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Abstract

Asynchronous Transfer Mode (ATM) network technology is expected to become
a central part of the emerging global information infrastructure. ATM networks
introduce a number of features that distinguish them from earlier technologies and
introduce new issues in network control. This paper offers a framework for precisely
defining and analyzing alternative approaches to the distributed control of ATM
networks and explores some of the key design issues through a series of examples. It
is hoped that it will provide a useful foundation for researchers in networking and
distributed computing interested in exploring these issues further and developing
more complete solutions.
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1. Introduction

Asynchronous Transfer Mode (ATM) network technology is expected to become a cen-
tral component of the emerging information superhighway, both in the United States and
around the world. The last decade has seen tremendous progress in developing the core
ideas for ATM networks and in creating scalable, high performance switch architectures
that are suitable for wide-scale deployment in both public and private networks. However,
while the core switching problems are now fairly well understood, our understanding of the
higher level control problems is incomplete and often confused. This is understandable,
since these higher level problems are logically complex and difficult to separate from one
another. These inherent difficulties are made worse by the lack of any common conceptual
framework in the research literature, making it difficult to clearly define the key problems
and evaluate possible solutions. In general, the literature on network control in ATM and
its historical antecedents (e.g. the telephone network, virtual circuit data networks) focuses
on specific protocols and the communication of signaling messages, ignoring the algorithmic
questions of network control [1, 3,6, 7,8, 9, 11, 12, 13, 15, 17, 21]. Discussion of alternative
design approaches and useful surveys are rare [20]. This paper is an attempt to formulate
the network control problem for ATM and similar networks, in a way that clarifies the key
issues and provides a framework for carefully addressing issues of correctness, computa-
tional efficiency and resource allocation. It does not offer any complete solutions to the
problem but identifies some intersting points in the design space and develops some basic
understanding of their merits. It is directed to researchers in both distributed systems and
networking, since the creation of effective solutions for these problems requires the methods
and perspectives of both research communities.

ATM technology has its roots in research projects in CNET [4, 5] and Bell Labs‘[14, 16]
in the early eighties. After more than a decade of research and development, it has emerged
as a central technology component for the emerging information superhighway. ATM is a
virtual circuit technology, meaning that information to be carried over the network is broken
up into blocks (called cells in ATM) with an identifying label (called the Virtual Circuit
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Figure 1: Virtual Circuit Switching

Identifier or VCI) attached to each block. The VCI is used to forward information along a
fixed path in the network, defined by hardware tables in the switching systems along the
path. This is illustrated in Figure 1 in which a cell arriving at the central switching system
with a VCI of ¢ is forwarded to output port p of the switch and assigned a new VCI of j.
ATM networks can support virtual circuits that operate at any data rate, up to the capacity
of the links that carry them. They can also vary the rate of transmission, allowing the use
of statistical multiplexing to improve transmission efficiency. While they are not quite as
flexible as datagram-oriented packet networks, they are fare more amenable to large-scale
hardware implementations, leading to dramatic gains in cost-effectiveness when used for
large networks.

Because one of the key intended applications for ATM is carrying real-time audio and
video, ATM provides for reservation of link capacity for individual virtual circuits. In the
simplest case, one can simply reserve a fixed fraction of the link capacity for different virtual
circuit. In many cases the reserved capacity will correspond to the fixed transmission rate
used by the terminals communicating over the virtual circuit. In cases where the terminals
vary their transmission bandwidth, it may correspond to a long term average or some notion
of effective transmission rate. We are not concerned with the issue of how these rates are
obtained in this paper, and simply assume that each connection requires some fixed amount
of capacity that can be allocated by the network control system. In the last section of the
paper, we return to this issue.
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Figure 2: Multicast Virtual Circuits

One of the more interesting characteristics of ATM networks is their ability to support
multicast virtual circuits, in which information from a single source is replicated and dis-
tributed to multiple destinations 2. The replication and forwarding is implemented in the
switching system hardware. The management and control of such multicast virtual circuits
is the main focus of this paper. In the simplest case, a multicast virtual circuit has a single
sender and multiple receivers. However, it can also be useful to have virtual circuits in
which each participant can both send and receive. We generalize this further by allowing
virtual circuits in which some endpoints can be designated senders, some receivers and some
can be both.

When considering design alternatives for network control systems, it’s important to have
a clear understanding of a variety of engineering issues. ATM technology is intended for
networks ranging from campus networks with as few as one thousand users, to large public
networks with hundreds of millions. Individual switches will support from 10 to 10° users
and link speeds will range from 1 Mb/s to 10 Gb/s. Some connections may be highly
dynamic. For example, if video programs are distributed through ATM networks with
users able to switch among different connections by clicking a television’s remote control,
‘channel surfing’ can create heavy loads on the control system. A less extreme, but still im-
portant case is the the use of browsing programs like Mosaic for retrieving information from
distributed hypermedia information servers. Intrinsic network latencies can range widely
(from less than a millisecond to hundreds of milliseconds), but will typically be dominated
by simple propagation delays due to the finite speed of light. Because control latency can
limit the speed with which connections can be modified, it is desirable to keep it as close
as possible to the intrinsic network latency. Cost is determined primarily by the number,
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capacity and length of the physical links, as well as the number and capacity of switches
and the associated control system. There are major cost advantages to using the largest
capacity links feasible when going over geographically significant distances. Hence, even
if user access links are limited to moderate rates (typically 150 Mb/s), network backbone
links will often by faster (600 Mb/s and 2.4 Gb/s today, 10 Gb/s by the end of the decade).
Networks do exhibit natural clusters, reflecting organizational and social structures, as well
as geography. These can often be used to make network control operations more efficient.
The huge bandwidth of ATM networks makes it cost-effective to transport large quantities
of data. For distributed control systems this means that large amounts of control informa-
tion can be distributed, if it is done in large chunks, so that the overheads associated with
message handling can be minimized.

We consider three types of network control elements that collectively implement the
overall control system. Terminal controllers (TC) are associated with the individual user
terminals and are the source of all requests for network services. Terminal controllers com-
municate their requests to Network Controllers (NC), which in turn carry out those requests
by issuing commands to Switch Controllers (SC), which manage individual switches. Net-
work controllers play the central role and are the focus of this paper. The NCs can commu-
nicate directly with one another, as well as with TCs and SCs. TCs and SCs communicate
only with NCs.

An important component of the network control system is an underlying message trans-
port mechanism that allows control messages to be reliably communicated among the var-
ious control elements. We assume such a component exists but don’t discuss it in detail.
We require that it be able to reliably deliver a message of arbitrary length to any specified
destination in the network and return an acknowledgement indicating successful delivery.
Failure to deliver a control message in a bounded time interval should be sufficiently rare
that it is acceptable for such a failure to trigger failure of the entire operation associated with
the message. We also require that the message delivery system deliver messages between
two control elements in FIFO order.

We do not consider the question of network addressing in this paper, but do assume
that every terminal is identified by an address which specifies a location (either logical or
physical) in the network. Terminals may also have higher level names that can be converted
to addresses by some separate process, but we don’t consider those questions here.

In the remainder of this paper, we consider the design of control systems for ATM
networks in some detail. Section 2 provides a formulation of the network control problem
that is rigorous enough to allow one to make precise statements about the correctness,
efficiency and use of resources by a network control system. This provides a framework for
discussing network control algorithms and is perhaps the main contribution of the paper.
Sections 3 through 5 discuss the issues associated with control systems for progressively
larger-scale network configurations. In each section, we identify a particular point in the
design space and explore the issues raised by the class of designs it represents. We do
not provide complete solutions in any of these sections, but merely outline some of the
possibilities and indicate how they might be fleshed out, and what the consequences would
be. Section 6 summarizes the paper and discusses some of the issues that have been omitted
from the main discussion.
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Figure 3: Example Network

2. Formulating the Problem

In this section, we give an abstract model of the network control problem that will form
the basis of our later discussion of alternative designs. The model suppresses a number of
details that can be important in a practical system context, but retains enough of the real
system issues to expose the essential complexities.

We model a network as a directed graph G = (V, F') with integer edge costs y(u,v) and
integer capacities k(u,v). Vertices which are incident to exactly one edge in the underlying
undirected graph, are called terminals. All others are called switches. We let T denote the
set of terminals and 5 the set of switches. These definitions are illustrated in Figure 3, where
the terminals are shown as triangles and the switches as circles (edge costs and capacities
are not shown for the edges incident to the terminals).

A connection request is a tuple [¢, ¥, A, r,w], where ¢ is a connection identifier, ¥ C T
is a set of sources, A C T is a set of destinations, r € T is called the connection owner and
w is a non-negative integer called the connection weight.

Let H = (W, F) be a subgraph of ¢ whose underlying undirected graph is a tree, the
leaves of which are in T. We say that a leaf w in H is a source if there is an edge leaving
u. We say that a leaf u in H is a destination if there is an edge entering u. We say that H
is a connection graph if for every pair u, v where u is a source and v is a destination, there
is a directed path in H from u to v, and every edge in W is on at least one such source-
destination path. A connection graph H = (W, F') implements a request [¢, ¥, A, r,w]if ¥
is the set of sources in H and A is the set of destinations. A connection descriptor is a
tuple [¢, S, T,r,w, H = (W, I')] where [¢,5,T,r,w]is a request and H is a connection graph
that implements it. These definitions are illustrated in Figure 4.



6 Issues in Distributed Control for ATM Networks

Global Descriptors
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Figure 4: Connection Descriptors

For a set of connection descriptors C' and (u,v) € E, define

Ac(u,v) = Z w
[, A r,w, H= (W, F)]eC
such that (u,v) € I/

For example, if C' is the set of connections in Figure 4, A(C(Z,U) = 3. We say that C' is
valid if for all edges (u,v), Ac(u,v) < K(u,v). A set of connection requests is feasible if there
is a set of connection graphs for the set of requests that yields a valid set of descriptors.
The cost of a set of descriptors C' is defined to be

Z /\C(uv v)'}/(% ?J)

(uw,v)eE
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Figure 5: Local Connection Descriptors for Connection cg

A set of connection descriptors is optimal if there is no other set of descriptors implementing
the same set of requests that has lower cost. Note that the set of descriptors in Figure 4 is
valid and optimal, but if we were to increase the weight of ¢35 to 7, it would become both
invalid and infeasible.

A local connection descriptor at vertex u is defined as a tuple [u,cy, 7y, wy, Hy =
(Wy, F,)] where ¢, is a connection identifier, r, € T', w, is a non-negative integer and H,
is a subgraph of G whose vertices are restricted to v and its neighbors in G. We say that a
set of local descriptors implements a (global) connection descriptor D = [¢, ¥, A, r,w, H =
(W, F)], if it satisfies the following conditions

o for every v € W, there is exactly one local descriptor [u, ¢y, 7y, wy, Hy = (W, F,)] for
which v = » and ¢, = ¢,

o for every v € W, the descriptor [u, ¢y, Ty, wy, Hy = (W, F,,)] for which v = v and
¢, = c also satisfies the conditions: r, = r, w, = w and H, is the subgraph of H
induced by w and its neighbors in H.

Figure 5 shows the local descriptors for each switch involved in connection ¢g from the
previous example. The connection descriptors for the terminals are not shown.

We define a network control system as an abstract data type that maintains a feasible
set C' of connection descriptors for a network & by operating on a set of local connection de-
scriptors that collectively implement the set C'. The abstract operations that are performed
by the network control system are defined in terms of their effect on the global descriptors,
but the system is required to realize these effects by operating on the local descriptors (this
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is detailed further, below). Note that each of the operations listed below has an invocation
point (denoted by the subscript 2), which identifies the terminal controller which invoked
the operation and which expects a response.

create,(u,w,typ)

destroy,(c).

invite,(c,u)

add(c,u, typ)

remove,(¢, u)

retype,(c,u,typ)

reweight (c,w’)

Adds a connection descriptor [¢, ¥, A, z,w, H = ({u},{})] to C, where
c is an identifier not associated with any existing descriptor, w is a non-
negative integer, typ € {sre,dst,both}, ¥ = {u} if typ # dst and empty
otherwise and A = {u} if typ # src and empty otherwise. Returns the
value of c.

Removes the connection with identifier ¢ from C'.

This operation simply results in a message being sent to u € T, inviting
u to join the existing connection ¢. An acknowledgement is returned
to & when the message has been delivered.

where ¢ is an identifier for some descriptor D = [¢, ¥, A, r,w, H =
(W, F)]in C,u € V—-W and typ € {sre,dst,both}. This operation
either does nothing and returns 0 or replaces 1) with a new connection
descriptor D' = [¢, ¥, A/ r,w, H' = (W', F")], giving a new feasible set
(' and returns 1. If the replacement is made

v b if typ = dst
YU {u} otherwise

A - A if typ = sre
N AU{u} otherwise

and H’ is a connection graph that implements [¢, %/, A/ r, w].

where ¢ is the identifier of some descriptor D = [¢, ¥, A, r,w, H =
(W,F)] in €' and v € ¥ U A. Replaces D with a new connection
D' =[e, Y —{u}, A—{u},r,w, H = (W', F')], giving a new feasible set
C’, where H' implements [c¢, X — {u}, A — {u}, r,w].

where ¢ is the identifier of some descriptor D = [¢, ¥, A, r,w, H =
(W, F)]'in C, w € ¥UA and typ € {src,dst,both}. This operation
either does nothing and returns 0, or replaces D with a new connection
descriptor D' = [¢, X/, A/ r,w, H' = (W', F')], giving a new feasible set
(' and returns 1. If the replacement is made

s Y —A{u} if typ = dst
N Y U{u} otherwise

A = A —{u} if typ = sre
B AU {u} otherwise

and H'is a connection graph that implements [¢, ¥/, A/, r, w].

where ¢ is the identifier of some descriptor D = [¢, ¥, A, r,w, H =
(W, F)] in € and &’ is a non-negative integer. Either does nothing
and returns 0 or replaces D with a new connection descriptor D' =
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[c, ¥, A, r,w, H = (W', F')], giving a new feasible set C’, where H’
implements [¢, X, A, r,w'].

Note that the owner of a connection is the terminal that invokes the initial create operation,
but need not be an actual participant in the connection. This allows connections to be cre-
ated on behalf of terminals that may be unable to invoke control operations independently.
Ownership of a connection implies the right to control the connection configuration. A
variety of policies can be defined relating to ownership. For example, one might restrict the
retype and reweight operations so that they can be invoked only by the owner. One could
include options for different connections so that an add operation is similarly restricted,
allowed if the requester can supply a correct password or appears on an owner-defined list.
Similarly, one could allow the owner to pre-specify restrictions on the typ of new partici-
pants in a connection. We do not consider these issues in detail here to avoid complicating
the discussion. For the remainder of the paper, we simply assume no restrictions on which
terminal controllers may invoke the various operations.

We now illustrate the operations with a few examples. Connection ¢; in Figure 4, would
typically be constructed using the operation create,(a, 1, both), followed by invite,(c1,n) and
add,(c1,n,both). Connection ¢y could be constructed using the operations createy(b, 3, src)
followed by add,(cq,g,dst), add.(cq, e,dst), add;(cg, 1, dst) and adds(cq, f,dst). The add
operation can be extended to add a set of endpoints in one step, but we do not consider
that option here.

The local connection descriptors are maintained by the switch controllers, which also
make changes to the switches” hardware control tables necessary to provide the actual virtual
circuits. The network control system implements changes to the local connection descriptors
by sending messages to the switch controllers similar to those given above. We omit the
definitions as they are fairly obvious analogs of the ones given above. We do note that a
switch controller will carry out requests that, according to its local view, do not exceed
any resource bounds (each switch controller maintains a record of the capacity of the edges
incident to its switch). In any case, a switch controller returns a message indicating success
or failure.

A network control system is called incremental if the connection graphs constructed by
various operations are either supergraphs or subgraphs of the original connection graphs.

We say that a network control system is sequentially correct if given any set of local
connection descriptors that implements a valid set of global descriptors, and any properly
specified operation from the above set, it carries out the operation as defined above and
returns. That is, at the time it returns, the set of local descriptors implements the new set
of global descriptors required by the operation definitions.

Sequential correctness only means that a network control system will operate correctly
when operations are presented one at a time (a new operation is requested only after a re-
sponse is given to the previous operation). However, we are generally more interested in the
case where requests are made concurrently at different vertices in the graph, and processing
of different operations is carried out concurrently. We consider a network control system
correct in this sense, if the set of local descriptors resulting from the concurrent execution
of a set of operations is the same as would be obtained in some sequential execution.
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Of course, the implementation of a network control system may also involve other data
structures that allow various operations to be carried out more efficiently. Correctness of
a particular system will also require that these data structures be consistent with the set
of global descriptors. (For example, if there is a variable that records the link capacity in
use between vertices u and v, its value should equal A¢(u,v), where C is the set of global
descriptors.) However, since these data structures can generally be computed directly from
the local descriptors, we won’t address them separately.

Note that our definition of correctness defines a network control system to be correct,
even if it never successfully completes any operation requiring allocation of resources. Such
a system, while correct, is not particularly useful, so we generally require that in addition, a
system be responsive. We say that a control system is sequentially responsive, if given any
initial set of local connection descriptors that implements a feasible set of global descrip-
tors, and an operation that requires the allocation of resources (add, retype, reweight), it
successfully completes the operation if it is consistent with a stated resource usage policy.
In the simplest case, we can make the resource usage policy simply: if there is a feasibly way
to carry out the requested operation, then use whatever resources are needed. However, in
practice it is often desirable to refuse an operation on policy grounds, if it requires excessive
resources. For example, we might have a policy of refusing add requests if the only available
path is so circuitous that it ties up excessive resources. Similarly, we might have a policy
of carrying out a reweight or retype operation, only if they do not require changes in the
vertex set of the connection graph. We say that a system is responsive if for every possible
concurrent execution of a given set of operations, there is a sequential execution of the
same set such that the subset of operations that completes successfully in the concurrent
execution contains the subset that completes successfully in the sequential execution.

While one might argue that the separation of correctness and responsiveness is artificial,
we find it a useful distinction to make. Correctness is a requirement for any network control
system, while responsiveness is a matter of degree. So long as the governing policy is made
explicit, it remains possible to evaluate and compare alternative network control systems,
based on how responsive they are.

There are other criteria we're interested in when evaluating network control systems.
One is run-time efficiency. There are different aspects to this. First, is the total amount of
processing (including message transmission and computation) that is required to perform a
given operation, and second is the response time for the operation (again, including the time
associated with both computation and message transmission). In the case of response time,
we are concerned with both the time required to carry out the operation in isolation and the
time when the operation is executed concurrently with others. Both best-case and worst-
case analyses are relevant here, since the best-case often reflects observed performance better
than the worst-case. Another aspect of run-time efficiency is the effort that may be expended
in background processing, not associated with any specific user operation. Such processing
is generally required to speed up handling of user requests, but the resources devoted to
such processing must be taken into account when comparing alternative approaches.

Another important criteria when evaluating a network control system is its effectiveness
in managing the network’s resources. For ¢ > 1, we call a system e-conservative if after
completing any set of operations, the cost of the set of connection descriptors at that point
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is no more than ¢ times the cost of the optimal set of connection descriptors. We say a
system is incrementally e-conservative, if the incremental cost of the resources allocated
for any single operation are no more than ¢ times what would be allocated by an optimal
incremental control system, starting from the same initial set of descriptors.

3. Centralized Control in a Campus Network

In this section we consider the design of a network control system for a campus network.
This example illustrates one point in the design space and provides insight into some of the
key design and performance issues. To make things concrete, assume that the network has
10,000 users who are served by 10 switches with 1,000 users each. Each user has an access
link operating at a rate of 150 Mb/s and each pair of switches is connected by a link group
comprising five links with a capacity of 600 Mb/s each. This gives each switch 27 Gb/s of
capacity for communicating with other switches, or 27 Mb/s of non-local capacity for each
user.

We start by exploring the simplest option for controlling such a system, which is to
use a single network control processor, which can communicate directly with each terminal
and switch controller. Let’s first consider the essential processing requirements to get a
rough understanding of the feasibility of a centralized design. To process a single operation,
we’ll typically need to do some resource allocation, send messages to one or more switch
controllers and send a response to the user. Assume that an average operation requires that
three messages be sent to switch controllers and that an average message has perhaps 200
bytes and requires 1000 instructions to do the low level message processing. This means that
the network controller needs to execute 8,000 instructions to do the message processing for
a single operation. If the resource allocation can be done in 2,000 instructions, then we have
an estimate of 10,000 instructions to process an average operation. Assuming a processor
with an effective instruction processing rate of 20 MIPS (about one fifth the peak rate of
common processors today), this allows a single processor to handle about 2,000 operations
per second or 12 operations per minute by each individual user. By contrast, telephone
networks typically process fewer than one comparable operation every 10 minutes during
the busiest part of the day, so the single central processor could handle more than 100
times the user request rate associated with users of telephone networks. While we expect
users of multimedia ATM networks to generate more network control operations than users
of telephone networks, it seems unlikely that it will be 100 times as many. This analysis
suggests that if operating system overheads are kept to a reasonable level, that a single
processor can effectively handle the control processing for a network this size and perhaps
even larger networks. In general, if u is the number of users in a network, r is the average
number of operations per minute by each user, P is the effective instruction processing rate
of the control processor, M is the number of instructions that must be executed to process
one message and A is the number of instructions that must be executed to implement the
operation, then a single control processor can suffice if

P <u7‘
SM+A ~— 60
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So, for example, if p = 50 MIPS, M = 500, A = 2,000 and » = 5, we could conceivably
support as many as 100,000 users with a single control processor.

Let’s now take a more detailed look at the proposed system. With ten switches and
five links joining each pair, we have a total of 225 inter-switch links. It’s reasonable to
expect that most point-to-point connections can be handled using a single inter-switch link,
although we’ll sometimes need to use a two link path. Using three links for a single con-
nection seems wasteful, given the rich interconnection topology, so it may be a reasonable
policy to allow point-to-point connections to pass through at most one intermediate switch.
There are similar policy constraints that can be introduced for general multipoint connec-
tions. Define a connection to be type 1 if all the terminals connect to a single switch; type
2 if all the terminals connect to two switches; type 3 if the terminals connect to more than
two switches and either all the source terminals are connected to one switch or all the desti-
nation terminals are connected to one switch; and type 4 otherwise. To avoid allocating an
excessive amount of resources to any single connection, we require that type 1 connections
use no inter-switch links, type 2 and 3 connections have no directed acyclic paths with more
than two inter-switch links and type 4 connections have no directed acyclic paths with more
than four inter-switch links. We call this the bounded path length policy for small diameter
networks.

To implement the operation create,(r,w,typ), the network controller first checks to
see if there is sufficient unused capacity on the edge incident to r (in the direction or
directions required by typ), and if so, allocates the capacity needed, creates the required
global connection descriptor and sends a message to the switch controller responsible for
the switch connected to 7, causing it to create a local descriptor. To implement destroy,(c),
the network controller sends similar messages to all switch controllers that possess local
descriptors for ¢, recovers the link capacity that has been allocated to the connection and
destroys the global descriptor. To implement add,(c,u,typ), the network controller adds a
branch between u and the connection using a path with the minimum possible number of
hops, if there is such a path that is consistent with our bounded path length policy. This is
done by searching its internal representation of the subgraph of the network that includes
only the switches and the inter-switch links for the best path, allocating the required link
resources, changing the global connection descriptor and sending create or add messages to
the appropriate switch controllers. It can be shown that performing the routing in this way
makes the system incrementally 1-conservative and 2-conservative if all link costs are equal.
For a small network, like we’re considering here (at least in terms of number of switches
and inter-switch links), the identification of an appropriate route can be done very quickly.
To implement remove,(c,u), the network controller prunes the portion of the connection
tree used only by the endpoint u. This involves deallocating the resources that had been
allocated to this branch of the tree, modifying the global connection descriptor and sending
remove or destroy messages to the affected switch controllers.

To avoid disrupting the flow of user data, we’re generally constrained to perform the
various operations in an incremental way. For the reweight operation, this involves increas-
ing or decreasing the amount of allocated capacity on all affected links, so long as all have
sufficient capacity available. The operation will fail if any of the links lack sufficient capac-
ity. There are similar constraints on the retype operation. Because these operations affect
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more than a single path and don’t allow selection of new routes, they can fail significantly
more often than the add operation. This can justify some relaxation of the constraint that
operations do not disrupt the flow of user data, but we do not consider that possibility in
this paper.

Even though we only have a single network controller, there are scheduling and concur-
rency issues that can have an impact on the control capacity of the system. At one extreme,
the network controller could do its processing in a strictly sequential fashion. That is, it
would only process one operation at a time and always wait for a response from a switch
controller before proceeding with its execution. While an implementation of this type may
appear very constraining, it does have the merit of eliminating the complications of manag-
ing concurrent operations and the sometimes burdensome overhead that can be involved in
switching among different contexts. If switch controllers can respond rapidly to connection
requests (say in 100 us or less) the amount of processing capacity lost due to idling while
waiting for messages could be acceptable. In particular, if we consider our earlier example
in which each operation requires an average of three messages to switch controllers, 1,000
instructions are executed for each message send and receive, and 2,000 instructions are
required to implement the operation, we find that the number of operations that can be
processed per second by a network controller with an effective instruction processing rate
of 20 MIPS drops from 2,000 operations per second to 1,250. While this is a significant
drop, it may still leave the controller with sufficient capacity to handle the given network
configuration. Alternatively, the network controller might exploit some limited concurrency
by sending control messages to switch controllers in parallel, rather than sequentially. This
would increase the number of operations that could be done in a second in our example
configuration, to 1,666.

The other extreme is to allow multiple operations to proceed concurrently, by creating
a separate thread of execution for each operation. When there is a single central controller,
we can make it easier to ensure correctness without sacrificing execution efficiency by con-
straining context switches among concurrent operations to occur only while a thread is
waiting for messages. Since the network controller maintains complete information about
the network state, it can ensure that messages to switch controllers will always succeed by
first allocating resources in its local data structures and updating the proper global connec-
tion descriptor. This, together with our assumption of FIFO message delivery, is sufficient
to ensure that concurrent operations execute as though they were sequential, even though
they may be overlapped in time.

Our example also raises issues relating to how our abstract model reflects capacity
allocation on links. In our model, we specify the capacity from one switch to another
by a single number, but as our example configuration makes clear, this capacity may be
provided by multiple physical links. This can lead to fragmentation in which there may
be sufficient unused capacity on the set of links joining a pair of switches to accommodate
a new connection request, but not enough capacity on any one physical link. In practice,
individual connections must usually be assigned to a single physical link, and it is generally
not practical to re-pack existing connections to reduce fragmentation (re-packing would
disrupt the flow of data on the virtual circuits). The effect of this fragmentation is to
reduce the effective capacity of a set of links. Since, in our example, the links connecting
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to terminals have a capacity of 150 Mb/s each, a connection passing from switch to switch
can be accommodated so long as at least one of the five 600 Mb/s links has 150 Mb/s of
unused capacity. This implies that the effective capacity of the set of links is 2.4 Gb/s
instead of 3 Gb/s. In general, if a single user request has a weight of at most B, then the
worst-case effective capacity of a set of m physical links is equal to its raw capacity minus
(m — 1)B. This observation makes the simplification in our abstract model a reasonable
one. However, the model can also be extended to explicitly model multiple links between
every pair of switches. Since this does not lead to any fundamental changes, we retain the
simplified model here.

4. Distributed Control with Global State

In this section, we consider a network which is too large to be controlled by single network
control processor, but is still small enough to make it possible to distribute some global
state information. Again, let’s make the discussion concrete by assuming a specific configu-
ration, with say 10 million terminals with 150 Mb/s links, supported by 1,000 switches with
10,000 terminals each. Assume that there are 100 additional transit switches for providing
communication among the access switches and that each access switch has 100 links with a
capacity of 2.4 Gb/s each connecting it to between one and five transit switches. Assume
that each transit switch has 25 2.4 Gb/s links connecting it to each of about 40 other transit
switches and has an average of 30 2.4 Gb/s links connecting it to each of about 30 access
switches. With this configuration, each access switch has about 240 Gb/s of capacity for
non-local traffic or about 24 Mb/s per terminal. Each transit switch has about 900 links
connecting it to access switches and about 1,000 connecting it to other transit switches.
Overall, there are about 3,000 link groups joining transit switches to access switches, and
another 2,000 joining transit switches.

With this large a configuration, network control requires more processing capacity than
a single processor can provide. Consider first, the case in which each switch has it’s own
dedicated network controller. To get a feeling for the processing capacity required, let’s
assume that users request an average of r operations per minute each, and that an average
operation involves two access switches and two transit switches. With these assumptions,
the network controller for each access switch must be able to process 333r operations per
second and the network controller for each transit switch must be able to process 3,333r
operations per second. For r < 10 a single processor can suffice for the network controllers
associated with the access switches, if the amount of processing required per operation at
each network controller is roughly the same as what we discussed earlier for the case of
a single central controller. However, a single processor will clearly be insufficient for the
transit switch controllers. On the other hand, ten processors can be sufficient, making
it reasonable to control a transit switch using a single shared-memory multiprocessors.
Memory requirements for the transit switch controllers could become a serious issue. If
each connection requires M bytes of memory in each network controller involved in the
connection, the average number of connections per terminal is ¢ and the average number of
transit switches involved in a connection is f, then the transit switches require an average
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of 10°t fM bytes of memory. For M = 1,000, t = f = 2, this becomes 400 Mbytes, a large
but manageable amount.

There are several ways we can approach the distribution of control. In this section we
consider an approach that distributes the allocation of resources, but allows each individual
connection to be controlled by a single controller. The idea is to have the access switch
associated with the owner of a connection maintain a global picture of the connection, and
all requests to operate on that connection are then handled by that access switch. To
implement this, each operation request (except create) would be augmented with an addi-
tional parameter specifying the owner of the connection. A terminal, making an operation
request, would send a message to the network controller for its access switch, and the con-
troller would simply forward the message to the owner’s access switch. The owner’s access
switch would implement the request, by sending messages to other switches, requesting the
allocation or release of whatever resources are required.

In order for a network controller to allocate resources in response to an add request,
it requires some knowledge of the state of the network. As discussed above, there are
about 5,000 link groups in our sample configuration, a small enough number that we could
reasonably maintain and distribute information about all 5,000 if the amount of information
per link group is not excessive. Fortunately, very little information about a link group is
really required to identify a path for an add operation. In particular, all we really need
to know is if the link group has sufficient unused capacity to handle a new connection. If
connections have a maximum weight of 150 Mb/s, a link group made up of 2.4 Gb/s links will
be able to accommodate a new connection if less 93.7% of its capacity is allocated to other
connections. Consequently, we would expect most link groups to be able to accommodate
a new connection most of the time. Furthermore, once a link group becomes so busy that
it can’t accommodate a new connection, we would likely defer new connections until it has
become at least a little less busy (say 85% of capacity allocated). These two considerations
make it possible to use a single bit for the state of a link group, indicating it either is
or is not accepting new connection requests. This state information will not change very
rapidly, allowing it to distributed to all other switches in the network, either periodically
or as changes occur.

Given a knowledge of network topology and the states of the various link groups, a
switch can compute a path between any two points in the network. One way to perform
the path computation is to carry out a standard shortest-path algorithm in response to
each add request. However, the worst-case performance of typical algorithms make this
expensive enough in a network with 5,000 link groups that alternatives need to be considered
(even the most efficient implementations of Dijkstra’s algorithm would require about 10-50
instructions per link group, or 1-5 ms on a processor with an effective processing rate of
50 MIPS). More efficient routing algorithms can be devised by taking advantage of the
specific network structure. In particular, if we never use access switches as intermediate
hops in longer connections and restrict ourselves to paths with at most links between transit
switches (longer paths between transit switches can be ruled out for policy reasons, given
the rich interconnection topology) we can speed things up considerably. For each pair of
transit switches the number of other transit switches that they are both connected to will
typically be less than 20, so it’s reasonable to maintain a list of these intermediate switches
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for each pair of transit switches, making it possible to check all two hop paths between a
pair of transit switches in under 10 us. Given this, we could check all possibilities between
a pair of access switches that are each connected to three transit switches in under 100 us.

From the above discussion, we can develop a picture of how each of the various network
control operations might be implemented. First, each terminal requests that the network
perform control operations on its behalf by sending messages to the network controller for
the access switch it is connected to. The create operation is essentially the same as in
the centralized control scenario, with the access switch connecting to the owner creating a
global connection descriptor for the connection when it is created.

The add operation can be implemented by having the access switch first receiving the
request, passing it on to the controller for the owner’s access switch (call this the master
controller). Since the master controller has a global view of the network and the connection,
it can select an appropriate path, then send messages to the network controllers for the
switches along the path, asking that they allocate the necessary link capacity and implement
the connection in the switch hardware (the selection of the specific links and virtual circuits
can be handled by the network controllers along the path). When they have either completed
their individual operations or decided they cannot, the network controllers along the path
will respond to the master controller, which can then either respond affirmatively to the
requester or re-try the attempt with a different path. If the operation does not succeed after
two or three attempts, the resources would be released and a failure indication returned to
the terminal that made the request. The remove, retype and reweight operations can also
be handled by the master controller in a straightforward way.

It is not hard to see how to implement the operations in a way that ensures that the
local connection descriptors maintained by the various switch controllers remain consistent
with the global descriptor maintained by each connection’s master controller. However,
the distribution of responsibility for resource management creates the possibility of re-
source management conflicts that can interfere with the system’s responsiveness. Because
resources required for an operation are released if not all the needed resources are immedi-
ately available, resource deadlocks are not possible. However livelocks are. In particular,
concurrent add requests for different connections can interact in ways that prevent any of
them from succeeding, even though the network may have the resources to handle some
subset of them. Eliminating the possibility of livelock requires mechanisms for recognizing
it and breaking the cycle of dependencies on which it depends. In this case, the likelihood
of livelock is arguably small enough to make it reasonable to ignore the possibility alto-
gether. We don’t consider the subject further here, but note that it could conceivably be
an important issue.

There is an obvious performance limitation of the network control system we have out-
lined. In the case of highly dynamic multipoint connections, the master controller could
easily become a serious performance bottleneck. However, there is a simple extension that
can drastically reduce the likelihood of this. The extension is to allow a network controller
at an access switch to handle add and remove requests locally, without involving the master
controller, whenever possible. Specifically, if a network controller at an access switch U
receives a request to add one of its connected terminals to a connection that is already
present at U, it could handle the request locally. This operation can be made transparent
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to the connection’s master controller, by omitting information about specific terminals in
the connection from the master controller’s global description. Remove operations could
similarly be handled by the controller for the access switch associated with the target of
the operation. The only time the master controller need be informed of an add or remove
operation is when these operations cause the number of connected terminals at a given
access switch to change from zero to one, or vice-versa.

Within the network controller for an access switch, we have the same issues with respect
to scheduling and concurrency that we have in the case of centralized control. However,
there are some new issues for the transit switches, since transit switches are controlled
by a collection of shared memory multiprocessors. The network controllers for transit
switches must maintain local descriptors for each connection passing through them, as
well as detailed information about their local resources. The connection descriptors for
individual connections can be assigned to specific multiprocessors based on the identity
of the connection owner. Since transit switches get requests to operate on a connection
through the network controller for the owner’s access switch, this method of assignment
also makes it easier to ensure FIFO message delivery. To manage resource information,
simple locking mechanisms can be used to control access by different processors and ensure
consistency.

5. Fully Distributed Control with Local State

The previous two sections considered networks that were small enough to allow at least
some centralization of processing and some distribution of global network state. In this
section, we focus on networks that are large enough that a more comprehensive distribution
of processing and information is really required. Again, to make the discussion concrete,
assume there are over 10? terminals, connected to access switches with an average of 10,000
terminals each. Fach access switch connects to one or a few transit switches, using a total
of 100 2.4 Gb/s access links, and the transit switches are each connected to about 50 others,
with about 40 2.4 Gb/s links between each connected pair. With 10° terminals, there will
be about 10° access switches and 10* transit switches. Assume the network topology is
richly enough interconnected that we need never consider paths between transit switches
with more than five links and that the average path between transit switches requires three

links.

As in the last section, we assume a network controller for every switch, but given that
the network is 100 times larger than in the previous case, it no longer seems reasonable
to distribute any global network state that changes dynamically in response to individual
user requests. So a key question becomes, how can we select paths to satisfy add requests,
without global link status information, and without a complete picture of even a single
connection? Let’s first consider just the problem of selecting a path from a given point in the
network to some destination. To allow this to be done quickly, we can provide the network
controller for each switch with a table containing an entry for every possible destination
switch in the network. Each entry consists of a list of neighboring switches through which
the destination switch can be reached. Each list is ordered so that the shortest paths to



18 Issues in Distributed Control for ATM Networks

the destination through each successive neighbor in the list are increasing in length. To
avoid routing loops, every neighbor in the list is closer to the destination than the network
controller for which the table is configured. Given a set of tables like this, we can find a path
to a given destination from some switch by consulting the switch’s routing table, checking
successive neighbors in the list for the destination and determining if there is sufficient
available capacity along the connecting link group to accommodate the connection. If so,
proceed to the neighboring switch and continue the search from there. In the event that
none of the neighboring switches to a given destination has enough unused capacity on the
connecting link group to accommodate the connection, one can either block the request or
backtrack, with perhaps some limit on the total number of backtracking steps that would be
allowed. While in general, it’s difficult to say precisely how the paths produced by such an
algorithm compare to the shortest path available, in a richly connected network, one would
expect it to normally produce short paths, and to do so far more quickly than any method
that guarantees shortest paths. In fact, one could probably design a network topology to
ensure that paths produced by such an algorithm were never too much longer than the
shortest path and that the failure of the algorithm to find a path meant that no ‘short
enough’ path was available.

There is a natural generalization of the routing technique described above that could
improve its performance. Instead of using a list of best neighboring switches to each desti-
nation, one could use a list of best switches within two hops of a given switch. If we also
distributed link state information to switches within two hops, we could effectively look
ahead one hop, before deciding which switch to go to next. The technique can clearly be
extended to provide greater amounts of look-ahead, but the small additional improvement
that is likely to be obtained may not compensate for the significant expansion in memory
needed for the routing table and link state information.

The next issue to consider is the distribution of information about connections. With
over 100,000 switches in the network, a single connection can be too large to reasonably
manage from a central location. Hence, we also need to consider the question of distributing
connection information. In this section, we take the extreme view of having each network
controller maintain only the local connection description for each connection that passes
through its switch. This immediately raises some questions with respect to routing, since
no network controller has enough information to determine the best point to branch off
of the connection in order to reach a new endpoint. The problem becomes simpler if we
satisfy an add request by starting the path search from the new endpoint and go toward
some known location in the connection, halting the search as soon as the connection is
reached, even if we have not yet reached the target location. This implies that in order
to process the add request, we need a target (or perhaps a selection of multiple targets)
to aim for. We could require that the terminal making the request supply one or more
targets, along with the connection identifier and weight. In common cases, the user may
have this information anyway. For example, the user could have it as a result of receiving a
prior invite message, or in the case of connections used for public information distribution,
through secondary sources (e.g. T.V. Guide). In addition to these means, the network
can provide information services that supply such auxiliary information, given a connection
identifier. This is analogous to the use of directory assistance in the telephone network and
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would be used only when needed to avoid making it a performance bottleneck. The load on
the information service can be distributed over multiple servers by mapping some portion of
the connection identifier to the address of a server responsible for maintaining information
about that connection.

From the above discussion, we can develop a picture of how each of the various network
control operations can be implemented. As in the previous section, each terminal requests
that the network perform control operations on its behalf by sending messages to the net-
work controller for the access switch it is connected to. The create operation is essentially
the same as in the centralized control scenario. However, now the connection may have
to be registered with an information server. The need for registration can be indicated by
the owner, in an additional parameter in the create operation, or can be implemented as a
separate operation, allowing the owner to decide to register or ‘de-register’ a connection at
any time.

As discussed above, we assume that additional parameters are included in the add oper-
ation, specifying the weight of the connection and the identity of at least one target location
in the connection. The access switch receiving the original operation request forwards the
request to the access switch for the requested new endpoint (call it U). U first determines
if the requested new endpoint has sufficient capacity on its access link, then selects one of
the targets and starts hunting for a path to that target, as described above. Assuming the
path hunt reaches the connection at some switch V', the path can be retraced with resources
along the path being committed to the connection and the switch hardware configured to
implement the new connection branch. At this point, an acknowledgement can be sent to
the requesting terminal.

Remove operations are performed similarly to add, proceeding from the endpoint to be
removed along the connection tree until a branch point is reached and terminating there.
Retype can be done similarly, proceeding from the terminal whose type is to be changed,
allocating new resources along the path if possible and deallocating resources no longer
needed. Reweight proceeds through the entire tree, increasing or decreasing the allocated
link capacity as appropriate, and failing if the required capacity is not available everywhere.

With the execution of connection operations being distributed across hundreds or even
thousands of network controllers, there are clearly myriad opportunities for errors in al-
gorithms to create inconsistencies in the local connection descriptors when operations are
performed concurrently on a single connection. We could simplify the problem, as in the
earlier sections, by forcing operations on a single connection to be done serially. This need
not require centralized processing, but does at least require the acquisition of a lock from a
central location before proceeding to modify the connection. Given that some connections
may be very large and highly dynamic, it seems preferable to avoid such an extreme solution
if possible. A natural possibility to consider is allowing operations to proceed concurrently
in different parts of the connection tree and only force them into a sequential order when
they affect information at a common set of switches. This can be implemented by creating
a thread of control for each distinct operation some part of which, is being performed at
a given network controller; but only allowing one active thread at a time, with respect
to a single connection. This helps ensure consistency, but can introduce the possibility of
deadlock, since threads for two or more operations can be queued waiting for one another
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in a cyclic fashion. We can break the deadlock by imposing an arbitrary global ordering on
the set of operations being performed on a connection and allowing operations that come
first in the global ordering to proceed in advance of operations that come later in the global
ordering. (One simple way to do this is to assign each operation a unique global identi-
fier when it first starts.) Of course, this also means that we must be able to rollback any
operation, before it has completed.

There is an intermediate possibility for controlling concurrency in a connection that
can also be considered. First, one divides the network into regions of moderate size (<
1000 access switches and < 100 transit switches). Within each region, each connection
is controlled by a single network controller, whose address can be determined from the
connection identifier (possibly by hashing the connection identifier to produce an index
into a table of network controllers for the region). Link state information could also be
distributed throughout such a region. Operations that are local to a region can be carried
out as described in the previous section. To route connections that leave the region, we
can define for each destination in the network, a list of switches neighboring the region
that are on short paths to the desired destination. The controller for a connection within
a region could also keep track of which other regions the connection passes through. This
can be done economically using a simple bit vector for networks with up to a few hundred
regions. Even for highly dynamic connections, these region sets would generally change
slowly enough that distributing them to all the region controllers need not be particularly
expensive.

6. Closing Remarks

This paper has presented a framework for precisely describing and analyzing distributed
algorithms for the control of ATM networks and explored several points in the space of
possible designs. It is hoped that this will provide a useful introduction to the network
control problem for researchers in distributed systems and a vehicle for more carefully
defining and comparing alternative system designs.

In order to focus on the issues of distributed control, we have glossed over issues relating
to resource management. In particular, we have assumed that the data rates of individual
virtual circuits could be adequately represented by single numbers, and we have ignored the
case of adaptive data traffic in which the application adapts its rate to match the availability
of network resources. For some applications (e.g. coded video), there is enough variability
in the traffic rate that simply allocating the peak rate leads to considerable inefficiency in
the use of network resources. If the link rate is much larger than the peak rate of the virtual
circuit (>50 times, say) then it’s possible to allocate an amount that is slightly larger than
the average data rate with high confidence that the aggregate traffic will not exceed the
link capacity. However, often determining if a given virtual circuit will ‘fit” on a given link
requires a more complex computational procedure and more information about the traffic
currently flowing on the link than a simple aggregate rate. When a network controller for
a particular switch must decide if a given virtual circuit can share a link with other virtual
circuits already using it, it must perform this more complex calculation. The question that
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then arises is must we do the same calculation when trying to determine a path to reach a
given destination, and if so, what link state information must be distributed. In situations
where the capacity of link groups is much larger than the capacity of a single virtual circuit
(which is inherently true in large-scale systems), a simple representation for the state of the
link group can suffice, since a representation that leads to conservative decisions will have
only a small impact on the efficiency with which network resources are utilized in this case.
It may be desirable to use more than a single bit per link group, but it does not appear
that complex representations are necessary or provide any significant advantages. Similar
observations apply to adaptive data traffic, but it may be necessary to have separate state
information for adaptive traffic than for reservation-oriented traffic.

Multicast routing is another issue that was touched on only lightly in the body of the
paper. This is a major subject in its own right and has been discussed in a number of
papers [18, 19]. For the kind of dynamically changing connections considered here, the only
practical choices that have been identified are variations on a simple greedy algorithm that
adds new endpoints using a shortest path from the endpoint to the connection, and deletes
endpoints by pruning the branch needed only by the endpoint being dropped. This is the
general type of algorithm considered here, although others are certainly possible within
the context of the same general framework for distributed control. While the worst-case
performance of these algorithms can be poor, simulations provide evidence that they should
work well in practice [18, 19].

It’s important to note that routing and network topology design are very inter-related.
While it can be useful to consider them separately, one cannot really understand how routing
algorithms are likely to perform without also understanding something about how networks
are configured. ATM networks introduce some new issues for network design that have not
been widely studied and are directly relevant to the question of routing in ATM networks.
While such questions are beyond the scope of this paper, the interested reader will find a
good introduction to these issues in [10].

There are other approaches for how to distribute control in a network that we haven’t
touched on. In general, all the control algorithms we have considered rely on structural
partitioning to define regions of the network controlled by different entities (in some cases
these regions are single switches). Another way to divide the responsibility for resource
management is layered partitioning in which each of a number of network controllers is
responsible for a ‘layer’ that spans the entire network. These could take the form of separate
spanning trees or simply dividing each link group among different controllers. Layered
partitioning has the advantage that it allows all the resource allocation for an operation to
be handled by a single processor in most cases. Another option is to not to divide up the
responsibility in any fixed way but allow different network controllers to directly allocate
whatever their resources they need, using fine-grained locking mechanisms to prevent them
from interfering with one another.

Yet another way to manage the distributed control in large networks is to organize the
control in a hierarchical fashion. This is of course the classical approach used in telephone
networks and has also been suggested in recent proposals for ATM network control [9, 21].

This paper does not consider the full range of operations that might be performed on
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a connection. In particular, it does not allow multiple connections to be operated on as a
group and possibly constrained to follow common paths in the network, a feature that is
desirable when using several connections to support multimedia applications with separate
connections for audio and video. While this does require some additional mechanisms,
it does not change the problem at any fundamental level. We have also not considered
variations of the add operation that allow sets of endpoints to be added at once, or operations
that allow two connections to be combined to yield a larger connection. Nor have we
considered how multicast connections can be automatically reconfigured when links fail.
All of these would be worthwhile extensions, and the basic framework could certainly be
augmented to handle them.

In summary then, this paper offers an approach to specifying and analyzing network
control systems. While we strive for precision, we have avoided formal notations, preferring
instead the level of description generally used in defining and analyzing algorithms in the
technical literature. Within this framework, we have explored the central design issues
for ATM network control systems through a series of examples. It is hoped that this will
provide a useful foundation for other researchers in networking and distributed computing
who are interested in understanding these issues and developing more complete solutions.
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