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Abstract

We relate two concepts in graph theory and algorithmic complexity, namely the search number and

the vertex separation of a graph. Let s (G ) denote the search number and vs (G ) denote the vertex separa-

tion of a connected, undirected graph G . We show that vs (G ) ≤ s (G ) ≤ vs (G ) +2 and we give a simple

transformation from G to G ′ such that vs (G ′) = s (G ).

We characterize those trees having a given vertex separation and describe the smallest such trees.

We also note that there exist trees for which the difference between search number and vertex separation

is indeed 2. We give algorithms that, for any tree T , compute vs (T ) in linear time and compute an

optimal layout with respect to vertex separation in time O (n log n ).

Vertex separation has previously been related to progressive black/white pebble demand and has

been shown to be identical to a variant of search number, node search number, and to path width, which

has been related directly to gate matrix layout cost. All these properties are known to be computationally

intractable. For fixed k , an O (n log2 n ) algorithm is known which decides whether a graph has path

width at most k .
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O Italic upper case oh

> greater than
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1. Introduction

We consider connected, undirected graphs. They may have multiple edges or loops, which can

affect the search number, but not the vertex separation.

A separator of an undirected graph is a set of vertices, in the case of a vertex separator, or a set of

edges, in the case of an edge separator, whose removal separates the graph into disconnected sets of ver-

tices. Small separators that divide the graph into roughly equal components were used to describe good

VLSI layouts in [Leiserson 1980] and to describe good divide and conquer algorithms in [Lipton 1980].

Theorems which guarantee the existence of small separators for planar graphs and graphs of fixed genus

have been described in [Lipton 1979] and in [Philipp 1980].

Lengauer [Lengauer 1981] called this a static definition of separator and went on to define a ‘‘vertex

separator game’’. We consider the same concept as Lengauer but describe it in terms of linear layouts.

Let G = (V , E ) be a connected, undirected graph. A linear layout, or simply a layout, of G is a one to

one mapping L :V → {1, 2, ..., |V |}. Let a partial layout of G be a one to one mapping L from a subset

V ′ of V to the set of integers {1, 2, ..., |V ′ | }. For a partial layout L , let VL (i ) = {x c x ∈ V and there

exists y ∈ V such that {x ,y } ∈ E and L (x ) ≤ i and either L (y ) > i or L (y ) is undefined}. The vertex

separation of G with respect to L , denoted by vsL (G ), is defined by vsL (G ) = max

{ |VL (i ) | c 1 ≤ i ≤ |domain(L )|} and the vertex separation of G is defined by vs (G ) = min { vsL (G ) c L is a

layout of all of G }. These concepts are illustrated in Figure 1.1.

**********************

Insert Figure 1.1 here

**********************

For a partial layout L , whose domain is some subset V ′ of all the vertices, and a positive integer i ≤ |V ′ | ,

the partial layout Li is the mapping that agrees with L on the vertices {L −1(1), L −1(2), ..., L −1(i )} and is

undefined elsewhere. An edge e = {x ,y } is dangling in a partial layout L , if x is in the domain of L and

y is not. A vertex x is active in a partial layout L if it is incident to a dangling edge and in domain(L ).

The set of active vertices is denoted AL . The active vertices and dangling edges of a partial layout are

illustrated in Figure 1.2.

**********************

Insert Figure 1.2 here

**********************
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The concept of search number was introduced by Parsons [Parsons 1976] [Parsons 1978]. Infor-

mally, the search number of a graph G , denoted by s (G ), is the minimum number of searchers necessary

to guarantee the capture of a fugitive who can move with arbitrary speed about the edges of the graph.

A search step is one of the following operations: (a) the placing of a searcher on a vertex, (b) the

movement of a searcher along an edge, (c) the removal of a searcher from a vertex. A search sequence is

a sequence of search steps. Initially, all the edges of the graph are contaminated. We say that an edge e

= {x ,y } becomes clear if either there is a searcher on x and a second searcher is moved from x to y or

there is a searcher on x , all edges incident to x except e are clear, and the searcher on x is moved along e

to y . A clear edge e could become contaminated again by the movement or deletion of a searcher which

results in a path without searchers from a contaminated edge to e . A search strategy for a graph is a

search sequence that results in all edges being simultaneously clear. The search number of a graph is the

minimum number of searchers for which a search strategy exists.

LaPaugh [LaPaugh 1983] proved that recontamination can not help. That is, for every graph, there

is a search strategy which does not recontaminate any edge and which uses the minimum number of

searchers. A search strategy that does not recontaminate any edge will be called a progressive search

strategy. The search number problem is then clearly in NP since it is easy to see a non-deterministic,

polynomial time solution to the progressive search problem.

Meggido et al. [Megiddo 1988] showed that determining the search number of a graph is NP-hard,

which implies it is NP-complete because of LaPaugh’s result. They also showed that the search number

of a tree can be determined in linear time. It is known that, for any graph G with maximum vertex degree

3, s (G ) is identical to the cutwidth of G [Makedon 1983]. Hence the search number problem has practi-

cal value, as well as theoretical interest, since finding the cutwidth of a graph is important in some VLSI

layout applications [Leiserson 1980].

A variation on search number, called node search number, was defined by Kirousis and Papadimi-

triou [Kirousis 1986]. For node search number, a searcher does not need to move along an edge, looking

along it is sufficient to catch the fugitive. The authors showed that node search number is identical to

vertex separation +1.

Vertex separation is related, directly or indirectly, to several other important graph properties.

Kinnersley [Kinnersley 1990] showed that vertex separation is identical to path width, a most important

measure of graph structure in the theories of Robertson and Seymour which have been applied to fixed

parameter algorithmic problems by Fellows and Langston [Fellows 1987], [Fellows 1988] and [Fellows

1989]. In [Fellows 1989] it is shown that gate matrix layout cost is equal to path width +1, for all graphs.

Of the many pebble games, the black/white pebble game models the space requirements of non-

deterministic, straight line programs. The progressive black/white pebble game does not allow repeb-

bling. Lengauer [Lengauer 1981] showed that the vertex separation and progressive black/white pebble

problems are polynomially reducible one to the other.
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Algorithms have been given for determining the vertex separation (tree width) of unrestricted

graphs when k is taken to be constant. An algorithm due to Sudborough et al. [Ellis 1983, 1987] requires

time O (n 2k 2 + 4k + 2). That technique was also applied to the fixed parameter version of the hyper-graph

cut width problem, [Miller 1990]. The algorithm described by Arnborg et al. [Arnborg 1987] requires

time O (n k + 2). As a consequence of the work of Robertson and Seymour, we know there exists an O (n 2)

algorithm for the problem, although that theory does not show us how to construct an algorithm. How-

ever, the techniques described by Fellows and Langston [Fellows 1989], can be used to construct such an

O (n 2) algorithm, although it does have a very large constant of proportionality. The algorithm described

by Bodlaender et al. [Bodlaender 1991] requires time O (n log2 n ) and has a constant which is only singly

exponential in k .

In Section 2 we show the relations between vertex separation and search number. In Section 3 we

give a recursive definition of the vertex separation of a tree in terms the vertex separations of its subtrees,

a linear time algorithm for computing the vertex separation of trees, and a O (n log n ) algorithm for com-

puting an optimal layout. We also characterize trees of a particular vertex separation, describe the smal-

lest such trees and note that there exist trees whose vertex separation differs from their search number by

2, i.e., the maximum possible.

2. Relationships Between Vertex Separation and Search Number

In this section we show that the search number of a graph is in the range vs (G ) through vs (G ) +2. We

then show a simple transformation from G to G ′such that s (G ) =vs (G ′).

2.1. Relating Vertex Separation to Search Number

Theorem 2.1 Let G = (V ,E ) be a graph. Then vs (G ) ≤ s (G ) ≤ vs (G ) +2.

Proof From Lemmas 2.1 and 2.3 below. `

Lemma 2.1 vs (G ) ≤ s (G ).

Proof We show how a layout, L , can be constructed from a search strategy, S , so that the vertex separa-

tion of L is no greater than the number of searchers used by S . The argument requires that the strategy be

progressive, and so relies on LaPaugh’s result [LaPaugh 1983] that there exist optimal, progressive stra-

tegies.

At any point in the execution of a strategy, let VL be the set of vertices that are unoccupied by a

searcher and incident to no contaminated edge. Let VS be the set of vertices currently occupied by one or

more searcher, and let VR be the set of vertices remaining, i.e. those that are unoccupied and incident to

some contaminated edge. We note that there can be no edge connecting a node in VL to a node in VR ,

else the node in VL would, by definition of contamination, be incident to a contaminated edge. Hence, at

all points in the strategy, the set VS separates the vertices in VL from those in VR .

We want to consider strategies in which vertices pass only from VR to VS and from there to VL . We

note that no vertex can pass from VR to VL without passing through VS , because an unoccupied vertex
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incident to a contaminated edge must receive a searcher if the edge is to be cleared. Since the strategy is

progressive, no vertex will ever pass back from VL to VR because this would imply recontamination.

We now show that there exist optimal strategies in which no vertex ever passes back from VL to VS ,

i.e. no searcher is ever placed on an unoccupied node incident to no contaminated edges, and no vertex

passes back from VS to VR , i.e. no searcher is removed from a vertex, leaving it unoccupied, unless all

incident edges are clear. We call a strategy which has these properties irredundant. Optimal, irredundant

strategies exist because we can remove redundant moves from an optimal progressive strategy without

destroying its effectiveness, as we now show.

Firstly consider the history of a searcher who at some point arrives at a vacant vertex, none of

whose incident edges are contaminated, causing the vertex to move from VL to VS . We can remove from

the sequence of moves taken by this searcher any subsequence involving movement along a clear edge or

placement on the empty vertex without affecting the remainder of the sequence. Of course removal and

placement moves may have to be added at the beginning and end of the excised subsequence.

Secondly consider the case in which vertex x is vacated by a searcher and consequently moves from

VS to VR . There are two possibilities, either x was incident to a clear edge before the searcher was

moved or not. If x was adjacent to a clear edge, this edge would become contaminated, so the strategy

was not progressive, as assumed. If x was adjacent only to contaminated edges, we can remove from the

strategy the move which placed a searcher on x , without affecting the effectiveness of the strategy.

We define a layout based on any progressive, irredundant strategy as follows. For each vertex we

consider the first step at which the strategy adds a searcher to that vertex. For all vertices x and y , if x

and y are first occupied at steps i and j of S , then the constructed layout is such that L (x ) < L (y ) iff

i < j , i.e. the order of the vertices defined by L is exactly the order in which vertices enter VS .

Let Li be a partial layout with respect to L . L −1(i) is the i th vertex to enter VS . Let VL
i be the

uncontaminated set and VS
i the occupied set at the end of this move. It then follows from the observations

above that domain(Li ) = VL
i ∪ VS

i . Finally we note that no vertex in VL is active because there are no

edges connecting vertices in VL to a vertex in VR . Hence, at all steps in the strategy, ALi
⊆ VS

i , and so the

vertex separation of the constructed layout is no greater than the number of searchers used by the strategy.̀

Lemma 2.2 s (G ) ≤ vs (G ) +2.

Proof We show how a search strategy can be derived from a layout so that no more than two searchers

over and above the vertex separation of the layout are used. The search strategy is the procedure defined

below.
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procedure search1(G , L );

for i := 1 to |V | do

begin

x := L −1(i );

place a searcher on x ;

for each left neighbor y of x and each edge {x ,y } do

begin

add a searcher to y ;

move the searcher from y to x ;

remove a searcher from x

end;

for each loop {x ,x } do

begin

add a searcher to x ;

move a searcher around the loop;

remove a searcher from x

end;

Remove searchers on vertices that are not active in Li

end;

It can be shown, by induction on i , that at entry to the i th iteration of the outer for loop, the following two

conditions are satisfied:

(1) all edges connecting vertices in the domain of the partial layout Li −1 have been cleared, and

(2) there is exactly one searcher on each active vertex of the partial layout Li −1 and no searcher on any

other vertex.

From this, it follows that the procedure clears all of the edges of G and that when the outer loop is

entered the number of searchers on the graph is no more than vs (G ). Finally, note that no more than two

extra searchers are added to the graph during the execution of the outer for loop. `

The bound in Theorem 2.1 is the best possible. The bipartite graph K 3,3 shown in Figure 1.1 has

vertex separation three and search number five. To demonstrate that the search number is five we use the

fact that search number is identical to cutwidth for graphs with maximum degree three [Makedon 1983],

since it is easily seen that K 3,3 has cutwidth five. In Section 3.3 we give an example of a tree, Figure 3.6,

which also shows a difference of two between vertex separation and search number.

2.2. A Simple Transformation

Let the 2-expansion of a graph G be the graph formed by replacing each edge {x ,y } of G by two

new vertices, say a and b , and edges {x ,a }, {a ,b } and {b ,y }. We note that the 2-expansion of a graph

contains no loops or multiple edges.
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Theorem 2.2 For any graph G , s(G ) is identical to the vertex separation of the 2-expansion of G .

Proof Let G ′ be the 2-expansion of G . By Theorem 2.1, vs(G ′) ≤ s (G ′). Clearly, subdividing edges

does not change the search number, so s(G ) = s(G ′). Hence vs (G ′) ≤ s (G ).

To show that s (G ) ≤ vs (G ′) we show how to construct a search strategy from a layout of a 2-

expanded graph, such that the number of searchers used is no greater than the vertex separation of the lay-

out. We distinguish the vertices in G ′ which are also in G from the vertices that have been added to

create the 2-expansion. We call the former original vertices and the latter added vertices.

Let x and y be any pair of original vertices that were adjacent in G . Without loss of generality,

suppose L (x ) ≤ L (y ) in some layout L for G ′. Let the added vertices for the edge {x ,y } be a and b ,

where a is adjacent to x and b to y . If the original edge was a loop, then x and y are the same vertex.

We will call L a standard layout if, for all edges {x , y }, and added vertices a and b , L (a ) = L (b ) −1

and, if x and y are distinct, L (a ) > L (x ). Lemma 2.3 below shows that there exist standard layouts with

optimal vertex separation. We construct a searching algorithm based on a standard layout L , see the pro-

cedure search2 below.

It can be shown by induction on i , that at entry to the i th iteration of the for loop the following con-

ditions are satisfied:

(1) all edges connecting vertices in the domain of the partial layout Li −1 are clear, and

(2) there is exactly one searcher on each active vertex of the partial layout Li −1 and no searcher on any

other vertex.

The argument must show that, during the i th iteration, all edges connecting vertices in domain(Li −1) to

L −1(i) are cleared without recontamination occurring. We first note that all possible cases are covered.

The case in which x is an added vertex and its two neighbors both lie to the right of x , case 3, implies we

have a loop, else this arrangement would not be standard.

It is easy to see in each case that all new edges are cleared but the prevention of recontamination

needs justification. The movement of searchers in line (1) does not allow recontamination, because

neighbors of an original node are added nodes of degree 2. Since the layout is standard, these added

nodes are adjacent to vertices which must be to the left of x . By the induction hypothesis, the edges con-

necting these added nodes to nodes to the left of x have already been cleared.

In line (3), moving a searcher from an added vertex to the left of x to x does not allow recontamina-

tion, since the added vertex is connected to another vertex to the left of x , because the layout is standard.

By the induction hypothesis, all edges connecting nodes to the left of x have been cleared.

In line (4), since the neighbor to the left of x is not connected by an edge to any vertices to the right

of x , all edges incident to this neighbor, except the one connecting it to x , have been cleared. So the

searcher can be moved from this left neighbor to x without allowing recontamination.

The movement in line (5) does not allow recontamination, since a new searcher is added to the left

neighbor before the move.
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procedure search2 (G , L )

for i := 1 to |V | do

begin

x = L −1(i );

if x is an original vertex

then

if x has a neighbor placed to its left

(1) then move a searcher from each of x ’s left neighbors to x ;

(2) else place a searcher on x

else {x is an added vertex, with two neighbors. One is an

added vertex, say y . The other is an original vertex, say z }

begin

Case 1: {both y and z are to the left of x }

(3) move a searcher from y to x and then from x to z ;

Case 2: {exactly one of y or z is to the left of x }

if there is no edge connecting this left

neighbor of x to a node to the right of x

(4) then move the searcher on this node to x

(5) else add a new searcher to the left neighbor and move it to x ;

Case 3: {both y and z are to the right of x }

(6) place a searcher on x

end;

Remove searchers on vertices that are not active in Li and

remove duplicate searchers on vertices that are active in Li

end;

By the induction hypothesis, at entry to the i th iteration of the loop, there is exactly one searcher on

all and only the active vertices of Li −1. Consequently, there are never more than vs (G ) searchers on G at

entry to the loop. Since the movements described in lines (1), (3), and (4) do not introduce new searchers,

it is clear that there are at most vs (G ) searchers on G during these steps. Only in lines (2), (5) and (6) is

a new searcher added. Let line (2), (5) or (6) be executed in the i th iteration of the loop. In all cases, the

vertex x is an active vertex in the partial layout Li , since at least one neighbor lies to its right. In addition,

all vertices that were active in Li −1 are still active in Li , because in line (2) we have that x has no left

neighbors, in line (5) that the left neighbor of x is connected to a vertex to the right of x and in line (6)

that x is an added node with both neighbors on its right. So the number of active vertices in Li is one

more than in Li −1. Consequently, the number of searchers used in all steps of the algorithm is not larger

than the number of active vertices in any partial layout, i.e. not larger than vs (G ). `

Lemma 2.3 Let G ′ be obtained from a graph by 2-expansion. If there is a layout for G ′ with vertex

separation k then there is a standard layout for G ′ with vertex separation ≤ k .
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Proof Figure 2.1 (a) shows all possible positions of a and b with respect to distinct vertices x and y in

which b precedes a . Figure 2.1 (b) shows all possible positions of a with respect to distinct vertices x

and y in which a precedes b . We assume that other vertices could be positioned anywhere. Of the ten

possible arrangements, #8 and #10 can be made standard by moving a right until it meets b , without

increasing vertex separation. It is easy to see that the other arrangements can be transformed into either

#8 or #10 by repositioning a or b , without increasing vertex separation:

#1 can be transformed to #7 by moving b to a position between x and y ,

#2 can be transformed to #8 by moving b to a position between a and y ,

#3 can be transformed to #8 by moving b to a position between a and y ,

#4 can be transformed to #3 by moving a to a position between b and y ,

#5 can be transformed to #10 by moving b to a position immediately following a ,

#6 can be transformed to #7 by moving b to a position between x and y ,

#7 can be transformed to #8 by moving a to a position between x and b ,

#9 can be transformed to #8 by moving b to a position between a and y . `

We note that Theorem 2.2 together with Lengauer’s transformation from vertex separation to pro-

gressive black/white pebble demand gives an explicit transformation from search number to progressive

black/white pebble demand.

***********************************

Insert Figures 2.1 (a) and (b) here

***********************************

3. The Vertex Separation of Trees

Properties of trees can often be computed recursively and in polynomial time by computing the pro-

perty for subtrees and combining the results. Meggido et al. [Megiddo 1988] give such an algorithm for

computing the search number of a tree and Chung et al. [Chung 1982] give such an algorithm for comput-

ing the cutwidth of trees of fixed vertex degree, d , in time O (n logd n ). Yannakakis [Yannakakis 1985]

gives an O (n log n ) cutwidth algorithm for arbitrary trees that can be extended to compute the

black/white pebble demand of trees. Transformations from the vertex separation problem to the search

number problem, or to the pebble or cutwidth problems, that preserve treeness are not known, so a poly-

nomial time algorithm for computing the vertex separation of a tree does not follow from the algorithms

of Megiddo et al. and Yannakakis.

We present a linear time algorithm for computing the vertex separation of arbitrary trees. It depends

on a recursive characterization of the vertex separation of a tree in terms of the vertex separation of the

subtrees induced by the root. We also give an algorithm that constructs a layout with optimal vertex

separation. The characterization allows us to describe the form and size of the smallest trees with a given

vertex separation. We note also, in Section 3.3, that there exists a tree T for which s (T ) = vs (T ) +2, so
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the difference can be as large as for graphs in general.

Because the search number of a graph is equal to the vertex separation of its 2-expansion, one can

use the vertex separation algorithm to compute the search number of a tree. The number of edges in a

tree is O (n ), where n is the number of vertices, so the transformation takes linear time and the entire pro-

cess is still linear. Megiddo et al. [Megiddo 1988] have already given a linear time algorithm for tree

search number.

3.1. A Recursive Characterization of Trees with Vertex Separation k

We present a recursive characterization of trees with vertex separation k which is analogous to the

characterizations of search number and cutwidth of trees found respectively in [Parsons 1976] and [Chung

1982]. These latter characterizations underlie the tree algorithms in [Megiddo 1988] and [Chung 1982].

Let the subtrees induced by a vertex x be those subtrees in the forest resulting from the deletion of x from

the tree. Figure 3.1 shows a tree, a vertex x and the subtrees induced by the vertex x .

**********************

Insert Figure 3.1 Here

**********************

We note that the only tree with vertex separation 0 is the tree with one vertex. In Section 3.3, Theorem

3.2, we show that a tree has vertex separation 1 if and only if it contains at least one edge and does not

contain the subtree with vertex separation 2, shown in Figure 3.4. The following theorem is analogous to

a theorem in [Parsons 1976] and to Theorem 2.1 in [Chung 1982].

Theorem 3.1 Let T be a tree and let k ≥ 1. vs (T ) ≤ k if and only if for all vertices x in T at most two of

the subtrees induced by x have vertex separation k and all other subtrees have vertex separation ≤ k −1.

Proof For any integer k ≥ 1, let P (k ) denote the following property of T :

For all vertices x in T there are at most two subtrees induced by x such that the vertex separation of these

subtrees is k and the vertex separation of all remaining subtrees is ≤ k −1 .

We first show that if T satisfies P (k ) then there is a layout L of T such that vsL (T ) ≤ k . Let Vk be

the set of vertices which induce two subtrees each with vertex separation k . Any vertex on a path con-

necting two members of Vk must also be a member of Vk . Further, there must exist a single path contain-

ing all members of Vk , because, if not, there exists a member x of Vk that is a part of two such paths. But

then x induces three subtrees each with vertex separation k , which contradicts P (k ).

We show in the following paragraphs that there always exists a path, call it S , containing all the

members of Vk , such that for each member x of S , the subtrees induced by x and not containing members

of S all have vertex separation ≤ k −1. Given the existence of S , there is a layout, L , with vertex separa-

tion k . It is a layout which assigns integers to vertices in a manner consistent with the following rules:
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(1) If x precedes y in S then L (x ) < L (y ).

(2) If x is not a member of S , then let T ′ be the induced subtree of which x is a member, let u be the

member of S that induces T ′ and let v be next vertex after u in the sequence S . Assign an integer

to all y in T ′ consistent with a layout of vertex separation ≤ k −1, such that L (u ) < L (y ) < L (v ) and

such that the layout of T ′ does not overlap the layout of any other subtree induced by u .

Since the vertex separation of all subtrees in this layout is ≤ k −1 and no more than one vertex from

S lies to the left of any induced subtree and is connected to it or to a vertex to the right of it, the vertex

separation of the whole layout is ≤ k . Let Si be the i th vertex in the sequence S . The arrangement is

illustrated in Figure 3.2, in which the straight lines represent subtrees Si laid out with minimum vertex

separation.

**********************

Insert Figure 3.2 Here

**********************

To show that S exists we examine first the case for which Vk is not empty. Let x 1 and xp be

members of Vk having at most one neighbor in Vk , i.e. the ends of the path formed by the members of Vk .

There is only one vertex if |Vk | = 1. Let x 0 and xp +1 be the neighbors of x 1 and xp respectively that are

not members of Vk but are part of a subtree of vertex separation k induced by x 1 or xp respectively.

Since x 0 and xp +1 are not in Vk they induce no more than one subtree with vertex separation k . Also, the

subtrees with vertex separation k and induced by x 0 and xp +1 must include x 1 and xp respectively. Let S

be the sequence x 0 followed by the path formed by the vertices in Vk followed by xp +1. It is evident that

every subtree induced by a vertex in S and not containing a vertex in S has vertex separation ≤ k −1. So

we have exhibited the sequence as claimed above.

Now suppose that Vk is empty, i.e. there are no vertices inducing two subtrees with vertex separa-

tion k . We can form a sequence S with the desired property as follows. Take any vertex x and let it be

the initial element of S . Repeatedly add a vertex to S as long as it is a neighbor of the last added vertex

and induces a subtree, not containing a member of S , with vertex separation k . It is evident that this pro-

cess terminates and yields an S with the desired properties.

We now show that if there is a layout L such that vsL (T ) is at most k , then P (k ) must be true. Let

vertices a and b be the first and last vertices in a layout with vertex separation ≤ k . Let x be any vertex

in T . There must be paths from both a and b to x . If a and b are members of distinct subtrees induced

by x , then these paths are disjoint, else not. Now remove from the layout the vertex x , all edges incident

to x , and the one or two subtrees containing the vertices a and b . What remains are all the subtrees

induced by x , except those that contained a and b . Note that, because of the removal of the paths from a
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and b to x , for every remaining vertex y , some vertex that was to the left of y and connected to a vertex

to the right of y has been removed. Thus for all remaining subtrees T ′ induced by x , vs (T ′) ≤ k −1. No

more than two subtrees were removed and these had vertex separation ≤ k . Note that the same argument

applies even if the vertex x is a or b . The argument is illustrated by Figure 3.3.

**********************

Insert Figure 3.3 Here

**********************

Corollary 3.1 vs (T ) > k iff there exists a vertex which induces ≥ 3 subtrees T ′ such that vs (T ′) ≥ k .

For example, the subtree indicated in Figure 3.4 has vertex separation 2 because its degree 3 vertex

induces 3 subtrees with vertex separation 1. The trees shown in Figures 3.4 and 3.5 have vertex separa-

tion 3 because the indicated vertex x induces three subtrees, each isomorphic to the subtree with vertex

separation 2.

***********************

Insert Figure 3.4 Here

Insert Figure 3.5 here

**********************

3.2. Smallest Trees with a Given Vertex Separation

Let the set of smallest trees, i.e. the trees with the least number of vertices, with vertex separation k

be called T (k ). There is just one tree in T (1), namely the tree with a single edge, and one in T (2),

namely the subtree in Figure 3.4. There are many in T (3). Two of them are shown in Figures 3.4 and

3.5. We can deduce immediately from Theorem 3.1 that to construct a tree with vertex separation k +1

we can take any three members from T (k ) and link any one vertex from each of these to a new vertex.

Furthermore, from Corollary 3.1, any tree with vertex separation k +1 must have a vertex which induces

three subtrees with vertex separation k . So the constructed trees are among the smallest in their class.

Let m (k ) denote the number of vertices in a smallest tree with vertex separation k . By the rules for

the construction of T (k ) we obtain the recurrence relation m (k ) = 3m (k −1)+1 and m (1) =2. It follows

that m (k ) = Q5.3k /6P for all k ≥ 1. Hence, for example, since m (5) = 202, no tree has vertex separation 5

unless it has at least 202 vertices. It also follows that for any tree T , vs (T ) = O (log n ), where n is the
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number of vertices in the tree.

3.3. The Difference between Vertex Separation and Search Number for Trees

The operation of replacing an edge {x ,y } by a new vertex z and two edges {x ,z } and {z ,y } is

called edge subdivision. Two graphs are said to be homeomorphic if both can be obtained from the same

graph by a finite number of edge subdivisions. Let T be a tree and let S (T ) denote the set of trees

obtained from T by any single edge subdivision operation. If F is a family of trees, then let S (F ) denote

the family of trees ∪ {S (T ) | T ∈ F }. For all i ≥ 1, let F (i ) be the family of trees defined by:

F (1) = T (1), where T (k ) is defined in Section 3.2,

F (i +1) = the set of all trees that are formed by taking three trees in F (i ) ∪ S (F (i ))

and a new vertex x and joining x by an edge to an arbitrary vertex in each tree.

The following theorem can be proved without difficulty by induction on k , by applying Theorem 3.1 and

Corollary 3.1.

Theorem 3.2

For all k ≥ 1, a tree has vertex separation ≥ k if and only if it contains a subtree that is a homeomorphic

image of a tree in F (k ).

We have already seen that the vertex separation and the search number of a graph can differ by two

(Figure 3.2). The tree shown in Figure 3.6 has vertex separation 3 and cutwidth 5. This tree is a smallest

tree with cutwidth 5. It is constructed by uniting three trees of cutwidth 4 by sharing a vertex as shown in

[Chung 1982]. That it has vertex separation 3 can be seen by applying Theorem 3.2. Let the central ver-

tex be the root. Note that the black vertices each induce two subtrees of vertex separations 1 and 2. Con-

sequently the vertex separation of the subtrees rooted at the black vertices is 2 and that of the entire tree is

3.

In [Makedon 1983] it is shown that for all graphs with maximum vertex degree 3, cutwidth and

search number are identical. Hence the example of Figure 3.6 shows that the vertex separation and search

number of trees can differ by two.

***********************

Insert Figure 3.6 Here

***********************
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3.4. Computing the Vertex Separation of a Tree

We now describe a linear time algorithm for computing the vertex separation of arbitrary trees.

3.4.1. k-Criticality and Vertex Labelling

We need to view the trees as being rooted at some vertex. The parent and children of any node are

then well defined, with respect to a given root. We will call the trees that are rooted at the children of a

node u the subtrees yielded by u . In what follows, "tree" will always mean "rooted tree". The vertex

separation of the rooted tree is obviously identical to the vertex separation of the underlying unrooted

tree. Let T [u ] denote the tree, with root u , within the rooted tree T . Let T [u , v 1, v 2, ..... vi ] denote the

tree with root u from which the subtrees with roots v 1 through vi have been removed.

Definition 3.1

A vertex x is k-critical in a rooted tree T iff vs (T [x ]) = k and there are two children y and z of x such

that vs (T [y ]) = vs (T [z ]) = k .

We observe, by Theorem 3.1, that in any tree with vertex separation k , there can be no more than one k -

critical node. The following corollary also follows immediately from Theorem 3.1.

Corollary 3.2. Let T [u ] be a tree with root u within the rooted tree T having children v 1 , . . . , vd and

let k = maxi {vs (T [vi ])}.

(1) If more than two of the trees T [vi ] have vertex separation k , then vs (T ) = k +1.

(2) If exactly two of the trees T [vi ] have vertex separation k and at least one contains a k -critical ver-

tex, then vs (T ) = k +1.

(3) If exactly two of the trees T [vi ] have vertex separation k and neither one contains a k -critical ver-

tex, then vs (T ) = k .

(4) If exactly one of the trees T [vi ] has vertex separation k and it contains a k -critical vertex x and

vs (T [u ,x ]) = k , then vs (T ) = k +1.

(5) If exactly one of the trees T [vi ] has vertex separation k and it contains a k -critical vertex x and

vs (T [u ,x ]) < k , then vs (T ) = k .

(6) If exactly one of the trees T [vi ] has vertex separation k and it does not contain a k -critical vertex,

then vs (T ) = k .

Proof Each statement can be derived immediately from Theorem 3.1. `
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Our algorithm is going to compute a label for each vertex.

Definition 3.2

For any tree T [u ] define the label of u to be the list of integers (a 1, . . . , ap ), where

a 1 > a 2 > . . . > ap ≥ 0, and such that there exists a set of vertices {v 1, . . . , vp } such that

(1) vs (T [u ]) = a 1

(2) For 1 ≤ i < p , vs (T [u ,v 1, . . . , vi ]) = ai +1.

(3) For 1 ≤ i < p , vi is an ai -critical vertex in T [u ,v 1, . . . , vi −1].

(4) vp is u . If ap is marked with a prime (′) then there is no ap -critical vertex in T [u ,v 1, . . . , vp −1]. If

ap is not marked with a prime then vp is an ap -critical vertex. In both cases T [u ,vp ] = T [u ,u ] is

the empty tree.

For example, the label (2,0′) on vertex u means that T [u ] has vertex separation 2, that there is a 2-

critical vertex, say v 1, in T [u ] and that T [u , v 1] has vertex separation 0, i.e., it is a single vertex. The

label (2) on a vertex u means that the vertex separation of T [u ] is 2 and that u is a 2-critical vertex so

that T [u ,u ] is empty. We will refer to an element of the label that is associated with a critical vertex as a

critical element. Note that the prime marker is used, if ever, only on the last element, since all others are

necessarily critical. This labelling technique is similar in style to the techniques used in [Yannakakis

1985], [Chung 1982] and [Megiddo 1988] on trees to compute search number and cutwidth.

3.4.2. The Vertex Separation Algorithm

We arbitrarily choose a vertex to be the root of T . The label of the root is computed by recursively

computing the labels of its children and then combining them. The vertex separation of T is the largest

element in the label of root. Figure 3.7 shows an example of the labels produced by the labelling algo-

rithm on a particular tree and for a particular choice of root. We use a list concatenation operation,

denoted by "&".

***********************

Insert Figure 3.7 here

**********************
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function vs(T : tree) : integer; {Computes the vertex separation of a tree T }

Choose some vertex u in T and make u the root of T ;

vs := largest element of compute_label (T , u );

function compute_label (T : tree, u : vertex) : label;

{Computes the label of the vertex u in the tree T [u ].

if u is the only vertex in the tree T [u ]

then compute_label := (0)

else begin

for all vertices vi , the d children of u , do λi := compute_label (T , vi );

{Compute the label for u by combining the labels λi }

compute_label := combine_labels(λ1, λ2, . . . , λd )

end;

function combine_labels(λ1, λ2, . . . , λd : label) : label;

{Computes a new label, λ, by combining a set of labels}

if there is one or more label containing 0 then λ := (1) else λ := (0);

{Let m be the largest element in any label}

for k := 1 to m do

begin

{Let n be the number of labels containing an element k }

Case 1: {n ≥ 3} λ := (k +1′);
Case 2: {n = 2 and at least one element k is critical)} λ := (k +1′);
Case 3: {n = 2 and neither element k is critical} λ := (k );

Case 4: {n = 1 and element k is critical and k ∈ λ } λ := (k +1′);
Case 5: {n = 1 and element k is critical and not (k ∈ λ )} λ := (k ) & λ;

Case 6: {n = 1 and element k is not critical} λ := (k ′)
end;

combine_labels := λ;

3.4.3. Correctness of the Algorithm

Theorem 3.2

The function combine_labels computes the label of a vertex u in the rooted tree T whose d children have

the labels λ1 through λd .
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Proof

We have already defined in the algorithm: m = maxi {vs (T [vi ])}.

For each T [vi ], let Tm
i , Tm −1

i , . . . , T 0
i be the sequence of trees defined by:

Tm
i = T [vi ] and, for 0 < k ≤ m ,

if k is equal to some element aj of the label of vi

then Tk −1
i is obtained from Tk

i by removing T [vj ], i.e. the tree rooted at the vertex associated with aj

else Tk −1
i = Tk

i .

That is, we successively remove trees rooted at the nodes corresponding to the elements in the label of the

root, vi . We observe that, for all k less than the smallest element in the label of vi , Tk
i is the empty tree

but that, if 0 is in the label, then T 0
i is a single vertex.

Finally we define Tk , 0 ≤ k ≤ m , to be the tree with root u yielding subtrees Tk
i , 1 ≤ i ≤ d . Hence Tm =

T [u ] and, if all the T 0
i are empty, T 0 is a single vertex, else it is a star graph.

The argument proceeds by induction on k . Let Λ denote the label of u in T [u ] = Tm and, for

0 ≤ i ≤ m , let Λi denote the label of u in Ti . Our induction hypothesis is that, at the top of the loop,

λ = Λk −1, where k is the current value of the variable k , and that λ = Λk at the bottom of the loop. If so,

then certainly λ = Λm = Λ at exit from the loop.

If T 0 is a single vertex, then Λ0 = (0), else it is a star graph, in which case Λ0 = (1). Since the if

statement checks to see if any T 0
i is non-empty, our hypothesis is true at first entry to the loop. Assume

then that the induction hypothesis holds and consider the various cases.

Case 1: More than two of the Tk
i have vertex separation k . By case 1 of Corollary 3.2, vs (Tk ) = k +1.

Clearly there can be no (k +1)-critical vertex. Hence Λk = (k +1)′.

Case 2: Exactly two of the Tk
i have vertex separation k and at least one has a k -critical vertex. By case 2

of Corollary 3.2, vs (Tk ) = k +1. Clearly there can be no (k +1)-critical vertex. Hence

Λk = (k +1′).

Case 3: Exactly two of the Tk
i have vertex separation k and neither has a k -critical vertex. By case 3 of

Corollary 3.2, vs (Tk ) = k and, since u is a k -critical vertex, Λk = (k ).

Case 4: Exactly one of the Tk
i has vertex separation k and it contains a k -critical vertex and vs (Tk −1) = k .

By case 4 of Corollary 3.2, vs (Tk ) = k +1. Clearly there can be no (k +1)-critical vertex. Hence

Λk = (k +1).

Case 5: Exactly one of the Tk
i has vertex separation k and it contains a k -critical vertex and vs (Tk −1) < k .

By case 5 of Corollary 3.2, vs (Tk ) = k . By the definition of a label, Λk = (k ) concatenated with

Λk −1.

Case 6: Exactly one of the Tk
i has vertex separation k and it does not contain a k -critical vertex. By case

6 of Corollary 3.2, vs (Tk ) = k . If vs (Tk −1) < k , then clearly there can be no k -critical vertex in

Tk . Suppose vs (Tk −1) = k . Then the current value of λ was created by case 1, 2 or 4 in the
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previous iteration of the loop. By observing these cases, we see that there is no k -critical vertex

in Tk −1. So, if there is a k -critical vertex in Tk , it must be the root. By observing cases 1, 2 and

4, we see that no subtree yielded by u in Tk −1 has vertex separation k . Hence the root can yield

no more than one subtree in Tk of vertex separation k and can not be k -critical. Hence Tk has no

k -critical vertex and Λk = (k ).

Finally we note that if there is no k element in any of the labels, the algorithm does nothing. In this case,

Tk = Tk −1, so Λk = Λk −1. `

3.4.4. Time Complexity

Clearly the time complexity of the algorithm just defined will be determined by the data structure

used to represent the labels and sets of labels. Suppose each label is represented by an ordered linked list

of integers and that a set of labels is represented by a linked list of labels. An element in the label can

easily be associated with a non-criticality indicator, equivalent to the prime in our notation. The order of

the labels in the list is immaterial. This arrangement would require time O (d log n ), where d is the

number of children of a given vertex, to combine d labels, since the length of any label is O (log n ), as

shown in Section 3.2. Hence the sum of the label combination work over all vertices would be

O (n log n ).

To achieve linear time we refine the label representation by representing a sub-list of consecutive

integers in a label by an interval denoted by its endpoints, i.e., the label consists of a linked list of pairs of

integers. For example, the vertex label (8, 7, 6, 5, 3, 2′) would be represented as ((8, 5), (3, 2′)). A con-

catenation operation on lists, would compare the last interval on the first list and the first interval on the

second list and merge these intervals if they overlap so as to maintain the proper form. For example, ((9,

6), (4, 3)) concatenated with ((2, 2), (0,0)) would evaluate to ((9, 6), (4, 2), (0,0)). Clearly concatenation

can be done in constant time.

The purpose of this representation by intervals is to allow us to terminate the label combination pro-

cess once all elements of the second largest label have been scanned, where largest means containing the

largest element. At this point a new label λ has been constructed which represents the correct addition of

all label elements except those in the remaining segment of the largest label. The final step need only

combine this remaining segment with λ. This can be done in constant time, independent of the number of

items remaining in the last label, because the effect of the combination can not extend beyond the smal-

lest interval pair in the remaining segment, as we now show.

Let us assume that the algorithm proceeds by scanning the smallest elements in each label, and

removes them as they become equal to the current value of k . As a label becomes exhausted it disappears

from the list of labels. First we let m be, not necessarily the maximum, but the second number in an

ordered list of the vertex separations of the subtrees of the root. Consequently the loop terminates as soon

as no more than one label contains elements yet to be processed. The following statement then achieves

the final step.
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if some segment of some label remains unprocessed

then begin {Denote the remaining label segment by λq and let it be of the form: (... , (a ,b )) }

Case 1: {b is critical and b ∈ λ } Remove (a ,b ) from λq ; λ := λq & ((a +1, a +1′));
Case 2: {b is critical and not (b ∈ λ )} λ := λq & λ;

Case 3: {b is not critical} λ := λq

end;

These statements can be justified by reapplying cases 3, 4 and 5 of the proof of Theorem 3.2. So long as

the assignment and concatenation operations are done, not by copying labels, but by renaming existing

structures, constant time suffices for the entire statement. However, we note that since we destroy labels

in the set being combined, the procedure does not leave a label on each node.

We now demonstrate that this algorithm - data structure combination has linear time complexity.

Let u be a vertex in a rooted tree T and let qu ,i be the number of subtrees in T [u ] with vertex separation

at least i and for which there exists a sibling with vertex separation at least i . Note that these subtrees

are not required to be disjoint.

Lemma 3.1

The time required by the algorithm to compute a label for u in T is:

t (n ) ≤ c 1n + c 2
i =0
Σ

vs (T [u ])
qu ,i

for some constants c 1 and c 2 and where n is the number of vertices in T [u ].

Proof

The proof proceeds by induction on the height of T [u ]. For the basis of the induction we note that, for

trees of height 0, u is the only vertex in the tree and the algorithm computes its label in constant time,

which is consistent with the claim.

Now consider a tree, with root u , of height h +1 and assume that the claim is true for all trees of

height ≤ h , i.e. for all the subtrees yielded by u . The time required to compute a label for u is the sum of

the times required to compute a label for each of the subtrees plus the time required to combine these

labels.

Let c 1 be an upper bound on the time required to carry out the final stage of the label combination

process, i.e., the combination of the remaining segment of the largest label with the new label λ under

construction. Let si be the largest integer in the i th largest label in the combination process. We have

shown that the label combination process requires time tc ≤ c 1 + c 2(s 2 + s 2 + . . . + sd ), where we note

that s 1 does not appear, but s 2 appears twice for the reasons given. If we define ri to be the number of

subtrees yielded by u with vertex separation at least i , then this equation can be rephrased as:

tc ≤ c 1 + c 2
i =0
Σ
s 2

ri .
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Let u have d children, v 1 through vd . The sum of the times required to compute the labels of the

subtrees of u is, by the inductive assumption:

ts ≤ (n −1)c 1 + c 2
j =1
Σ
d

i =1
Σ

vs (T [vj ])
qvj ,i

The sum tc + ts gives:

t (n ) ≤ c 1n + c 2
i =0
Σ

vs (T [u ])
qu ,i

thus confirming our hypothesis. `

Lemma 3.2

If a rooted tree has p leaves and r internal vertices which have at least one sibling, then r ≤ p .

Proof

We prove that either r = 0 or r ≤ p −2. The proof is by induction on the height of the tree. The lemma is

vacuously true for a single vertex. As a basis, consider trees of height 1, for which the statement is true,

since r = 0. Now suppose the hypothesis is true for all trees of height ≤ h , and consider the root of a tree

of h +1. This root yields subtrees for which we have assumed the hypothesis is true. Let ri and pi be the

values of interest for the i th subtree.

There are two cases. If there is just one subtree, then the numbers r 1 and p 1 remain unchanged. If

there are two or more subtrees we have:

r ≤ Σri + d ≤ Σpi − 2d + d ≤ p − d ≤ p − 2

which confirms the hypothesis. `

Theorem 3.2

The time complexity of the algorithm is O (n ), if the data structure just described is used.

Proof

For a given i , 0 ≤ i ≤ vs (T ), consider those vertices that are the roots of subtrees of vertex separation ≥ i ,

but yield no subtrees of vertex separation ≥ i . Call these distinguished vertices. If there are p such ver-

tices, Lemma 3.2 tells us that there are no more than another p vertices that are both ancestors of a dis-

tinguished vertex and have a sibling which is also the ancestor of a distinguished vertex. Hence, there are

at least qi /2 disjoint subtrees with vertex separation at least i , namely, those rooted at the distinguished

vertices.

From Section 3.2, we know that a subtree with vertex separation at least i , must have at least 2i ver-

tices. Since there are at least qi /2 such subtrees, qi ≤ n /2i −1. Hence:
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i =0
Σ

log2n
qu ,i ≤ 2(n + n /2 + . . . ) ≤ 4n

Consequently, from Lemma 3.1, the time complexity is linear. `

3.5. Computing an Optimal Layout

Once labels have been computed for all vertices, an optimal layout can be computed. The layout

procedure assumes, for the sake of convenience, that the tree is rooted at r . We use the same root as used

in the labelling procedure, so the vertex separation of the tree is the largest number in the label of this

root. The procedure is invoked initially on the root. It will assign a unique integer, pos , 1 ≤ pos ≤ |V | ,
to each vertex. This number is the position of the vertex in an optimal layout.

The efficacy of the procedure follows immediately from the proof of Theorem 3.1. The procedure

finds the sequence S described in this proof, recursively computes the layout of each subtree induced by

members of S and places them to the right of this member of S . As in the proof, there are two possibili-

ties, either there are critical vertices or not, and this is indicated by the label on the root. If there are criti-

cal vertices and r is not critical, a path is found from r to the nearest critical vertex. Pos must be given

the initial value 1. Label (x ) means the label of x and L is the layout function.

procedure layout (x ); {x is the root of a tree}

k := max (label (x )); c := x ;

if T [c ] has a critical vertex

then while c is not a k-critical vertex do

begin delete k from label (c ); c := the child of c with k in its label end;

{Let (v 1, v 2, . . . vs ) be the sequence S containing all vertices x in T [c ] such that label (x ) contains k }

for i := 1 to s do

begin L (Vi ) := pos ; pos := pos + 1; delete vi from T ;

for all children y of vi do layout(y );

if (vi = c and x ≠ c ) then layout(x )

end;

The last if statement lays out the subtree of T [x ,c ], since vertex c has been deleted. We observe

that T [x ,c ] is a subtree induced by vertex c with vertex separation less than k . Hence, by Theorem 3.1,

it should be laid out after c but before the next vertex in S . The time complexity of the procedure is

O (n log n ) since no vertex is visited more than k times and k is O (log n ).

Also, notice that we must use a straightforward version of the vertex separation algorithm to com-

pute a label for each vertex. The refined, linear time version, did not do this since it computed new labels

by destroying old ones. It is an open question, whether or not there exists a linear time layout algorithm.

Note that such an algorithm could not represent the labels explicitly for each vertex since this requires

Ω(n log n ) space in the worst-case. It seems likely however that a variation on our scheme using an

implicit representation for the labels can be developed, leading to a linear time layout algorithm.
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