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Abstract

This paper considers the problem of designing ATM networks that are nonblocking
with respect to virtual circuit requests, subject to specified constraints on the traffic.
In this paper, we focus on global traffic constraints that simply limit the total
entering and exiting traffic at each switching system. After reviewing prior results
for linear link costs, we introduce a more realistic link cost model, and develop
a number of results using it. We also describe a technique for converting tree-
structured networks to nonblocking hierarchical networks satisfying limits on the
capacity of any single switch
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1. Introduction

As computer networks get larger and more complex, the need for careful planning in the
design and configuration stage becomes more and more important. This has become an
issue even for conventional shared-access LAN and router based networks, but is even more
crucial for ATM. Because ATM networks support virtual circuit routing and must provide
quality-of-service guarantees to real-time traffic (voice, video, etc.), connection requests
can block if the network backbone does not have sufficient available bandwidth to satisfy
a user’s needs. To ensure that blocking occurs only rarely, the network backbone must
be dimensioned with sufficient bandwidth to allow it to carry both the normal day-to-day
traffic and peak traffic loads that may arise from time-to-time.

The network design problem is not a new one. References [8, 7, 12, 13] are represen-
tative of the recent published research in this area. However, ATM networks differ from
telephone and classical data networks in several ways. First, they are multirate networks,
meaning that their virtual circuits can operate at any bandwidth from a few bits per second
to over one hundred megabits per second. They will be supporting a wide range of different
applications with different bandwidth needs, different connection request rates and different
holding times. Moreover, unlike traditional data networks they must be capable of providing
connections with a guaranteed quality of service, requiring allocation of bandwidth to indi-
vidual virtual circuits and raising the possibility of virtual circuit blocking. Second, ATM
networks support not only point-to-point virtual circuits but also multipoint. Multipoint
virtual circuits are essential for applications like video distribution or multimedia conferenc-
ing and include both one-to-many and many-to-many transmission patterns. The design of
optimal networks supporting multipoint virtual circuits is largely uncharted territory. We
have found nothing explicit in the technical literature that addresses this problem, although
many point-to-point results can be usefully generalized to the multipoint environment. Fi-
nally, ATM networks are much less predictable than telephone networks or traditional low
speed data networks. There is no reliable statistical data on application characteristics
and connection request patterns. Indeed, the flexibility which is ATM’s greatest strength
makes it highly unpredictable, so classical network planning techniques which rely heavily
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on statistical analysis become less relevant. In ATM networks, the whole notion of blocking
probability for virtual circuit setup must be called into question, since there is no reason-
able possibility of validating the probabilistic assumptions that must go into any analysis
of blocking probability.

2. Network Design with Global Traffic Constraints

We start with the following formulation of the network design problem. We are given a
complete graph, G = (V, F), where each vertex represents a switch and each directed edge
represents a link group, comprising one or more physical transmission links. Each vertex
u has an integer source capacity a(u) and sink capacity w(u), representing the maximum
amount of traffic that can originate or terminate at u. For each vertex pair (u,v), we have
a value y¢(u, v, ) that represents the cost of constructing a link of capacity z from u to
v. We require that the costs satisfy the triangle inequality, meaning that the direct path
of any given capacity between two vertices is never more expensive than an indirect path
with the same capacity. We also have a switch cost function vs(z) which gives the cost of
a switch whose total capacity is z. If we assign a capacity xs(u,v) to every edge (u,v) the
resulting network cost is defined as
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The capacity of a vertex u in the network is denoted by r(u) and is given by the expression
above within the large parentheses.

A connection request R = (9, D, z) comprises a non-empty set of sources 5, a non-empty
set of destinations D and an integer weight w < B, where B is a maximum connection
weight. If S = D we say the request is symmetric and if |S| + |D| = 2, we refer to the
request as point-to-point. A route T for a request R is a subgraph of G for which the
underlying undirected graph is a tree and in which there is a directed path from every
vertex in 5 to every vertex in D and no edge which does not belong to some simple directed
path from a vertex in S to a vertex in 7. A collection of routes C', places a weight Ac(u,v)
on an edge u, v, where Ac(u,v) is defined as the sum of the weights of all routes that include
the edge (u,v). We also let Ac(u) denote the weight on a switch u, which is equal to the
sum of the weights of its incident edges.

A set of connection requests is valid, if for every vertex u, the sum of the weights of
the requests containing u in their source set is < a(u) and the sum of the weghts of the
requests containing w in their sink sets is < w(u). A collection of routes C' is valid if the
connection requests they satisfy are valid and if for every edge (u,v), Ac(u,v) < ke(u,v)
and if for every vertex u, Ac(u) < ks(u).

A state of a network is a valid set of routes. A routing algorithm is a procedure that
maintains a valid set of routes under the following four operations: (1) add a new route
satisfying a specified connection request; (2) remove an existing route; (3) add a new vertex
to either the source set, the destination set, or both for some route in the current state; (4)
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remove some vertex from either the source set, the destination set, or both for some route
in the current state. A routing algorithm may fail to carry out operations of type (1) or
(3), but will always carry out operations of type (2) or (4). We are only concerned with
routing algorithms that are incremental, meaning that they only add, delete or modify a
single route when carrying out a requested operation and that they cannot both add and
remove edges from an existing route in a single operation.

The reachable states for a routing algorithm on a network with specified link capacities
is the set of all states that can be reached by sequences of the four operations given above,
starting from the empty state. We say that a given network is routable under a given
algorithm, if for every valid set of connection requests, there is reachable state whose routes
satisfy the given set of connection requests. We say that a network is nonblocking under
a given routing algorithm if for every reachable state and every operation request whose
completion would not exceed the source or sink capacity of any vertex in that state, the
algorithm produces a new state satisfying the operation request.

The routable network design problem is to determine a set of link capacities that will
yield a routable network of least cost under either a specified routing algorithm or some
routing algorithm from a specified class of routing algorithms. In the latter case, the design
problem is to produce both the link capacities and a specific routing algorithm from the
given class, for which the network is routable.

Similarly, the nonblocking network design problem is to determine a set of link capacities
that will yield a nonblocking network of least cost under either a specified routing algorithm
or some routing algorithm from a specified class of routing algorithms. In the latter case,
the design problem is to produce both the link capacities and a specific routing algorithm
from the given class, for which the network is nonblocking.

Note that a solution to the nonblocking network design problem is also a solution to the
routable network design problem, although the reverse does not hold. Also, a lower bound
on the cost of a solution to the routable network design problem is also a lower bound on
the cost of a solution to the nonblocking network design problem.

We say that a routing algorithm A is a fixed path routing algorithm if for all vertex set
pairs (U, V), there is a route A(U, V) which is used by A for all connection requests with
source set U and sink set V. Some routing algorithms choose routes based on the cost of
the fraction of the network’s capacity that is used by those routes. We can define the cost
a collection of routes C' as
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A routing algorithm A is called a cheapest available path algorithm if when adding a new
route or augmenting an existing route, the change in cost incurred by the operation is the
smallest possible. Note that for fixed path routing algorithms, any routable network is also
a nonblocking network.

There are some special cases of the network design problem that we often focus on. In
the linear version, switch costs are zero and all link costs satisfy v¢(u, v, 2) = ¢(u,v)x, where
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Figure 1: Example of Design Problem and Suboptimal Solution

c(u,v) is a constant that depends only on u and v. The symmetric version of the problem
has a(u) = w(u) for all vertices u, yo(u,v,2) = v¢(v,u, ) for all pairs u, v and restricts the
choice of link capacities so that x¢(u,v) = ks(v,u). In the balanced version of the problem,
Y ouev a(u) =3, cyw(u). In the point-to-point version of the problem, connection requests
are all point-to-point.

Figure 1 shows an instance of the network design problem on the left and a solution
on the right. In the problem instance, each vertex u is labeled by the pair a(u),w(u)
and the edge joining vertices u,v with the cost per unit capacity (assuming symmetric,
linear link costs). In the network design shown on the right, the edges are labeled with the
capacities (k¢), with the arrows indicating the capacity in each direction along a link. This
particular network design is nonblocking if connections are always routed using least cost
paths, meaning that any set of connection requests that does not exceed the source and sink
capacities can be satisfied. Its costis 18 x64+18 X 16421 x204+21 x84+25x224+12x 10 = 1654.

3. Results for Linear Link Costs

A number of results have been established for the linear version of the problem.

e Given any fixed path routing algorithm for point-to-point connections, there is an
efficient algorithm for calculating the link capacities that yields a minimum cost non-
blocking network. This can be used to calculate the link capacities in networks in
which the links with non-zero capacities are restricted to form a specific tree.

e On the other hand, the network design problem is MAX-SNP-hard if we are required
to produce a fixed path routing algorithm, along with the network design. This means
that no polynomial time algorithm can always produce solutions that are guaranteed
to be close to the cost of the optimal solution unless P=NP.

e One can efficiently compute a lower bound on the cost of an optimal solution by
computing a maximum weighted matching.
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e For balanced source/sink capacities, star networks are optimal among nonblocking
tree networks (where a tree network is a network in which the underlying undirected
graph induced by the edges of non-zero capacity is a tree, and a star network is a
tree network in which there is one central vertex that is connected to all the other
vertices).

e When n vertices are distributed at random in the unit disk and link costs are propor-
tional to the Fuclidean distances between vertices, and source/sink capacities are all
equal to one, then with probability approaching one as n — oc, there is a nonblocking
star network for which the cost is arbitrarily close to that of an optimal network.

e Any network that is nonblocking for point-to-point connection requests under a fixed
path routing algorithm A is also nonblocking for general requests under routing algo-

rithm A.

e Lor symmetric capacities and links, linear link costs and and 7y(u,v,z)/x equal to
a constant for all choices of u, v and z, a star network is optimal. While this is a
somewhat specialized case, it applies to practical situations where the link costs are
dominated by the cost of the terminating electronics and where there is a single type
of link from which larger link groups must be constructed.

e For symmetric capacities and links and linear link costs there is a star network whose
cost is never more than twice the cost of the optimal solution to the routable network
design problem.

e For balanced source/sink capacities and linear link costs, there is a star network whose
cost is never more than three times the cost of the optimal solution to the routable
network design problem.

e For unbalanced source/sink capacities and linear link costs, there is a star network
whose cost is never more than

max {3, alu), ¥, ()} - 1
min {3, a(u), 32, w(u)}
times the cost of the optimal solution to the routable network design problem. Thus,

the more imbalanced the source/sink capacities become the further from optimal the
star network becomes.

2+

These results are described in detail in [5, 6].

4. Realistic Link Models

The linear link cost model ignores the fact that communication links of different capacities
must be constructed from a limited set of link types, each with its own capacity. For
example, in ATM networks, some common link capacities are 50 Mb/s, 150 Mb/s, 600
Mb/s and 2.4 Gb/s. If we need a certain amount of capacity, say 11 Gb/s, we must provide
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Figure 2: Link Group Costs Based on Discrete Links

this by using some combination of links of the available types, and we’d like to accomplish
this for the least possible cost. To model the cost properly, we need to take into account
the fact that the cost of a link is determined by a combination of two factors, one of which
is independent of the length of the link and another which is linear in the length of the link.
For example, the electronics associated with the two endpoints of a 150 Mb/s bidirectional
ATM link has a cost of between $1,000 and $2,000 in typical products today, while the cost
of the pair of fibers is directly proportional to distance and has a cost of between five cents
per foot and fifteen cents per foot. Note that for short enough distances (say a few hundred
feet), the fiber cost is negligible compared to the electronics cost, while for long enough
links (say twenty miles), the fiber costs are dominant.

Another issue arises from the fact that virtual circuits in ATM networks must be routed
over a specific link in the set making up a link group, so while there may be sufficient
capacity over the set to accommodate a given virtual circuit, there may not be enough
capacity on any single link to handle a new virtual circuit. Such fragmentation effects
reduce the usable capacity of a link under worst-case assumptions. In general, the usable
capacity of a link group containing m distinct physical links is equal to its total nominal
capacity minus (m — 1)B, where B is the maximum weight associated with any single
virtual circuit. The implications of discrete link sizes and fragmentation due to virtual
circuit blocking are illustrated in Figure 2.

Assume we have t different link types with capacities kq,...,k;, termination costs
g%, ..., 92 and cost per unit distance of gf,...,g7. TFor arbitrary vertices u,v in a net-
work and capacity z, we want to be able to compute y(u, v, z), the cost of a link joining u
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and v with the given capacity. To do this, we need to define distances between all pairs of
vertices, which reflect the length of the path through which fibers must be routed to join
the vertices in question. Let d(u,v) denote the distance from u to v. We can now define

gi = ¢° + grd(u,v) to be the cost of a single link of type i between u and v.

The fragmentation problem described above can be factored out by transforming the
problem slightly. Let kZB = k; — B and consider a set 5 of links with capacities in ky,..., ks
and the corresponding set S’ with capacities in le, ..., kP. If the usable capacity of § is z
when the maximum weight is B, then the usable capacity of S’ is # — B when the maximum
weight is some arbitrarily small € > 0. The converse also holds. Thus by modifying the
capacities of the individual links and the desired link group capacity by B, we can proceed
without explicitly considering the fragmentation issue.

Determining the best set of links to construct a link group of a given capacity is a
variant of the well-known knapsack problem, which is NP-complete. However, because of
the limited number of link types that arise in practice, there is a dynamic programming
algorithm that can produce optimal solutions efficiently enough for most practical purposes.
Define cheapest(i, z) to be the cost of the cheapest set of links using only types 1,...,¢ that
has capacity > z. For 7 > 0,

cheapest(i, z) = min {cheapest(i — 1, z), cheapest(, z — kZB) +9:}

where cheapest(i, ) = 0 if z < 0. Using the additional fact that cheapest(1,z) = [2/kP]g
we can construct a dynamic programming algorithm that fills in a table whose entries are
values of cheapest(, z) for 1 <i <t and z ranging from 0 to the desired link capacity. If r
is the greatest common divisor of the rates kP, then we need only compute cheapest(, z)
for values of z that are multiples of r, making the number of entries in the table equal to
t times the smallest integer that is at least equal to the ratio of the desired capacity to r.
So for example with three link types whose raw capacities are 150 Mb/s, 600 Mb/s and 2.4
Gb/s and a maximum virtual circuit weight of B = 50 Mb/s, the required r is 50 Mb/s and
a table with 6000 entries is sufficient to compute the best configurations for link capacities
of up to 10 Gb/s. Filling in such a table can be done in a few milliseconds on a modern
processor. If one is willing to sacrifice optimality of the computed set of links in order to
reduce the time then one can do so using a variant of an algorithm by Ibarra and Kim [9]
for the knapsack problem. This algorithm can produce solutions which approximate the
optimal as closely as possible, allowing a smooth trade-off between the desired accuracy
and the time required for the computation.

There is an alternative dynamic programming algorithm that can be preferable in some
situations. In particular, if we let biggest(t, z) be the capacity of the largest capacity link
group with cost < z using only links of type 1,...,% then for ¢ > 1

max {biggest(i —1,2), biggest(i,z — g;) + kZB} if 22> ¢

biggest(t,z) =
ggest(i, 2) { biggest(i — 1, 2) it z<g;

Using the boundary condition, biggest(1,z) = |2/g1]kP, we can construct a dynamic pro-
gramming algorithm that fills in a table whose entries are values of biggest(t, z).
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5. Network Design Algorithms for Multiple Link Types

When there are several different link types available, the higher capacity links generally offer
a lower cost per unit capacity than do smaller capacity links. This advantage is magnified
by fragmentation, which has a more severe impact on small capacity links and by long
distances, since the cost of the fiber required for high capacity links differs little from that
required for low capacity links. Consequently, whenever there is sufficient traffic available
to make good use of high capacity links, it makes sense to use them. This suggests that
in situations where multiple discrete link types are available, star networks will not offer
the most cost-effective solution. Rather, we would expect the best networks to be tree-
structured, with lower capacity links used near the leaves and higher capacity links toward
the center.

In this section we consider network design algorithms designed to handle multiple link
types. We start by describing a simple algorithm for two link types and prove a proba-
bilistic result showing that for random distributions of switches in large planar regions, this
algorithm produces solutions whose costs are near optimal, with probability approaching 1
as the number of switches grows. This is used to motivate another class of algorithms that
can handle an arbitrary number of link types and can be expected to perform well for more
irregular distributions of switches.

Consider an instance of the network design problem obtained by distributing n switches
at random in a rectangular region of the plane with width X and height ¥ with X > V.
There are two types of links with capacities kq, ko, termination costs ¢?, ¢5 and cost
per unit distance of g7, g5. Assume that ¢¥ < ¢9, g7 < g5 but (¢¥/k1) > (¢9/k2) and

(97/k1) > (g5/k2). Euclidean distances define the length of links between switch pairs. For
simplicity, we assume a(u) = w(u) = a for all switches u.

Let 0 < € < 1 be a constant. The uniform parititioning algorithm subdivides the given
region into R = 4r? subregions of width x and height y, where x/y = X/Y, such that r
is an integer and n/(Inn)? < R < n/(Inn)1*9). Then for each region, it connects every
switch in the region to a regional center, where the link groups all have capacity a. It then
connects all the regional centers to a global center, which is positioned at the geographical
center of the area. The link groups joining the global centers to the regional centers are
assigned a capacity equal to the total termination capacity of their regions. It’s easy to see
that if no region has greater termination capacity than all the other regions combined, this
results in a nonblocking network.

We evaluate the uniform partitioning algorithm by comparing the cost of the networks
it produces to a lower bound on the cost of any nonblocking network as the number of
switches gets large. First, we prove an elementary lemma on the number of switches per
region. We call a distribution of switches even if every region has between (1 — ¢)n/R and
(14 €)n/R switches. The proof of lemma requires the following proposition due to Angluin
and Valiant [1]) on the tail probabilities of the binomial distribution. Let B(n,p) denote the
binomial distribution. If z is a random variable with distribution B(n, p) then by definition

Pla = k)= (R)p*(1 - p) .
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ProrposiTION 5.1. If 2 is a random variable with distribution B(n,p) then for all 6, 0 <
6 <1, P(x < (1—8)np) < e/ and Pl > (14 8)np) < e/,

LEMMA 5.1. If € > 0 is fixed and R < n/(Inn)1%9), the probability that the switch distri-
bution is even approaches 1 as n — oc.

proof. If z is a random variable representing the number of switches in a given region,
then  has distribution B(n,1/R). Using Proposition 5.1, the probability that there is any
region with fewer than (1 — ¢)n/R or greater than (1 + €)n/R switches is

< R{eenan g cmeinpon)
= exp [ln R - €2n/2R] + exp [lnR - €2n/3R]

< exp [ln n(1—(¢2/2)(In n)e)] + exp [ln n(1 —(2/3)(In n)e)]
_ nl—(@/?)(lnn)6 + nl—(e2/3)(lnn)€ —0

a

Define a Cartesian coordinate system with origin at the center of the rectangular area.
Let d = /22 +y% and A = 32, Z;;é V(iz)? 4+ (jy)?. Note that A equals the sum of
the minimum distances from the origin to each region in the upper right hand quadrant.
Observe that if ¢ > 7, \/(12)? + (Jy)? > jd and if ¢ < j, \/(2x)? + (jy)? > id. This can be
seen most easily by noting that the distance from a region to the origin is at least equal to
the length of the line segment with slope y/a joining the region’s point closest to the origin
with either the horizontal or vertical axis. This yields

r—1r—1 r—1 r—2 1
YD)+ (y)? > dYj+2dY Y
=0 5=0 7=1 =1 j5=1

|5 e

= (1/6)dr(r—1)(2r —1)

If n — oo, so does r and A — dr®/3. The following lemma provides a lower bound on the
cost of a nonblocking network for an even distribution of switches.

LEMMA 5.2. Given an even distribution of switches, any nonblocking network has a cost

that is at least.
(1-¢€)a(n/R)

o (/268 + 4934

proof. Any nonblocking network must satisfy the set of connection requests in which
for every ¢, j pair for which 1 < ¢ < r, 1 < 7 < r, there are requests from the region with
center ((¢—(1/2))r,(j—(1/2))r) to the region with center (—(¢—(1/2))r,—(j7—(1/2))r) that
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exhaust the termination capacity within one of the regions, plus requests from the region
with center (—(i—(1/2))r,(j—(1/2))r) to the region with center ((¢—(1/2))r,—(j—(1/2))r)
that exhaust the termination capacity within one of those regions. For each of these pairings
there must be a link group whose capacity is at least (1 — €)a(n/R) and whose length is at
least equal to the minimum distance between the regions, which by choice of the regions is
equal to twice their distance from the origin. Since the type two links have the lowest cost
per unit capacity, the least expensive way to connect the regions is using type two links.
Hence the cost of a nonblocking network must be at least

(L—ea(n/R)

r (/268 + 4934

The following lemma provides a similar upper bound on the cost of a solution produced
by the uniform partitioning algorithm.

LEMMA 5.3. Given an even distribution of switches, the uniform partitioning algorithm
produces a solution whose cost Is at most

(L+ a(n/R)

/b [of + i) o+ | S

[ 0722087+ 4g304 + 2020 + )]

proof. The first term is an upper bound on the cost of the links within the R regions. Each
switch within a region is connected to the regional center by a link group of capacity a.
Since this capacity can be provided by [a/k1] links of capacity ki and the cost per link is
at most ¢y + gid, the cost of providing all the local link groups is bounded by the first term.

The second term is an upper bound on the cost of the links joining the global center to
each of the regional centers. Observe that the cost of these links is at most

[ FCLON (yopgr ag3 3 5 i + ()2

k‘z =1 7=1

The double-sum is only slightly larger than A.

ZT: ZT: (i) + (Jy)? < A+ Zi: (iz)* + (ry)* + Zi: (re)? + (jy)?

=1 7=1

IN

A+ Z(w +ry) + Z(TJE +jy) <A+ 27‘2(90 + )

=1 7=1
O

THEOREM b5.1. For large enough n, the ratio of the cost of the solutions produced by the
uniform partioning algorithm to the cost of an optimal solution is

1+e¢ 6 (@ k‘z) g?

<
_1—€+1—€ g5 X

(8% kl
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with probability approaching 1.

proof. By Lemma 5.1 the switches are evenly distributed with probability approaching
1 as n — oo. The ratio of the costs is given by the ratio of the expressions in Lem-
mas 5.3 and 5.2, when the switches are evenly distributed. Taking the ratio of the first
term in the upper bound to the lower bound gives

[a/k1] [97 + g7d] n o k(L a/ki)(gi +gid)
(1= al(n/R)/k2) [(1/2)g5R +4g34]  — (1= e)a((1/2)g5 + 4954/ R)
ka1 + o/k1)(g? + g7d)
(1= )a((1/2)g8 + (1/3)g3dr)
ka(1+ a/k1)g?
(1= )a((1/2)g8 + (1/3)g3dr)

6 k k v
< (_2_|__2) g1
l—e\a  k/g¢gX

Taking the ratio of the second term in the upper bound to the lower bound gives

[(1+ e)a(n/R)/ks] [(1/2)g9R + 4g5(A + 2r%(x + y))]
(L= €e)a(n/R)/k2) [(1/2)g3R + 4g35 A]
o (2t (1t a(n/R)) [(1/2)g5 + 495(A + 2r*(x + y))/ R]
N ((L—e)a(n/R)) [(1/2)g3 + 495 A/ R]
kg—l—(l—l—G)oz(n/R)'A—|—27‘2(av—|—y)_> koRR 1—|—€_>1—|—€
~ (I1-¢a(n/R) A (l—¢jan  1—¢ 1—c¢

Hence, for large enough n the ratio of the cost of the solution produced by the uniform
partitioning algorithm to the cost of an optimal solution is

14+¢ 6 (@ @) g?

+ a k) gX

<
~1-—c¢ 1—¢

with probability approaching 1. O

Note that for large geographic areas g5X >> ¢y and so the second term in the per-
formance ratio will typically be small. The uniform partitioning algorithm can clearly be
generalized to have partitions at successive levels and one would expect than under appro-
priate conditions, similar asymptotic results could be obtained. Rather than explore this
direction, we now introduce a class of algorithms called hierarchical partitioning algorithms
which are intended to handle more realistic situations and which should perform similarly
to uniform partitioning for uniform switch distributions. The algorithms in this class follow
the outline shown below.

o Initialization. Choose a center vertex (' and compute the capacities of direct link
groups from € to all other vertices needed to produce a nonblocking star network. Call
this star network the current solution, and designate the entire rectangle containing
the switches an active region with center C' Define the core of the current solution to

be the set {C'}.
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tree network hierarchical network

Figure 3: Converting Trees to Hierarchies

o Refinement Step. Select any active region R with center ¢ and divide it into two
subregions Ry, Ry using a dividing line perpendicular to the long side of the active
region. Attempt to improve the current active region by selecting vertices ¢; and ¢y in
Ry and R; and locally modifying the current solution in either of two ways: (1) make
¢1 and ¢g children of ¢, add them to the core and connect all non-core vertices to some
core vertex using the cheapest link group that yields a nonblocking tree; (2) make ¢q
and ¢y children of the parent of ¢ (assuming ¢ is not the root of the tree), add them
to the core and connect all non-core vertices to some core vertex using the cheapest
link group that yields a nonblocking tree. Retain the best improvement obtained and
call it the current solution, make Ry and Rs active and R inactive.

There are many variations that fit the outline, depending on how one selects the original
center, the subregions, the subregion centers and how one pairs up non-core vertices to core
vertices. A simulation study is now underway to evaluate the performance of hierarchi-
cal partitioning. We believe that for networks with a large enough geographic span, the
hierarchical partitioning algorithms can be expected to produce solutions close to optimal.

6. Converting Tree Networks to Hierarchies

Tree-structured networks often provide the best solution to a network design problem.
Unfortunately, as networks get large, the capacity of the switches required near the root
of tree-structured networks may be unrealistically high. There are different approaches
one can take to this. One is to replace the over-sized switches in the original design with a
collection of smaller switches interconnected in such a way as to yield a nonblocking network
which is functionally equivalent to the original switch. Classical techniques can be applied
to carry out this strategy. See [11, 15, 16, 20, 21]. Another approach is to replace the tree
with a hierarchical interconnection of switches with a similar interconnection structure.
This process is illustrated in Figure 3. In this section, we describe how to carry out such a
conversion so as to obtain a network that is nonblocking for point-to-point connections.

Let T be an arbitrary tree network with symmetric capacities and links. If T" has any
internal vertices z with a(z) > 0, we augment the tree by adding a new leaf =z’ connected
to z, make a(z) = 0 and let a(z’) be equal to the original source capacity of z. From this
point on, we refer to this augmented tree as 7. Now we convert this tree (in which only
leaves have non-zero source capacity) to a hierarchical equivalent H of T' by replacing each
vertex u by a set of vertices ug, ..., u,,—1. We require that if v is the parent of w in T, then
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n, must be an integer multiple of n, and let d, = n,/n,. Also, if v is the parent of u in
T and u is not leaf, we join v; to v|;/q,| for 0 < ¢ < my. If w is a leaf we join every u; to
every v;. Finally, if v has termination capacity a(u) in 7', we require that ), a(u;) = a(u).
When routing connections in H, we restrict ourselves to paths that correspond to simple
paths in T.

We say a vertex in H as depth j in H if the vertex it was derived from in T was at
distance 7 from the root and we call a vertex in H a leaf if it was derived from a vertex that
was a leaf in T'. Similarly, any vertex derived from a proper ancestor of w in T is referred to
as an ancestor of u; in H. Also, each vertex in H is considered an ancestor of itself. For any
switch u; at depth £ in H,let S, ; be the set of leaves that are descendants of some depth
J ancestor of u;. Let dy, ; be the number of edges joining a depth j ancestor of u; to depth
Jj — 1 ancestors of u; and let d, j1 = dy; ;jdy, j—1---dy, 1. Finally, let x,, ; be the capacity
of the links joining w;’s depth j ancestors to its depth j — 1 ancestors (they’re assumed
to be equal). With these definitions, we can show that H is nonblocking with respect to
point-to-point connections if for all leaves u; in H at depth k& (for all k),

O‘(Sui,k) - Bd n O‘(Sui,k—l) - O‘(Sui,k) O‘(Suml) - O‘(Suzﬂ)
Foug o — B u;,(k—1)! Fug 1 — B

du“(k—z)!‘l‘ st < m/2

Ry k—1 — B

where m is the number of vertices in H corresponding to the root of 7.

For cases where all the leaves are at the same depth in H., there is another condition
based on purely local considerations. Consider a vertex w in H with edges of capacity
ko,...,kq—1 joining it to its parents in H, where kg < --- < ky_1. Let A be any upper
bound on the amount of traffic that can potentially be routed through the edges linking «
to its parents (this is bounded by the source capacity of u, if u is a leaf and by the capacity
of the edges joining w to its children if u is an internal node). Let r be the largest integer

for which .
> min {0,k — B} < A- B
1=0

(where B is the maximum virtual circuit weight). If r + 1 < d/2 we say that u is locally
nonblocking. If all vertices are locally nonblocking then the entire network is nonblocking
for point-to-point connections. If kg = --- = k4_1, the requirement for u to be locally
nonblocking simplifies to

Li:f;J_ <d/2

where |z |_ is the largest integer that is strictly less than « and is called the subfloor of .

7. Closing Remarks

Global traffic constraints are appealing because they require that a network manager provide
a minimum of information about user traffic patterns. Since detailed traffic information is
often not readily available, this is a significant advantage. Unfortunately global constraints
can be so loose that they lead to overly expensive network designs. There is a trade-off
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Figure 4: Hierarchical Clustering

here between minimizing the amount of information required of the network manager and
providing enough information to yield the most cost-effective designs. We are currently
exploring additional constraints that can improve the quality of network designs without
placing an undue burden on the network manager.

Hierarchical Clustering. Real networks often form natural hierarchies in which com-
munication tends to be concentrated in subtrees of the hierarchy. This observation
leads to a natural generalization of global constraints in which switches are grouped
into clusters, clusters are grouped into super-clusters and so forth, with the number of
levels of clustering determined by the size of the network and the natural “communi-
ties of interest” formed by its users. Given a cluster C' at any level in this hierarchical
decomposition, a network manager can specify a source capacity o(C) and a sink
capacity w(C'), where the source capacity is an upper bound on the traffic that can
leave the cluster and the sink capacity is an upper bound on the traffic that can enter
the cluster. This provides a natural way to express traflic constraints among groups
of users whose need to communicate is more limited than what would be allowed by
global constraints alone. An example of a two level hierarchy is shown in Figure 4 (the
numbers within the vertices are their individual source/sink capacities, while the num-
bers in the clusters represent cluster source/sink capacities). Preliminary simulation
studies show that tree-structured networks that reflect the hierarchical clustering can
be configured to be nonblocking with a cost that approaches the lower bound. We con-
jecture that in large networks, this result will hold true with probability approaching
one, for random distributions of clusters and switches in the plane.

Distance Bounds. While it is often possible to decompose traffic in a network in a
hierarchical fashion, this is not always possible. Often, we have overlapping groupings
based on distance, rather than strict clusters. To formalize this, we need a way to
express distances among switches. A natural choice is based on physical location
in the plane, with Euclidean distances between points being used to define traffic
constraints. Given a way to determine distances between vertices, we can generalize
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our source and sink constraints by adding a distance parameter. In particular, we
let ag(u) be an upper bound on the traffic from u to vertices whose distance from
u is greater than d. The original source capacity can then be written as ag(u) and
the network manager can specify different source capacities associated with longer
and longer distances. Sink capacities are generalized in the same way. The natural
network designs that arise when traffic capacities are expressed in this way are not
tree-structured, but tend to have a mesh interconnection pattern.

Node-Set Pair Constraints. While hierarchical clustering and distance bounds capture
important special cases for expressing traffic requirements, it’s clear that neither pro-
vides a fully general method for expressing traflic constraints. This leads to another
form of traffic constraint that generalizes the hierarchical and distance constraints, as
well as allowing expression of additional constraints. For any pairs of vertex sets A,
B let u(A, B) be an upper bound on the traffic from A to B. If we define sets repre-
senting clusters and superclusters, then we can represent the hierarchical constraints
by node-set pair constraints of the form (5, V — 5), where S is the set of vertices in
a particular cluster or supercluster and V' is the set of all switches. Distance-based
constraints can also be expressed naturally. For each switch u, we can let Sy(u) be
the set of switches at distance greater than d from u. Then p({u}, S4(u)) is equivalent
to the distance-based constraint ag(u). Node-set pairs can also express more general
distance-based constraints. For example, in some situations there may be switches
that while not separated by large geographic distances are separated by some natural
or cultural obstacle (like a mountain range or language difference), that causes less
need for communication than could be easily expressed with a strict distance-bound
model. In addition, for longer distances, it’s most natural to express distance con-
straints relative to a set of switches rather than for all the individual switches in the
set.
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