AN OPTIMAL NONBLOCKING MULTICAST
VIRTUAL CIRCUIT SWITCH

Jonathan S. Turner
Washington University, St. Louis

Abstract

This paper describes an architecture for a multi-
cast virtual circuit switch using cell recycling. This
is the first nonblocking switch architecture that is op-
timal in both the switching network complexity and
the amount of memory required for routing cells in
multicast virtual circuits. Furthermore, it is optimal
in the amount of effort required for multicast virtual
circuit modification. This architecture makes it both
technically and economically feasible to construct the
large switching systems that will ultimately be needed
for wide scale deployment of Broadband ISDN to res-
idential users.

1 Introduction

Multicast virtual circuit networks support commu-
nication paths from a sender to an arbitrary number
of receivers, as illustrated in Figure 1. As shown,
multicast virtual circuits induce a tree in a network
connecting a sender to one or more receivers. Switch-
ing systems participating in the virtual circuit repli-
cate received cells using virtual circuit identifiers in
the cell headers to access control information stored
in the switching system’s internal control tables, then
use this information to identify the outputs the cells
are to be sent to and relabel the copies before forward-
ing them on to other switching systems.

Figure 2 illustrates in more detail, the function of
a multicast virtual circuit switch. The switch includes
control information, shown here as a table, which for
each incoming virtual circuit provides a list of outputs
and outgoing virtual circuit identifiers. For a cell re-
ceived on input link ¢ and virtual circuit z, the switch
forwards copies to outputs ji,ja, ... after relabeling

O This work was supported by the National Science Founda-
tion (grant DCI 8600947), Ascom Timeplex, Bell Communica-
tions Research, Bell Northern Research, Goldstar Information

and Communications, Italtel SIT, NEC, NTT and SynOptics.

them with new virtual circuit identifiers, y1,y2, ... No-
tice that if the switch has n inputs and outputs and
each output supports up to m virtual circuits, one
can describe any collection of multicast virtual cir-
cuits with mn words of memory. One simply provides
for each (output,VCI) pair, the identity of the (in-
put,VCI) pair from which it is to receive cells. Un-
fortunately, this method of defining a set of multicast
connections 1s not particularly helpful in switching, as
it does not give one a way to go from an (input,VCI)
pair to the desired list of (output,VCI) pairs. Exist-
ing virtual circuit switch architectures describe mul-
ticast virtual circuits in different ways, which while
suitable for switching, use far more than mn words of
memory. The broadcast packet switch [5; 6], for ex-
ample, requires mn?/2 words of memory under worst-
case conditions (although refinements described in [9]
can reduce this to O(mn®/?) or less, giving accept-
able complexity for systems with up to a few hundred
ports). Moreover, the time required to update a multi-
cast connection grows with the size of the connection.
Other architectures require even greater amounts of
memory. For example, Lee’s multicast switching sys-
tem [3] requires mn®/2 words of memory under worst-
case conditions.

This paper describes a multicast switch architec-
ture with O(n logn) hardware complexity that is non-
blocking, in the sense that it is always possible to ac-
commodate a new multicast connection or augment
an existing one, so long as the required bandwidth
is available at the external links, and which requires
< 2mn words of memory for routing cells in multicast
virtual circuits. Moreover, the overhead for establish-
ing or modifying a multicast connection is independent
of the size of the connection or the switching network.

2 Basic Operation

The basic principle behind the recycling architec-
ture is illustrated in Figure 3. To implement a mul-

Figure 1: Multicast Virtual Circuit Switching

ticast connection, a binary tree is constructed with
the source switch port at its root and the destination
switch ports at its leaves. Internal nodes represent
switch ports acting as relay points, which accept cells
from the switch but then recycle them back into the
switch after relabeling the cells with a destination pair
identifying the next two switch ports they are to be
sent to. There are many possibilities for construct-
ing the switching network. A Bene$ network in which
the switches in the first half of the network distribute
cells dynamically in order to balance the load, and
in which local buffers are used to resolve contention,
provides the lowest cost solution. This is illustrated
in Figure 4 which shows a 16 port network of binary
switches in which two cells with two destinations each
are forwarded from inputs to outputs. Note that cells
are copied at the latest possible point in the network
and this point is easily determined by bit-wise consid-
eration of the destination addresses. This scheme can
easily be extended to networks constructed from larger
switches. We show in a later section that given any
collection of virtual circuits, the load placed on any of
the switching network’s internal links is at most equal
to the load on the most heavily loaded external port.
In other words, there is no collection of virtual circuits
that can be handled by the external links that cannot
also be handled by the network. That is, this network
is nonblocking. Other switching networks, suitably ex-
tended to provide the copy-by-two function, can also
be used in the recycling architecture.

The lower part of Figure 3 details the hardware

1Jo 1 . _—

(1) j, [l
[IE - _

— 1o D2l

I

i G5 Gy

i [[l

-

— _——

Figure 2: Multicast Switch Functionality

associated with each port of the switching system.
Given a virtual circuit identifier, obtained from a cell’s
header, the Virtual Circuit Translation Table (VXT)
provides two (output,VCI) pairs that are added to the
cell header plus two additional bits that indicate, for
each pair, whether it is to be recirculated another
time, or not. The Receive Buffer (RCB) holds cells
received from the input link that are waiting to en-
ter the switching network, while the Transmit Buffer
(XMB) holds cells waiting to be transmitted on the
outgoing link.

Because networks that perform dynamic load distri-
bution may deliver cells in a different order than that
by which they enter, the ports are typically augmented
with a resequencing buffer to restore the proper or-
dering on output [7]. The simplest resequencer im-
plementations measure the time that cells spend in
transit through the network and delay cells that pass
through quickly in a resequencing buffer for a long
enough period to ensure that cells that are delayed an
unusally long period of time have a chance to catch
up. In the recycling architecture, the resequencer also
ensures proper ordering of cells during additions and
deletions to multicast connections. The resequencing
buffer is labeled RSQ in Figure 3.

Figure 5 illustrates the operation of the recycling
switch in more detail. In this example, a multicast
connection delivers cells from input a to outputs b, ¢,
d and e, using ports and y as relay points. In the
lower part of the diagram, the implementation of the
connection is shown in an ‘unrolled’ form, to clarify
the flow of cells through the system. It should be
understood however, that this is purely illustrative.
There is in fact just one switching network, not three,
and cells are simply sent through it multiple times in
order to reach all the destinations. In the example,
cells entering at input a with VCI i, are forwarded to
output e, VCI k£ and output &, VCI 5. At 2, the cell is
recycled, with VCI j used to select a new table entry

Switching Network

Multipoint

Connection _-@
—®

Tree

Port Processor
RCB

Network

RCYC

Figure 3: Multicasting by Recycling Cells

from 2’s VXT. The resulting information causes the
cell to be forwarded to output b, VCI n and output
y, VCI m. At y, the cell is recycled again, with the
resulting copies delivered to ¢ and d.

We can also construct multicast connections to
which multiple input ports can send cells. One sim-
ply sets up the virtual circuit tables of each of the
source input ports so that they forward cells to the
port at the root of the tree, which then recycles them
along the tree. Of course, the total traffic from all the
source ports must be limited to the total bandwidth
allocated to the connection. In a connection where a
port is both a source and a destination, we will usu-
ally not want to send a source a copy of a cell that it
sent in the first place (although we do want the other
participants to receive it). This is easily accomplished
by including the identity of the original source in the
cell and checking this at the destination in order to
discard unwanted copies. To add an endpoint to a
multicast connection, some rearrangement of the con-
nection is needed. This is illustrated in Figure 6. Let
d be the output that is to be added to a connection, let
¢ be an output closest to the root of the tree and let a
be 1ts parent. Select a switch port with a minimum
amount of recycling traffic. Enter ¢ and d in an unused
VXT entry at and then replace ¢ with « in a’s VXT
entry. These changes have the effect of inserting « into
the tree, with children ¢ and d, as illustrated in the
figure. Dropping an endpoint is similar. Let ¢ be the
output to be removed from a connection and let d be
its sibling in the tree, & be its parent and a its grand-
parent. In a’s VXT entry, replace & with d. If the
output to be removed has no grandparent but its sib-

distribute

route & copy

1000
1111

1000
1001

1011

X AL

1001
1011

1111

Figure 4: Benes Network with Copy-Twice Routing

ling has children, replace the parent’s VXT entry with
the sibling’s children. If the output to be removed has
no grandparent and its sibling has no children, then
we simply drop the output to be removed from its
parent’s VXT entry, and the connection reverts to a
simple point-to-point connection.

3 Resequencing Options

Because cells are resequenced when they exit from
the system, the resequencing buffer must be dimen-
sioned to delay cells long enough so that slow cells
have a chance to catch up with fast cells. That is, the
resequencing buffer must be at least as large as the
largest variation expected in the delay of cells through
the system, when they recycle the maximum number
of times. Since, both the total delay and the delay
variation can change over time, the most practical ap-
proach appears to be to dimension the buffer to be
equal to the maximum delay that would be expected
under the heaviest loading conditions.

A naive analysis reveals how the delay grows with
the number of inputs and outputs to the system (n).
Let 4 and o be the mean and standard deviation of
the delay in each stage of the switching network. Let
p¢ and oy be the mean and standard deviation for cells
passing through the network the maximum number of
times. Let r be number of stages of switching that
these cells pass through, altogether. Then p; = ru
and if the delays in each stage are independent (often
a reasonable approximation), then oy = \/ro. A rea-
sonable engineering rule is to select the resequencer
depth equal to the mean delay plus some number A
of standard deviations past the mean. This gives a
resequencer depth of p; + hoy = ru + hy/ro. Conse-
quently, the depth grows in proportion to r and for a
Benes network, r = (2(logyzn) — 1)(log, F') where F

VXT

|

Ean

T |2
1Y
VXT —
® —] @ |LLdl
=1 d.t
= ENEn
T

Figure 5: Example of Multicast Connection

is the maximum fanout. For d = 2 and F' = n, this
i1s too much if we are to obtain an overall system cost
that grows in proportion to nlogn.

We can obtain the desired complexity by resequenc-
ing cells after every pass, rather than waiting until the
cells exit. This raises a new issue however, in that
when we modify a connection, we potentially change
the depth of the tree. This means that cells take a
different number of passes through the network and
introduces the possibility of cells getting out of se-
quence (even though they are correctly sequenced on
each pass). When an endpoint is added to a connec-
tion its new sibling becomes repositioned in the tree
and its cells experience a longer delay, because of the
additional pass through the network. Consequently,
there 1s a momentary gap in the flow of cells to the
output, but the ordering of the cells is unaffected.
However, when an endpoint is removed from a con-
nection, outputs immediately following the cut point,
are moved closer to the root of the tree and so the cells
being sent to them experience a shorter delay and are
at risk of being mis-sequenced with cells that left the
cut point just before the change.

To prevent cells from being delivered out of order,
the resequencer must provide an extra delay for cells
forwarded immediately after the cut occurs. Let T
be the maximum delay we expect to see in one pass
through the network (by the naive analysis, this would

be equal to (2(log; n)—1)p++/2(loggn) — Lho for the
Benes network). Let 7 be the moment when the VXT
at the cut point is changed and let R be a new register
included in the time stamping circuit of every input
port processor. Assume the clock used for time stamp-
ing is incremented once for every operational cycle of
the system (one cell time) and assume also that the
time stamp field of the cell and the register R include
an extra low order bit that can be used to represent
a “half-step.” Normally, cells are time stamped with
the current time value. We modify this process for
the affected virtual circuit in the time period imme-
diately following the change in the following way. At
time 7, the register R is set equal to 7 + 7. After
that time, cells in the affected virtual circuit are time
stamped with either the current time or the value of
R, whichever is larger. If R is chosen, we also add 1/2
to R. This process compresses the time stamps in the
period of length 27 following the transition into the
time period [74+T, 7427 (see Figure 7). This ensures
that cells immediately following the transition are de-
layed for an extra time period in the resequencer, giv-
ing cells that entered just before the transition, time
to catch up and get placed in the proper sequence.
The time stamping process returns to normal no later
than 27 cycles following the transition. These same
ideas can be generalized to allow, resequencing after
every p passes for some p. See [8] for details.

5
¢o

[To]

]
¢
I=

e L -
(0] [®] @[L] L
—1 c.s
s
= T+
o [

Figure 6: Adding an Endpoint to a Connection

per pass reseq multipass
n r /7 | depth | max delay T+ hy/ro
16 4 2 46 92 124-40=52
256 24 4.9 87 348 72498=170
4K 60 7.7 119 714 | 1804155=335
65K | 112 | 10.6 148 1184 | 336+212=>548

Figure 8: Comparison of Per Pass Resequencing and
Resequence on Exit

For the largest system, the per pass resequencing
delay is 1184 cell times, or under 700 us for a sys-
tem configured to support external link speeds of 620
Mb/s. To put things in perspective, this is less than
the delay in many existing digital telephone switches,
so even the largest value in the table is quite reason-
able. The resequencer depth in the largest case is get-
ting fairly large, although it’s arguably still accept-
able, since the transmit buffer of the output port is
likely to be at least as large. We’ll introduce mecha-
nisms in the next section which can improve both of
these cases, but the point to be made here is that even
without further refinements, excellent performance is
possible.

4 Configuring the Network to Avoid
Blocking

In this section we show that the recycling architec-
ture can be configured so that it never blocks a new
connection request if the rate of the network’s inter-
nal data paths is sufficiently higher than that of the
external links. We show that the necessary speed ad-
vantage is modest, making the recycling architecture
practically useful. The analysis is in two parts. First
we consider how the loading on the network’s internal
links depends on the loading of the network’s ports
(including the recycled traffic). Then we consider how
the recycled traffic depends on the external traffic. By
combining these two analyses, we obtain the speed ad-
vantage needed to make the system nonblocking.

To study how the internal link loading depends on
the port loading, we apply an analytical technique de-
veloped in [4]. For the recycling architecture, we sub-
divide each multicast connection into “one-pass” seg-
ments, consisting of a single input and two outputs.
With this understanding, we denote a connection by a
triple (z,y, z,w), where # is an input to the network,
y and z are outputs and 0 < w < 1 is a weight, which
denotes the fraction of one of the network’s internal
data paths that would be consumed by the connection
if it were to use that data path. (So, if the internal
data paths operate at a speed of 800 Mb/s, a constant

before

2T

after

T+T T4+2T

normal time stamps

transition time stamps

Figure 7: Maintaining Sequence During Transitions

rate virtual circuit operating at a rate of 100 Mb/s
would have w = 1/8.)

We say that a connection induces a load on the links
that lie on paths joining the connection’s input and
output ports. In particular, we assume that the load
is distributed evenly whenever there are multiple paths
to the desired destination. We let 0 < a < 1 denote
the maximum load allowed on any of the network’s
input or output ports. A connection assignment C' is
a set of connections that satisfies this constraint and
the load induced by C' on link £ is denoted Ay (C).
We say a network is nonblocking if for all connection
assignments, A (C') < 1 for all links £.

The Benes network is a special case of a class of net-
works known as extended delta networks. Extended
delta networks can be defined using a combination of
the series and parallel constructions of Cantor [2]. Let
N1 be a network with n; outputs, N5 be a network
with ns inputs and nz outputs and N3 be a network
with ny inputs. The series connection of the two net-
works N7 and Nj is obtained by taking ns copies of
N1, ny copies of No, numbering the copies of Ny se-
quentially from 0 (N1(0),..., Ni(ny — 1)), numbering
the copies of N similarly and then connecting output
J of Ni(¢) to input ¢ of Na(j), for all pairs ¢,j. The
resulting network is denoted N; x Ny. The parallel
connection of Ny, Ny and Nz is obtained by taking
the series network just constructed plus ns copies of
N3 and connecting output j of No(d) to input ¢ of
N3(j). This network is denoted Ny X Ny X N3. We
also let Xg4, 4, denote a switch element with d; inputs
and ds outputs. Let d > 2, k > 0,0 < h < k be
integers and let n = d*. The extended delta network

D:,d,h is defined by

Xd,d n=d
:,d,h: XddeD:/d,d,O n>d,h:0
Xaa WD}y qp-1 W Xga n>d h>0

When h = 0, the extended delta network is equivalent
to the ordinary delta network and when h = & — 1,
it 1s equivalent to the Bene§ network. The number of
stages in the extended delta network is i + k.

A network with the extended delta topology can be
used for copy-twice routing by using the first h stages
to distribute cells dynamically across the network and
using the last k stages to route cells to the desired
output. Hence, for A > 1, if a connection places a
load w on some input x of the network, the load on
the links exiting from «’s first stage switch is 1/d, the
load on the links exiting from the subsequent second
stage switches is 1/d? and so forth. This spreading
of the load continues for the first h stages and then
stops. In the last h stages, the load builds up again,
increasing by a factor of d at every stage. Let ¢ be
a link in stage ¢ of an extended delta network and
let ¢ = (2,y,2,w) be a connection. From the above
discussion, if there is a path in the network from z to
£ and a path from £ to either y or z then

wjd™? 0<i<h
/\z(C)I (.d]'d_h hglgk
w;d~(k+h=1) k<i<k+h

Let C be any set of connections on D7 ,, and let C}
be the subset of connections ¢; = (2;,v;, #;,w;) for
which there is a path from x to £ and a path from ¢ to

either y or z. Note that there are paths to ¢ from at
most d* inputs and from £ to at most d*t*~% outputs.
Because the load on every input and output is limited
to «a,

Z w; < ad’ and Z w; < adbTh—i
c;€C, c;€C,

Thus, for 0 <: < h,

/\4(0) = Z /\z(cj') < d~i Z w; <«

c;€C, c;€C,

For k <i<k+h,

/\z(C) = Z /\z(cj') < d=kth=1) Z w; <«

c;€C, c;€C,

For h < ¢ <k,

—h . —h . r gk+h—r
A(C) < d ZE; wj < ad hrélrasxk mm{d d }
c;€C,

= ad hglk+r)/2] — o qltk=h)/2]

Hence we have proved the following theorem.

Theorem 4.1 For any assignment C' on D ..,

M(C) < adlB=P12] for all links £.

For h = k—1, thisis simply A,(C) < . That is, the
load on the internal links of the network is bounded
by the load on the inputs and outputs. Hence, the
only speedup needed in the network is that required to
accommodate queueing effects. From [1] it is apparent
that if the network is constructed from shared buffer
switches with d > 8 and 4d buffer slots, a speedup of
20% can be sufficient.

We now consider the impact of the recycling strat-
egy on the total traffic in the network. A binary tree
with r leaves and in which every internal node has
two children, has exactly » — 1 internal nodes. Hence,
a one-to-many connection with rate w and r leaves,
places a total load of wr on the outgoing links and gen-
erates a recycling load of (r — 2)w. A many-to-many
connection (one with multiple transmitters as well as
multiple receivers) creates an output load of (r — 1)w
and a recycling load of (r — 1)w. That is, the recy-
cling load never exceeds the exiting load. Also, notice
that recycling is used only for one-to-many connec-
tions with at least three destinations and for many-
to-many connections with at least two. Call these the
recycling connections.

Let 3 denote the ratio of the external link rate to
the switch’s internal data path speed and let én denote

the total traffic exiting the system from the recycling
connections (where n is the number of inputs and out-
puts of the network). From the above discussion it is
clear that the total recycling traffic is at most én, so
there is always some output port where the recycling
traffic is < 6. If B < (is the maximum weight for
a single connection then we can always accommodate
a new connection if 54+ 6 + B < 1. The worst-case
occurs when 6 = B = (3; in this case a three-to-one
speed advantage 1s needed to ensure that a new con-
nection does not block. If however, § = B = 3/2, a
two-to-one speed advantage suffices. Note that since
the required speed advantage is independent of n, the
complexity of the switching network is O(n logn).
There are some variations on the recycling archi-
tecture that are worth considering. One variation is
to add a distribution pass before copying begins, for
those cells that must be recycled. In effect, this re-
places the single connection tree with a group of ¥
parallel trees, all with the same leaves, but different
internal nodes. The input port (or ports) sends each
cell to the root of one of the trees, distributing them
in a round-robin fashion. This means that the impact
of single connection on a recycling port is reduced
by a factor of v, making the system nonblocking if
B+6+B/y <1 Ifé=DB=p3/2and v = 8§, we
require a speed advantage of about 1.56. Obviously,
this increases the amount of memory needed for for-
warding multicast cells by a factor of 4, so there is a
trade-off of memory vs. bandwidth that can be ex-
ploited to meet specific application requirements.
Another variation is to do the cell replication at the
recycling port instead of within the switching network.
This would allow a network designed for point-to-point
switching to be used for recycling. However, there is
the obvious drawback of increased traffic at the ports
and a larger speed advantage. In particular, the re-
quired speed advantage goes up to 5+ 2(6 + B/7).
A third option is to design the system so that
it can make more than two copies per pass. A
larger branching factor reduces the number of passes
required to produce a given number of copies and
can reduce the total recycling traffic. In particu-
lar, if the branching factor is b, it suffices to have
B4+ 6/(b—1)+ B/y < 1 if copying is done in the
network and 5+ 6(6/(b — 1) + B/y) < 1 if copying
is done at the recycling ports. When multiple copies
are separately addressed, we require additional space
in virtual circuit translation tables and in cell head-
ers. Another option is to make more than two copies
in a pass but simply send all the copies to a contigu-
ous set of outputs, so that separate addresses are not

needed for each copy. This is easy to accomplish by de-
signing the switch hardware to (optionally) interpret
the two addresses in the header as lower and upper
bounds for a range of outputs, rather than using the
usual copy-by-two algorithm. All the copies would use
the same virtual circuit identifier to recycle through
the network, meaning that some portion of the ta-
ble entries (and bandwidth) must be managed across
groups of ports. Using this approach, large branching
factors become practical and it’s possible to dramati-
cally reduce the number of passes required to support
a given connection. In particular, if we use a fixed
branching factor of b copies per pass (in order to sim-
plify management of recycling bandwidth and table
entries) along with the original copy-by-two mecha-
nism, it’s possible to reduce the number of passes from
log, F' (where F'is the maximum fanout), to approxi-
mately log, b+ log, F'. Additional reductions are pos-
sible with more sophisticated connection management
algorithms.

5 Summary

The recycling architecture is the first nonblocking
multicast virtual circuit switch architecture that is op-
timal in the switching network complexity, the amount
of memory required for routing multicast cells and
the amount of effort required for multicast connection
modification. While recycling cells leads to subopti-
mal delay, this has a negligible impact in most prac-
tical applications, since the delays are well under one
millisecond in the basic architecture and can be cut
even further using refinements to the basic scheme.

This approach makes it both technically and eco-
nomically feasible to construct switching systems with
tens of thousands of high speed ports. Our group at
Washington University is currently designing a sys-
tem that can support up to 32,768 links with speeds
of 620 Mb/s and 2.48 Gb/s. When configured with
one third of the links operating at 2.4 Gb/s it is non-
blocking for all connection assignments in which the
maximimum bandwidth for a single virtual circuit is
1.2 Gb/s and one third of the total traffic is associated
with multicast virtual circuits. The number of cMO0S$
integrated circuits needed to implement the port pro-
cessors and the switching fabric in a system with n
ports is (1.5 4+ (1/3)log, n)n, giving a cost of under
4.2 chips per port when n = 256 and 6.5 chips per
port when n = 32,768. With chip costs of $30 each,
even the largest system has costs due to the switching
components of under $200 per port. The cost of other
components (particularly the optical devices needed to

interface to fiber optic transmission links) could drive
the total system cost to well over $1,000 per port, but
future reductions in the cost of these other compo-
nents can be expected to bring total costs down to
a level that would permit widespread deployment of
such gigabit switching systems.

References

[1] Bianchi, Giusseppe and Jonathan Turner. “Im-
proved Queueing Analysis of Shared Buffer
Switching Networks,” IEEE/ACM Transactions
on Networking, August 1993.

[2] Cantor, D. G. “On Non-Blocking Switching Net-
works,” Networks, vol. 1, 1971, pp. 367-377.

[3] Lee, Tony T. “Non-Blocking Copy Networks for
Multicast Packet Switching,” IFEE Journal on
Selected Areas in Communications, 1455-1467,
12/88.

[4] Turner, Jonathan S, “Fluid Flow Loading Analy-
sis of Packet Switching Networks,” Proceedings of
the International Teletraffic Congress, June 1988.

[5] Turner, Jonathan S., “Broadcast Packet Switch-
ing Network,” United States Patent #4,734,907,
March, 1988.

[6] Turner, Jonathan S., “Design of a Broadcast
Packet Network,” IEEFE Transactions on Commu-

nications, June, 1988.

[7] Turner, Jonathan S., “Resequencing Cells in an
ATM Switch,” Washington University Computer
Science Department, WUCS-91-21.

[8] Turner, Jonathan S., “An Optimal Nonblock-
ing Multicast Virtual Circuit Switch,” Washing-
ton University Computer Science Department,

WUCS-93-30.

[9] Turner, Jonathan S., “Progress Towards Optimal
Nonblocking Multipoint Virtual Circuit Switch-
ing Networks,” Proceedings of the Allerton Con-
ference, 9/93, pp. 760-769.

