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Abstract 

This paper describes several methods for analyzing 
the queueing behavior ofswitching networks with Aow 
control and shared buffer switches. I t  compares the 
various methods on the basis of accuracy and compu- 
tation speed, where the performance metric of most 
concern is the maximum throughput. The best of 
the methods accurately predicts throughput for multi- 
stage networks constructed from large switches (> 8 
ports). 

1 Introduction 

In a widely cited paper [2], Jenq describes a method 
for analyzing the queueing behavior of binary banyan 
networks with a single buffer at each switch input. 
The method, while not yielding closed form solutions, 
does permit the efficient computation of the delay, 
throughput and packet loss performance of a network. 
Szymanski and Shaikh [5] extended Jenq’s method to 
switching systems constructed from switches with an 
arbitrary number of inputs and an arbitrary number 
of buffer slots. 

Turner [6] developed a similar method for switch- 
ing networks with shared buffering. Recently, Pat- 
tavina and Monterosso [4] developed a new approach 
based on an exact model of a single shared-buffer 
switch element. This model, while highly accurate is 
computationally intractable for networks constructed 
from large switches. In this paper we describe a se- 
ries of improvements to Turner’s method which rival 
the accuracy of Pattavina and Monterosso’s method 
while maintaining the computational effectiveness of 
Turner’s method. 

The analysis considered here is for delta networks 
(see [SI) constructed from switches with d input and 
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output ports. We use n to denote the number of net- 
work inputs and outputs and let k = logdn denote 
the number of stages in the network. Each switch 
used to construct the network is assumed to have a 
single shared buffer with B buffer slots. Packets from 
any input can be placed in any available buffer slot 
and packets can proceed from any buffer slot to the 
desired output. Packets arriving at the inputs to the 
network are assumed to be assigned independent ran- 
dom output addresses. 

Typically these systems are operated in a time- 
slotted fashion, with fixed length packets progressing 
synchronously from stage to stage. Low level flow con- 
trol mechanisms regulate the flow of packets between 
stages to prevent packets from being lost due to buffer 
overflow. Consequently, we can think of the system as 
operating in two phases. In one phase, flow control 
information passes through the network from right to 
left. In the other, packets flow from left to right, in 
accordance with the flow control information. There 
are several types of flow control that can be used. We 
focus here on local grant flow control; other types are 
studied in [l]. Consider a shared buffer switch em- 
ploying local/grant flow control and assume that the 
number of unoccupied buffer slots is 2. The switch 
grants permission to send to min{z, d }  of its upstream 
neighbors at the start of an operation cycle of the net- 
work. If 3: < d, we assume that z predecessors are 
chosen at random. Local/grant control is the easiest 
to implement and appears to have most practical in- 
terest while global/acknowledgement control provides 
the best performance. 

Turner [6] models a network of shared buffer 
switches by modeling a shared buffer switch as a B + 1 
state Markov chain. We review this result briefly here. 
Let T ~ ( S )  be the steady state probability that a sta.ge i 
switch contains exactly s packets a.nd we let X(s1, s2) 

be the probability that a switch with s1 packets dur- 
ing a given cycle contains sg packets in  the subsequent 
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cycle. In the steady state, 

r i ( s 2 )  = r i ( s l ) ~ i ( s l ,  ~ 2 )  
O<sl<B 

Let pj(j, s) be the probability that j packets enter 
a stage i switch that has s packets in its buffer and let 
q i ( j ,  s) be the probability that j packets leave a stage 
i switch that has s packets in its buffer. Then 

X i ( S 1 ,  = pi(h, sl)qi(h - (sa  - S I ) ,  ~ 1 )  
O ,aa-a i<h<d  

Let ai be the probability that any given predecessor 
of a stage i switch has a packet for it. Then if we let 
m = min { d ,  B - s}, 

We take 0 1  to be the offered load. Note that the equa- 
tion for ai assumes that the destinations of the packets 
in an upstream switch are independent of one another. 

Let bi be the probability that a successor of a stage 
i switch provides a grant and let Yd(r, s) be the prob- 
ability that a switch that contains s packets, contains 
packets for exactly r distinct outputs. An output of 
a switch is called active if the switch contains some 
packet which is to be sent out using that output, so 
Yd(r,s) is the probability that a d port switch with s 
packets has r active outputs. 

h 
bi = r i + l ( h ) +  C ~ r i + l ( B - h )  

O<h<B-d  O<h<d-1 

We assume that network outputs can always accept 
packets and model this by letting b k  = 1. 

Y is easily calculated, if we assume all distributions 
of s packets to the d outputs are equally likely. This is 
just a classical distribution problem. For the purposes 
of calculation, we can use the recurrence 

d - ( r - 1 )  
d 

Yd(r - 1 ,  s - 1) Y d ( P ,  s) = fY&, s - 1 )  + 
d 

when 0 < r 5 s ,  Yd(r,s)  = 1 when s = r = 0 and 
Yd(r,s)  = 0 otherwise. Note that Yd(r,s)  is inde- 
pendent of the stage of the switch in the network. 
For computational purposes, it is most convenient to 

merely pre-compute a table with the values of Y re- 
quired. We compute performance parameters by as- 
suming a set of initial values for ~ i ( j ) ,  then use these 
and the equations given above to compute Xi(s1, sa). 
These, together with the steady-state equations for the 
Markov chain are used to obtain new values of r i ( j )  
and we iterate until we obtain convergence. We can 
now easily obtain the performance metrics of interest. 
The carried load is given by 

d B  

ZjQk(jl S)Tk(S) 
j = O  s=O 

The packet loss rate is the ratio of the offered load 
minus the carried load to the offered load. This type 
of analysis is referred to as the scalar method. 

The scalar method is reasonably fast, even for 
switches with large values of B and d.  The com- 
putation is dominated by the time required to com- 
pute the transition probabilities X i .  If iterations 
are required for convergence, this is proportional to 
m(B/d)d3 logd n, while the time required for simu- 
lation is proportional to m’?zlogdn, where ?n’ is the 
number of simulations steps required to get accurate 
results. Typically m << m’ and the elementary step 
in the analysis is faster to compute than the elemen- 
tary step in the simulation (which typically involves 
making some routing decision on a packet data struc- 
ture and moving it from one queue to another). More- 
over, for networks with more than 3 stages d3 < 11, so 
the analysis’ computational advantage grows with net- 
work size. While convergence is not guaranteed, our 
experience has shown convergence to he fairly rapid 
except when the offered load is approximately equal 
to the network’s maximum throughput. 

Notice that the calculation of Yd(l’, s) given above, 
and the calculation of ai rely on the assumption that 
the addresses of the packets stored within a switch’s 
buffer are independent. This is not in  fact the case. 
While it is true that the addresses of packets arriving 
at a switch are independent (given the input traffic 
assumptions), buffered packets are correlated as a re- 
sult of having contended for outputs. The correlations 
are strongest when d is small and B large. The inde- 
pendence assumption causes the ana.lysis to overesti- 
mate the maximum throughput. This is illustrated in 
Figure 1 which shows the maximum load that can be 
achieved by single stage networks for various values 
of d and B. Note that the throughput predicted by 
the scalar method can exceed that of the analysis by 
more than 10%. Figure 2 shows the packet loss expe- 
rienced in several single stage networks as a function 
of offered load. Note that the scalar method grossly 
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Figure 1: Throughput of Single Stage Networks 

under-estimates the loss rate when compared to sim- 
ulation. 

Monterosso and Pattavina [4] have developed an 
exact model of a shared buffer switch which they call 
the vector method. In this approach, the state of a 
switch is represented by a vector [SI,. ... S d ] ,  where 
sj  denotes the number of stored packets for output 
j. The drawback of this method is of course that 
the number of states grows exponentially with d and 
the number of transition probabilities is roughly the 
square of the number of states. While Pattavina and 
Monterosso have taken care to avoid explicit repre- 
sentation of redundant states, a 16 port switch with 
32 buffer slots still has about 30 thousand states and 
there are more than 10 million transition probabili- 
ties. In the scalar model, on the other hand, the same 
switch has 33 states and fewer than 1000 transition 
probabilities. These considerations limit the applica- 
bility of the vector method to networks constructed 
from small switches ( d  5 4). The objective of this 
paper is to develop an analytical method which rivals 
the accuracy of the vector method while retaining the 
computational effectiveness of the scalar method. We 
in fact describe three techniques. The first is a vari- 
ant of the scalar method, which we call the uniform 
scalar method. The second method models the state 
of a switch using two variables and is called the bidi- 
mensional method. As we will see, the bidimensional 
method is the most accurate but also more computa- 
tionally expensive. Consequently, we have developed 

a third method called the interval method 
intermediate in both accuracy and speed. 

which is 

2 The Uniform Scalar Method 

The scalar method of queueing analysis computes 
the number of active outputs that a switch has us- 
ing the assumption that if s packets are stored in a 
switch’s buffer, that the outputs those packets are 
to take are independent of one another. To under- 
stand the implications of this assumption, it’s help- 
ful to compare the vector and scalar inethods for bi- 
nary switches (d = 2). Figure 3 shows the Markov 
chain corresponding to the vector model of a two port 
switch, with five buffer slots. I n  the illustration, a 
state (i,j) represents a switch in which i packets are 
destined for output 0 and j are destined for output 
1. In the scalar method, a state corresponds to the 
sum s = i + j ,  so that the states of the scalar method 
correspond to sets of states in the vector method that 
lie along a common diagonal, as shown in the figure. 

If a switch is in state (i, j )  (vector method) where i 
or j but not both are equal to zero, then there is one 
active output. We refer to these a.s boundary sta.tes. 
The scalar method calculates the probability of these 
boundary states relative to the non-boundary states 
along a given diagonal by assuming that the packet 
destinations are independent. This can be interpreted 
as assigning probabilites to the states along a given 
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Figure 2: Packet Loss in Single Stage Networks 

diagonal according to a binomial distribution. In par- 
ticular, given that there are s packets in a switch, the 
probability assigned to state ( i , j )  is (i)(1/2)i (where 

Comparison of the binomial probabilities with the 
frequency distributions observed during simulation 
runs (see [l]) reveals that the binomial assignment 
grossly under-estimates the probability of the bound- 
ary states (i = 0 and i = 14). I t  also makes clear 
that the relative frequencies of the states on the diag- 
onal are well-approximated by a uniform distribution, 
that is equal values for all probabilities along a given 
diagnonal. An intuitive justification for this can be 
found by considering the steady-state situation for a 
heavily loaded switch. In this case, one would ex- 
pect that the state of a switch would move back and 
forth along a diagonal as packets come and go. While 
there would be some movement across diagonals as 
well, the predominant movement would be along a di- 
agonal. Since there is equal probability of moving in 
either direction along a diagonal, one would expect 
the distribution along a diagonal to be approximately 
uniform. This reasoning leads to the uniform scalar 
method in which, when determining the number of ac- 
tive outputs that a switch has, we assume that the set 
of states of the underlying vector method correspond- 
ing to a given state of the scalar method are equally 
likely. 

The equations for the uniform method are similar to 
those for the original scalar method. The only equa- 

s = i + j). 

tions that must be changed are the ones for ai (the 
probability that the predecessor of a stage i switch 
has a packet for it) and q i ( j ,  s )  (the probability that j 
packets leave a stage i switch when in state s ) .  

O<s<B 

where a ( s , d )  is the number of ways d distinct non- 
negative integers can add to s. 

The values of U can be pre-computed and stored in 
a table, so the amount of computation required for 
the uniform method is essentially the same as for the 
original scalar method. Figure 1 shows the maximum 
througput for single stage switches computed using 
the uniform method. The uniform method under- 
estimates the maximum throughput of these networks 
by a substantial margin and so is only marginally more 
useful than the original method. Nonetheless, as we 
shall see in the next section, it provides the basis for 
another method that is considerably better. 
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Figure 3: Comparison of Vector and Scalar Methods for Binary Switches 

3 The Bidimensional Method 

The two scalar methods attempt to use a single 
number to summarize the state of a switch. To obtain 
better accuracy, the bidimensional model keeps track 
of both the number of packets in a switch and the 
number of active outputs. 

Let the state of a switch be a pair (s,c) where s is 
the number of packets and c is the number of active 
outputs. Then 

ri(s2, ~ 2 )  = 

A((S1 7 Cl), (sz, c2)) = 

ri(sl,Cl)Ai((sl, c l ) ,  ( ~ 2 ,  ~ 2 ) )  

(a1,cl) 

Pi(j,sl)qi(sl+ j - ~ 2 ,  ~ 1 )  
O<j<d 

R(s1, c1, i, Sl + j - 32, c2) 

where R(s1, c1, j 1 ,  j ~ ,  cz) is the probability that if a 
switch is initially in state ( S I ,  c1) and then j l  packets 
arrive and j z  leave, that the new state is (SI + j 1  - 
j z ,  cz). To compute R we must make some assump- 
tion about how the packets are distributed among the 
various outputs. Based on the reasoning discussed in 
the last section, we use a uniform assumption; that is, 
that all ways of distributing the SI packets among the 
c1 active outputs are equally likely. We can compute 
R using a recurrence 

R(s1, c1, jl, J.2, cz) = 

R(Sl,Cl,O,jZ,h)R(Sl - j 2 , h , j 1 , 0 , 4  
O,c l - j , lh<cl  

Note that R(sl ,c l ,O,jz ,h)  is independent of j 1  and 
that R(s1 - j 2 ,  h,jl,O, cz) is independent of both s1 

and j z .  So if we define S(s ,c , j , c ’ )  = R(s,c ,O,j ,c’)  
and T ( c , j ,  c’) = R(z, c, j ,  0, c’), the sum above is equal 
to 

S(S1 ,  c1, j z ,  h)T(h, j l  7 c2) 
O,ci-ja<h<ci 

where 

S(S, c, j ,  c’) = 

c a(s - 2c + ?-, c - 1’) (c-cJ r ( j - c + c ’ )  c-r  (J a(s - c ,c )  
O,Zc-asr<c 

T(c ,  j ,  c’) = 
C’ 

d 
--T(c, j  - 1,c’) + ( 1 - - “’; 1) T(c,j  - 1,c’ -  1 )  

T ( c ,  j ,  c )  = ( 4 4 3  

It remains only to give the equations for p and q.  

pi(j, S) = B(j, min{d, B - s } ,  ui )  

ai = i s i - i ( s , c )  

O s a < B  
0 < c < d , s  

qi( j ,c)  = B(j,c,bi) 
r 

+ B i + l ( S ,  c)(B - s ) / d  
B-d<a< B 

where B(j, n, p) = (I)@ (1  - p ) “ - j .  
For computational purposes, S and T can be pre- 

computed and stored in a table. S is the larger of the 
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two and consumes 2 Mbytes for d = 16, B/d = 4. 
In fact, one can go further and precompute R. This 
will save time during the iterative computation of the 
steady-state probabilities but requires substantially 
more memory (32 Mbytes for d = 16, B/d = 4). 

The maximum throughput predicted by the bidi- 
mensional method is shown in Figure 1. Notice that 
it closely tracks the simulation results, over-estimating 
slightly for small d and under-estimating slightly for 
large d .  Figure 2 shows the loss predicted by the bidi- 
mensional method. Again note the close match with 
the simulation results. 

4 Interval and Threshold Methods 

While the bidimensional method offers a big im- 
provement in accuracy over the scalar methods, it  has 
a substantially higher computational cost. We can re- 
duce the computational cost by keeping less detailed 
information about the number of active outputs. The 
interval method divides the range [O,d ]  into two or 
more intervals and keeps track of the probability that 
the number of active outputs is in a particular interval. 

Let (s, C) denote a switch state where C = [e, h] is 
an interval. Then, 

If the number of intervals is not too large R' can 
be pre-computed and stored. We define the thresh- 
old method to be the particular case of the interval 
method in which there are just two intervals. In this 
case, the table for R' requires 4 Mbytes for d = 16, 
B / d  = 4. 

Figure 1 shows the maximum throughput predicted 
by the threshold method. To produce these results, 
a variety of thresholds were tried and the results for 
the thresholds that produced the closest match to 
the simulation results were plotted. It's surprising 
that a model with just twice the state complexity of 
the scalar models can produce results that so closely 
match simulation. 

k((s1, Cl), (32, C2)) = 
E z ( c l , s l , c l )  pi(j ,s l )  

C1,ECl OSjSd 

qi(s1 + j - ~ 2 ,  cl)R'(sl, C I , ~ ,  ~1 + j - s2, C2) 

where Z(c,s,C) is the probability that there are ex- 
actly c active outputs, given that the state is (s,C) 
and where R'(s1, c1, j l ,  j 2 ,  C2) is the probability that 
if a switch initially has s1 packets and cl active out- 
puts and then j 1  packets arrive and j 2  leave, that the 
new state is (SI + jl - j2, C2). We can compute R' 
and Z as follows. 

R'(s1, c1, j i ,  j 2 ,  C )  = R(s1 I c1, j i ,  j 2 ,  C) 
C E C  

where R is defined as in the previous section. The 
equations for p and q are similar to the ones for the 
bidimensional method. 

pi(j, s) = B(j, min{d, B - s}, ai) 

We have studied the running time required for 
the various analysis methods compared to the run- 
ning time for simulation. For an n port network, let 
k = logd n be the number of stages. Consideration of 
the equations for each of the methods studied shows 
that for large values of d and Bld 2 2, the running 
time can be approximated by Cmk (:) d' where C is 
the time for a basic step in the computation, m is num- 
ber of iterations required for convergence and r = 3 
for the scalar methods, r = 4 for the threshold method 
and r = 6 for the bidimensional model, assuming that 
S and T are pre-computed. From experimental mea- 
surements, we've found that C is typically around 10 
ps on a SparcStation 2 and m is typically around 100 
Ius. 

We can do a similar analysis of the running time for 
a switch simulation. The simulation time takes the 
form C'm'kdk where C' is the time to simulate one 
time step at one switch element divided by d and m' 
is the number of iterations required for the simulation. 
For our simulation, we have found that C' is around 
50 ps and m' can be anywhere from lo4 to lo6 de- 
pending on the data of interest. (This of course, is for 
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Figure 4: Throughput of Larger Networks 

uniform random traffic with Bernoulli arrivals.) For 
throughput measurements, we have found m = lo4 to 
be adequate for obtaining statistically reliable results. 
Using these equations to compare running times shows 
that for large networks, even the most computation- 
ally expensive of the analytical methods is substan- 
tially faster than simulation. See [l] for details. 

Figure 4 shows the maximum throughput for mul- 
tistage networks constructed from switches of various 
sizes. These curves show that as the number of stages 
in a network increases, all the analysis methods overes- 
timate the throughput. This can be explained by the 
fact that none of the methods account for correlations 
between the states of switches in different stages. This 
is a common failing for this entire class of methods, 
including the vector method of Monterosso and Pat- 
tavina. These correlations are strongest for networks 
with lots of stages and small switches. For networks 
constructed from larger switches, the inter-stage cor- 
relations are relatively weak, allowing more reliable 
throughput predictions. In particular, we see that 
the bidimensional method gives acceptable results for 
switches with d 2 8. For the threshold method, the 
thresholds used here were the ones found to give the 
best overall accuracy in the single stage case. The 
threshold method's accuracy is sensitive to the amount 
of buffering in a switch. 

We have applied the bidimensional analysis method 
to determine packet loss in a network with mixed re- 
sults. In realistic system configurations, a multistage 

network is typically preceded by a collection of input 
buffers with flow control between the network and the 
input buffers. Packet loss can occur at these input 
buffers as the load offered to the network approaches 
its maximum throughput. The bidimensional method 
can accurately predict packet loss for single stage net- 
works with no input queues (as shown in Figure 2) 
or very small input queues. However, when larger in- 
put queues are added (> 8 slots), the accuracy rapidly 
deteriorates. This is unfortunate since the ability to 
accurately predict packet loss with a fast analytical 
method would offer great advantages over simulation. 
We have considered two possible explanations for the 
inaccuracy of the bidmensional method in the pres- 
ence of input queues. The first is that the extension of 
the bidimensional method to model the input queues, 
treats the different queues feeding a single switch as 
independent of one another, where in fact their states 
are strongly correlated. Unfortunately, an alterna- 
tive model of the input queue which captures these 
correlations provides only a marginal improvement in 
the prediction of packet loss. The second (and more 
important) explanation was that the analysis ignores 
time correlations that become increasingly significant 
as the amount of input buffering is increased. Another 
model was developed to attempt to capture the effects 
of these time correlations and while the results were 
far more accurate, the complexity of the model makes 
it of little practical value. 

In summary, we have developed several methods 
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of analyzing networks constructed from shared buffer 
switches. The bidimensional method yields excellent 
predictions of throughput for networks constructed 
from large switches. The interval method can ap- 
proach the accuracy of the bidimensional method but 
is sensitive to the amount of buffering and the choice 
of intervals. We have concentrated on maximum 
throughput, as this is the performance metric of most 
importance in switching system design. In high speed 
switching applications, so long as a network is oper- 
ated below its maximum throughput, the queueing 
delay will be satisfactory and packet loss can be re- 
duced to acceptable levels by engineering the input 
buffers appropriately. Methods that can accurately 
predict packet loss for networks preceded by input 
buffers could be useful, but in practice, conservative 
engineering rules for these buffers can be applied with 
little impact on system cost. 

These methods do not model inter-stage correla- 
tions which become significant in large networks con- 
structed from small switches. This is one possible di- 
rection for future research. Another is in extending 
the methods for nonuniform traffic as has been done 
for other types of analysis in [3]. Improving the com- 
putational performance of these methods would be 
very useful. The bidimensional method, in particu- 
lar, can be very time-consuming. One way to improve 
the computational performance is to modify the ba- 
sic iterative algorithm. The basic algorithm computes 
the transition probabilites X i  from the current state 
probabilites ( ~ i )  and then computes new state proba- 
bilites from the previous values by a single application 
of the balance equations for x i .  By applying the bal- 
ance equations multiple times each time we compute 
values of Xi ,  we can reduce the number of iterations 
significantly. We have found that this variation of the 
basic method can reduce the overall computation time 
by an order of magnitude. 

We have not fully explored the possibilities of the 
interval method. We suspect that by using three or 
four intervals one could match the accuracy of the 
bidimensional method with a lot less computational ef- 
fort. There remains the problem of selecting the inter- 
vals. Our approach of using simulation to “tune” the 
method is not fully satisfactory. The interval method 
can also be extended so that the intervals are depen- 
dent on the number of packets in a switch. For exam- 
ple, when just two intervals are used (the threshold 
method), we would expect better results if the thresh- 
old increases as the number of stored packets increases. 
Ideally, the probability associated with the two inter- 
vals for any given value of s should be approximately 

equal. This objective can be approximated by select- 
ing the interval so as to divide the corresponding states 
of the underlying vector model equally. That is, for 
each value of s, we select a threshold t for which 

Alternatively, the threshold for each value of s could 
be adjusted dynamically to make these probabilities 
as nearly equal as possible. 

References 

[l] Bianchi, Giuseppe and Jonathan S.  Turner. 
“Improved Queueing Analysis of Shared Buffer 
Switching Networks,” Washington University 
Computer Science Department, WUCS-92-19. 

[a] Jenq, Yih-Chyun. “Performance Analysis of a 
Packet Switch Based on a Single-Buffered Banyan 
Network,” IEEE Journal on Selected Areas in 
Communications, vol. SAC-1, no. G ,  12/83, 1014- 
1021. 

[3] Kim, Hyong Sok and Alberto Leon-Garcia. “Per- 
formance of Buffered Banyan Networks under 
Nonuniform Traffic Patterns,” Proceedings of In- 
focom 88, 4/88. 

[4] Monterosso, Alberto, and Achille Pattavina. 
“Performance Analysis of Multistage Intercon- 
nection Networks with Shared Buffered Switch 
Elements for ATM Switching,” Proceedings of In- 
focom 92, 5/92. 

[5] Szymanski, Ted and Salman Sha.ikh. “Markov 
Chain Analysis of Packet-Switched Banyans with 
Arbitrary Switch Sizes, Queue Sizes, Link Multi- 
plicities and Speedups,” Proceedings of Infocom 
89, 4/89. 

[6] Turner, Jonathan S. “Queueing Analysis of 
Buffered Switching Networks,” Proceedings of 
the International Tele t raffic Congress, June , 
1991. 

1 1 c.3.8 
1399 


