s� � j� � j� � s�

pi�j�� s��qi�j�� c��R
��s�� c�� j�� j�� C��

where Z�c� s� C� is the probability that there are exactly
c active outputs� given that the state is �s� C� and where
R��s�� c�� j�� j�� C�� is the probability that if a switch ini�
tially has s� packets and c� active outputs and then j�
packets arrive and j� leave� that the number of active
outputs in the new state is in C�	 We can compute R� as
follows	

R��s�� c�� j�� j�� C� �
X
c�C

R�s�� c�� j�� j�� c�

where R is computed as in the previous section	 To com�
pute Z�c� s� C�� we note that in the underlying vector
model� there are exactly 	�s � c� c� states in which some
particular set of size c contains all the active outputs and
that if C � �
� h�� there are

�
d
c

�
sets of size c to choose

from	 Hence� using the uniform assumption we get the
following estimate for Z	

�Z�c� s� C� �

�
d

c

�
	�s � c� c�P

��c��h�s

�
d
c�

�
	�s � c�� c��

�An earlier short version of this paper ��� contained an
error in the equation for �Z 	� The equations for p and q
are similar to the ones for the bidimensional method	

pi�j� s� � B�j�minfd�B � sg� ai�

ai �
X

s�C�c�C

Z�c� s� C��c�d��i���s� c�

qi�j� c� � B�j� c� bi�

bi �
X
s�C

�i���s� C�minf�� �B � s��dg

If the number of intervals is not too large R� can be pre�
computed and stored	 We de�ne the threshold method

to be the particular case of the interval method in which
there are just two intervals	 In this case� the table for R�

requires � Mbytes for d � �
� B�d � �	
Figure � shows the maximum throughput predicted by

the threshold method	 To produce these results� a variety
of thresholds were tried and the results for the thresholds
that produced the closest match to the simulation results
were plotted	 In general� the threshold method yields
results that lie between the uniform scalar and bidimen�
sional methods	

V� Complexity Analysis

In this section� we look at the running time required
for analysis via the various methods and compare to the
running time for simulation	 For an n port network� let
k � logd n be the number of stages	 Consideration of
the equations for each of the methods studied shows that
for large values of d and B�d � �� the running time can
be approximated by Cmk

�
B
d

�
dr where C is the time for

a basic step in the computation� m is number of itera�
tions required for convergence and r � � for the scalar
methods� r � � for the threshold method and r � 

for the bidimensional model� assuming that S and T are
pre�computed	 From experimental measurements� we�ve
found that C is typically around �� �s on a SparcStation
� and m is typically around ���	
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Figure 
� Comparison of Analysis and Simulation Run Times

Figure � compares the measured run times for the dif�
ferent analytical methods to one another and to that pre�
dicted by the above equations� as a function of d	 Note
that the times have all been divided by d� to compress
the vertical axis and simplify comparisons	 We note that
over the range of values shown� the running times indi�
cated by the above analysis give a crude� but still useful
approximation	 For the bidimensional case� the running
time matches Cmk�B�d�d	 more closely than the pre�
dicted Cmk�B�d�d
	 We expect that for larger values of
d� the predicted asymptotic behavior would be observed�
but have not veri�ed that	

We can do a similar analysis of the running time for
a switch simulation	 The simulation time takes the form
C�m�kdk where C � is the time to simulate one time step
at one switch element divided by d and m� is the number
of iterations required for the simulation	 For our simula�
tion� we have found that C� is around �� �s and m� can
be anywhere from ��� to ��
 depending on the data of
interest	 �This of course� is for uniform random tra
c
with Bernoulli arrivals	� For throughput measurements�
we have found m� � ��� to be adequate for obtaining
statistically reliable results	

The analysis is most attractive in comparison to simu�
lation for large networks	 This can be seen in a concrete
way in Figure 
 which compares the running time esti�
mates for the analysis and simulation for networks with
up to �
���� ports	 These comparisons were made us�
ing the values of C � �� �s� m � ���� C� � �� �s and
m� � ��� ���	 Note that in this comparison� the bidimen�
sional method can be more expensive than simulation�
but it still retains an advantage for the largest networks
and for smaller values of d	

VI� Closing Remarks

Figure � shows the maximum throughput for multi�
stage networks constructed from switches of various sizes	
These curves show that as the number of stages in a net�
work increases� all the analysis methods overestimate the
throughput	 This can be explained by the fact that none
of the methods account for correlations between the states
of switches in di�erent stages	 This is a common fail�
ing for this entire class of methods� including the vector
method of Monterosso and Pattavina	 These correlations
are strongest for networks with lots of stages and small
switches	 For networks constructed from larger switches�
the inter�stage correlations are relatively weak� allowing
more reliable throughput predictions	 In particular� we
see that the bidimensional method gives acceptable re�
sults for switches with d � � and even the threshold
method provides reasonable accuracy	
We have applied the bidimensional analysis method to

determine packet loss in a network with mixed results	
In realistic system con�gurations� a multistage network
is typically preceded by a collection of input bu�ers with
�ow control between the network and the input bu�ers	
Packet loss can occur at these input bu�ers as the load
o�ered to the network approaches its maximum through�
put	 The bidimensional method can accurately predict
packet loss for single stage networks with no input queues
�as shown in Figure �� or very small input queues	 How�
ever� when larger input queues are added �� � slots�� the
accuracy rapidly deteriorates	 This is unfortunate since
the ability to accurately predict packet loss with a fast
analytical method would o�er great advantages over sim�
ulation	 We have considered two possible explanations
for the inaccuracy of the bidimensional method in the
presence of input queues	 The �rst is that the extension
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Figure �� Throughput of Larger Networks

of the bidimensional method to model the input queues�
treats the di�erent queues feeding a single switch as in�
dependent of one another� where in fact their states are
strongly correlated	 Unfortunately� an alternative model
of the input queue which captures these correlations pro�
vides only a marginal improvement in the prediction of
packet loss	 The second �and more important� explana�
tion was that the analysis ignores time correlations that
become increasingly signi�cant as the amount of input
bu�ering is increased	 Another model was developed to
attempt to capture the e�ects of these time correlations
and while the results were far more accurate� the com�
plexity of the model makes it of little practical value	

All the analysis methods presented above can be ex�
tended to handle networks that use di�erent �ow control
methods	 We present here the equations for the bidimen�
sional methods	 The scalar and interval methods can be
extended to handle the di�erent �ow control options in
a similar fashion	 For local acknowledgement �ow con�
trol� the equations for �i and �i are unchanged but the
equations for pi and qi require some modi�cation	

pi�j� s� �

��
	

� if j � B � s
B�� B � s� d� ai� if j � B � s
B�j� d� ai� if j � B � s

ai �
X
s�c

�c�d��i���s� c�

where we use the notation B�� B � s� d� ai� to denoteP
j�B�sB�j� d� ai�	 In the context of acknowledgement

�ow control� bi is de�ned as the probability that a down�
stream switch acknowledges a packet sent to it	 If the
downstream switch is in state �s� c� when a packet is sent
to it and there are r packets arriving on other inputs
that are contending for the B � s available slots in the
downstream switch�s bu�er� then the given packet is ac�
knowledged with probability � if B � s � r and with
probability �B � s���r � �� otherwise	 The probability
that r packets are contending is B�r� d� �� ai���� so

qi�j� c� � B�j� c� bi�

bi �
X
s�c

�i���s� c�

X
��r�d��

B�r� d� �� ai���min



��
B � s

r � �

�

For global grant �ow control� the number of packets
that enter a switch depend� not on the number initially
stored� but rather on the number in the bu�er after the
packets that are leaving have done so	 Hence� in the
global �ow control context� we de�ne pi�j� x� to be the
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probability that j packets arrive and are retained at a
switch given that x is the di�erence between the num�
ber of packets originally present and the number leaving	
This requires changing the equation for �i	

�i��s�� c��� �s�� c��� �X
� � j� � d

s� � j� � j� � s�

pi�j�� s� � j��qi�j�� c��R�s�� c�� j�� j�� c��

To compute bi� we note that if a downstream switch is
in state �s� c� and h packets leave� that a given upstream
neighbor receives a grant with probability � if B�s�h �
d and with probability �B�s�h��d otherwise	 Since the
probability of h packets leaving is simply qi���h� c��

bi �
X
s�c

�i���s� c�

X
��h�d�c

qi���h� c�minf�� �B � s � h��dg

All the other equations are identical to the local grant
case	

In global acknowledgement �ow control� once again�
the number of packets that enter a switch depends on
number stored in the switch after the packets that are
leaving have done so	

�i��s�� c��� �s�� c��� �X
� � j� � d

s� � j� � j� � s�

pi�j�� s� � j��qi�j�� c��R�s�� c�� j�� j�� c��

To compute bi� we note that if a downstream switch is
in state �s� c� when a packet is sent to it and r packets
arrive on the other inputs while h packets leave� that the
given upstream neighbor receives an acknowledgement
with probability � if B � s � h � r and with probability
�B � s � h���r � �� otherwise	 Hence�

bi �
X
s�c

�i���s� c�

X
� � r � d � �
� � h � d� c

B�r� d� �� ai���qi���h� c�min



��
B � s� h

r � �

�

The remaining equations are identical to the local ac�
knowledgement case	
The equations for acknowledgement �ow control can be

trivially modi�ed to handle systems without �ow control	
In particular� we can model non��ow control systems in
which the number of arriving packets accepted by a switch
is limited to the number of available bu�er slots at the
start of the cycle� by using the equations for the local ac�
knowledgement case� but letting bi � �	 Similarly� we can
model non��ow control systems in which arriving pack�
ets can move into bu�er slots being vacated by departing
packets� by using the equations for the global acknowl�
edgement case� with bi � �	 For systems without �ow

control� there are no correlations between stages and the
accuracy for multistage networks is similar to that for
single stage networks	
In summary� we have developed several methods of an�

alyzing networks constructed from shared bu�er switches	
The bidimensional method yields excellent predictions of
throughput for networks constructed from large switches	
While we�ve only tested the interval method with two in�
tervals� we �nd that even this case yields respectable ac�
curacy	 We have concentrated on maximum throughput�
as this is the performance metric of most importance in
switching system design	 In high speed switching appli�
cations� so long as a network is operated below its maxi�
mum throughput� the queueing delay will be satisfactory
and packet loss can be reduced to acceptable levels by en�
gineering the input bu�ers appropriately	 Methods that
can accurately predict packet loss for networks preceded
by input bu�ers could be useful� but in practice� conser�
vative engineering rules for these bu�ers can be applied
with little impact on system cost	
These methods do not model inter�stage correlations

which become signi�cant in large networks constructed
from small switches	 This is one possible direction for
future research	 Another is in extending the methods
for nonuniform tra
c as has been done for other types of
analysis in ���	 Improving the computational performance
of these methods would be very useful	 The bidimen�
sional method� in particular� can be very time�consuming	
One way to improve the computational performance is
to modify the basic iterative algorithm	 The basic algo�
rithm computes the transition probabilities �i from the
current state probabilities ��i� and then computes new
state probabilities from the previous values by a single
application of the balance equations for �i	 By applying
the balance equations multiple times each time we com�
pute values of �i� we can reduce the number of iterations
signi�cantly	 We have found that this variation of the ba�
sic method can reduce the overall computation time by
an order of magnitude	
We have not fully explored the possibilities of the in�

terval method	 We suspect that by using three or four
intervals one could match the accuracy of the bidimen�
sional method with a lot less computational e�ort	 There
remains the problem of selecting the intervals	 Our ap�
proach of using simulation to �tune the method is not
fully satisfactory	 The interval method can also be ex�
tended so that the intervals are dependent on the number
of packets in a switch	 For example� when just two inter�
vals are used �the threshold method�� we would expect
better results if the threshold increases as the number of
stored packets increases	 Ideally� the probability associ�
ated with the two intervals for any given value of s should
be approximately equal	 This objective can be approxi�
mated by selecting the interval so as to divide the corre�
sponding states of the underlying vector model equally	
That is� for each value of s� we select a threshold t for
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which X
c�t

	�s� c� �
X
c�t

	�s� c�

The best approach is probably to adjust the threshold
dynamically to make these probabilities as nearly equal
as possible	
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