Extending ATM Networks
for Efficient Reliable Multicast

Jonathan S. Turner, jst@cs.wustl.edu
Washington University, St. Louis

Abstract

One of the important features of ATM networks is their ability to support mul-
ticast communication. This facilitates the efficient distribution of multimedia
information streams (such as audio and video) to large groups of receivers. Be-
cause ATM networks do not provide reliable delivery mechanisms, it is up to
end systems to provide end-to-end reliability where it is needed. While this is
straightforward for point-to-point virtual circuits, it is more difficult for multi-
cast virtual circuits. This paper proposes extensions to the hardware of ATM
switches that enables end systems to implement reliable multicast in a more
efficient and scalable manner than is otherwise possible. We essentially provide
a network assist to enable end systems to implement reliable multicast more
effectively. With our approach, the amount of work that must be done by any
receiver in a reliable multicast is independent of the number of participants in
the multicast and the amount of work that must be done per packet transmission
by any sender, is independent of the number of participants in the multicast. Of
course, in large multicasts, a given packet may have to be transmitted multiple
times and the number of such transmissions does depend on the number of par-
ticipants. However, one can show that even under very conservative assumptions
this effect does not limit scalability to any significant extent. The proposed re-
liable multicast mechanisms are being implemented in a scalable ATM switch
support 2.4 Gb/s transmission links.

1 Introduction

Efficient multicast communication is a key feature of ATM network technology.
Originally designed to support distribution of multimedia information streams
(audio and video), it can also be useful for more general distributed computing
applications. However, because such applications generally require reliable data
delivery, end systems must provide mechanisms for ensuring reliable transport
over the unreliable communication channels provided by ATM networks. While
providing reliable transport is straightforward for point-to-point communication
channels, 1t is more complex in the context of multicast channels which may
have hundreds, thousands or even millions of participants.

This paper develops an approach to reliable multicast communication in
ATM networks. Our objective is to provide scalable mechanisms by which we

® This work was supported by the Advanced Research Projects Agency.



mean mechanisms in which the amount of work done by senders and receivers
in a multicast connection is independent of the total number of participants.
Reliable multicast can be implemented entirely by mechanisms in end systems
or by some combination of mechanisms in end systems and the network. Our
approach is to provide a network assist to enable end systems to implement re-
liable multicast more effectively. There are actually four distinct aspects of the
proposed reliable multicast support.

— Redundant acknowledgement suppression elimates redundant acknowledge-
ments in a multicast connection, so that a sender receives just a single pos-
itive acknowledgement for each packet sent and at most one negative ac-
knowledgement.

— Targeted retransmission ensures that packet retransmissions are forwarded
only to the receivers that did not get a packet when it was first sent.

— Dynamic channel sharing allows multiple senders in a many-to-many multi-
cast to dynamically share a single virtual circuit without the occurrence of
packet loss due to cell interleaving of the different packets. This is accom-
plished using a dynamic virtual circuit subchannel assignment technique.

— Path trace/retrace is used in applications with multiple senders and allows
control cells used in the reliable multicast protocol to accumulate path in-
formation that can be later used by cells going in the reverse direction to
retrace the path back to the original sender.

These mechanisms can be used separately or in combination to provide reliable
multicast for one-to-many and many-to-many applications. In addition, the dy-
namic channel sharing mechanism addresses a general issue for many-to-many
virtual circuits and is of value even where fully reliable transmission is not re-
quired.

There is a substantial literature on providing reliable multicast mechanisms
in networks. One of the earliest contributions was [3]. Some selected recent con-
tributions include [1, 5, 7, 8, 9, 10, 11]. Much of the more recent work is directed
toward multicast in the context of the internet protocol suite and shifts much
of the responsibility for recovering lost data onto the receivers. The recent pa-
per by Floyd, Jacobson, et. al. [6] is a good example of receiver-based recovery.
They also advocates the use of application-specific reliable multicast mecha-
nisms, rather than more general mechanisms supported at lower levels. While
some of the prior work is applicable in the ATM context, there seems little prior
work directly related to extending ATM switching mechanisms to assist in the
implementation of reliable multicast.

In section 2, we describe the acknowledgement suppression mechanisms that
enable scalable reliable one-to-many multicast. Section 3 describes the mecha-
nisms used to support many-to-many multicast with consistent delivery order
using one end system as a relay. Section 4 describes how the relay can be elimi-
nated (at the cost of sacrificing consistent delivery order). Section 5 outlines how
the mechanisms are being implemented in the Washington University Gigabit
Switch. Section 6 gives a brief performance analysis.



Fig. 1. Reliable Multicast Message Transmission

2 Reliable One-to-Many Multicast

Our basic approach to achieving reliable one-to-many multicast is illustrated in
Figure 1. To send a packet to end systems b through h, end system a sends the
packet on a reliable multicast virtual circuit, through the two ATM switching
systems, shown in the figure. The packet is delineated by start and end of packet
cells (these, and the other control cells required, can be implemented using a vari-
ant of the ATM Resource Management cell type). The ATM switches note the
passage of the start and end cells, and when acknowledgement cells are received
from the downstream neighbors, they propagate only the last acknowledgement
cell expected. The acknowledgement cells are originated by the receiving end
systems; the switches merely propagate them selectively, so that the sender re-
ceives only one acknowledgement indicating that all destinations have received
the message. If the acknowledgement is not received until after a timeout has
expired, source a can send the packet again, preceded by a new start cell. The
switches propagate the retransmitted packet, only to those downstream neigh-
bors that did not acknowledge the original transmission, so that destinations
that received the first copy will not have to process a duplicate.

To allow end systems to pipeline multicast packet transmissions through the
network, all control cells processed by the switches (start, end, ack) contain
transmission slot numbers which are used to access stored state information
relevant to a particular packet. Individual data cells do not contain slot numbers,
but the data cells are assumed to be sent using AAL 5 (or something equivalent)
and include the slot number or an equivalent transport protocol sequence number
somewhere in the end-to-end protocol header. A receiver acknowledges a packet
only if it is correctly received (as indicated by an end-to-end error check).

The switches maintain a state machine for each transmission slot, to keep
track of which downstream neighbors have acknowledged a given packet and
which have not. One version of this state machine is shown in Figure 2. In the
state diagram, the state ack(i) denotes all states in which ¢ acknowledgements
(out of a total expected number of d) have been received. Assuming the state ma-
chine starts in state ack(d), the arrival of a start cell, places it in state ack(0). In



start,data, end

Q start, data, end

start, data, end

(o) cok(2))

start,data,end

upstream_neighbor = input link and VCI on which packets arrive
downstream_neighbor = link and VCI on which a received ack arrived
output_set = set of output (link, VCI) pairs to which packets
are to be forwarded

type = type of the cell being processed (data, start, end, ack)
i = slot number in the control cell being processed

(i is undefined if processing data cell)
currslot = slot number in last start cell processed
status[j] = status of slot j (options are ack(0) ... ack(d))
ackset[j] = subset of downstream_neighbors that have ack’ed slot j

if type = start and status[i] = ack(d) then
status[i] = ack(0)
ackset[i] = {}
currslot = i
forward cell to output_set
if type = start and status[i] !'= ack(d) then
currslot = i
forward cell to (output_set - ackset[i])
if type = data then
forward cell to (output_set - ackset[currslot])
if type = end then
forward cell to (output_set - ackset[i])
if type = ack then
ackset[i] = ackset[i] + {downstream_neighbor}
update status[i]
if status[i] = ack(d) then
forward ack to upstream_neighbor
else
discard cell

Fig. 2. State Machine for Monochromatic Algorithm



this state it forwards data cells and the end cell. When the first acknowledgement
is received, it notes which downstream neighbor acknowledged the cell and pro-
ceeds to state ack(1l). Additional acknowledgements trigger further transitions.
The transition to state ack(d) also triggers the forwarding of an acknowledge-
ment to the upstream neighbor. When in state i for ¢ < d, new start, data or
end cells are simply forwarded to those downstream neighbors that have not yet
acknowledged the packet. The program fragment in the figure shows the pro-
cessing that would be done at a typical switch in a reliable multicast connection
in response to the various types of cells. Note that status[j] need not really be
a separate variable, since its value is implied by the value of ackset[j]. We've
chosen to show it separately only for clarity of exposition.

Unfortunately, the state machine in Figure 2 is deficient in two respects.
First, consider what happens if a given switch completes a packet and goes
to state ack(d), sends its acknowledgement to its upstream neighbor, and then
the acknowledgement is lost before it reaches the upstream neighbor. Eventu-
ally, the sender will retransmit the packet beginning with a new start cell. The
switch whose acknowledgement was lost should recognize this situation and sim-
ply convert the start cell to an acknowledgement cell and return it, discarding
the subsequent data and end cells. However, the state machine as written, will
treat this as a new transmission and forward it on to the downstream neighbors.
Sequence numbers in the transport level packet can prevent the receiving end
systems from being confused by this redundant transmission, but they will be
forced to do some unnecessary work. The more important problem with this
approach however, is that its correctness requires that the sender never initiate
a retransmission if there 1s any possibility of the receiver still sending an ac-
knowledgement. There are cases where the combination of a slow receiver, lost
control cells and unlucky timing can result in the sender thinking a packet has
been correctly received, when in fact, it has been lost.

To correct this problem, we add a color bit to the slot numbers carried in the
various control cells. We require that senders alternate the color of consecutive
packets sent with the same slot number. This leads to the state machine shown
in Figures 3 and 4. Here, cell _color represents the color bit of the control cell
being processed and currcolor represents the color bit of the most recent start
cell. In this algorithm, the state machine 1s in either the leftmost or rightmost
state when propagating a packet for the first time. As acknowledgements of the
proper color are received, the state machine moves to the other end. Thus, when
processing red packets, ack(i) designates states in which i acknowledgements
have been received, while when processing black packets, it designates states
in which i acknowledgements are still expected. To distinguish this algorithm
from the original, we refer to it as the bichromatic algorithm and the original
as the monochromatic algorithm. Note that the bichromatic algorithm correctly
handles lost acknowledgements and its correctness is independent of timing con-
siderations !

! The author thanks Andy Fingerhut for convincing him that the deficiencies of the
monochromatic algorithm should be corrected and showing how they could be cor-



+ start,data,end start,data, end

start, data " \J—>+ ack _ _tack start, data
end, —ack aCk aCk aCk :( aCk(d/D end, +ack
ij_/—ack —

if status[i] = ack(0) then

if type = start and cell_color = red then
ackset = {}
currslot = i
currcolor = red
forward cell to output_set

else if type = start and cell_color = black then
convert cell to ack and return to upstream_neighbor

else if type = data or type = end then
forward cell to output_set

else if type = ack and cell_color = red then
ackset[i] = ackset[i] + {downstream_neighbor}
discard cell

else if type = ack and cell_color = black then
discard cell

else if status[i] = ack(d) then

if type = start and cell_color = black then
ackset = output_set
currslot = i
currcolor = black
forward cell to output_set

else if type = start and cell_color = red then
convert cell to ack and return to upstream_neighbor

else if type = data or type = end then
forward cell to output_set

else if type = ack and cell_color = black then
ackset[i] = ackset[i] - {downstream_neighbor}
discard cell

else if type = ack and cell_color = red then
discard cell

Fig. 3. State Machine for Bichromatic Algorithm

The use of timeouts to detect lost packets can delay retransmission unnec-
essarily, limiting overall performance. Frequently, it’s possible for a receiver to
detect that a packet has been lost and immediately send a negative acknowledge-
ment to the sender, requesting a retransmission. (In a typical sliding window
protocol operating over an “order-preserving” network, the arrival of a packet
with a sequence number different from the “next” one in sequence indicates one
or more lost packets.) When a packet is lost in a reliable multicast connection,
all receivers downstream of the point where the loss occurs may detect the loss

rected withot adding any state.



else if status[i] = ack(1) or . . . or status[i] = ack(d-1) then
if type = start then
currslot = i
currcolor = cell_color
if currcolor = ews then
forward cell to output_set - ackset[i]
else
forward cell to ackset[i]
else if type = data or type = end then
if currcolor = plus then
forward cell to output_set - ackset[i]
else
forward cell to ackset[i]
else if type = ack and cell_color = red and currcolor = red then
ackset[i] = ackset[i] + {downstream_neighbor}
if ackset[i] = output_set then
forward ack to upstream_neighbor
else
discard cell
else if type = ack and cell_sign = minus and currcolor = black then
ackset[i] = ackset[i] - {downstream_neighbor}
if ackset[i] = {} then
forward ack to upstream_neighbor
else
discard cell
else
discard cell

Fig. 4. Bichromatic Algorithm (cont.)

and send a negative acknowledgement. To ensure scalability of reliable multicast
protocols in the presence of negative acknowledgements, the network should re-
turn only the first negative acknowledgement for a particular lost packet. This
requires that the switches keep track of whether a nack has been sent for a given
packet, and if so to suppress forwarding of further nacks. This requires adding
some additional state to the switch state machine.

In particular, for each transmission slot, the switch must keep an additional
bit that is cleared when a new packet is sent using that slot and set when the first
nack for that slot number is received. Start cells associated with retransmissions
do not re-enable nack forwarding. Referring to the picture at the top of Figure 3,
the nack bit would be cleared on a transition from ack(d-1) to ack(d) or on
a transition from ack(1) to ack(0). If a negative acknowledgement is received
when the nack bit is 0, the nack is forwarded upstream and the nack bit is set,
but the state machine remains in the same state. Note that the correctness of
the protocol still relies on the positive acknowledgements; nacks merely improve
performance when packets are lost.



In [13], it is shown how these mechanisms can be used in combination with a
conventional sliding window protocol to provide reliable one-to-many multicast.
This requires that the number of transmission slots be set equal to the maximum
window size (in packets) of the protocol.

3 Many-to-Many Multicast with Fully Ordered Delivery

In distributed computing applications, it is often desirable to have not just reli-
able one-to-many communication, but also reliable many-to-many communica-
tion, in which any member of a group can reliably send a packet to the other
members. Moreover, in some cases it can be important for the packets to be
ordered so as to provide consistent delivery order to all receivers. The most
straightforward (and efficient) way to implement reliable many-to-many multi-
cast is to have one end system act as a relay node receiving packets from all
senders, ordering them and forwarding them on a reliable one-to-many connec-
tion to all receivers. In this section we describe mechanisms for implementing
reliable multicast in this way. However, we also show, in the next section, how
these mechanisms can be extended to provide reliable many-to-many multicast
without use of a relay node.

The use of a relay node breaks the reliable multicast problem into a many-
to-one problem and a one-to-many problem. Since the one-to-many problem has
already been addressed, we focus here on the many-to-one problem. There are
two issues that must be addressed in the many-to-one problem. First, we need
a way to enable the receiver to identify cells coming from different senders that
are sharing a single virtual circuit. Second, we need a mechanism to allow the
receiver to acknowledge a packet sent by a particular sender, while using a single
virtual circuit. Of course, one could simply address this problem using point-to-
point virtual circuits between the senders and the receiver, but this leads scaling
limits that we seek to avoid.

There are a variety of approaches one can take to sharing a single many-to-
ome virtual circuit among multiple senders. The different options are discussed in
some detail in [13]. We have concluded that the most attractive general approach
to this problem is a contention based scheme in which switches observe the
flow of packets from different senders and perform collision resolution at every
point where packets from different senders come together. This allows senders
to transmit packets without coordinating their transmissions. In the simplest
variant of this scheme, the switches only allow one packet at a time to propagate
through a “merge point.” Unfortunately, this leads to unacceptably high collision
probabilities unless the connection is very lightly loaded.

To get better performance using local collision resolution, we allow multiple
packets to propagate through a merge point at the same time by implementing
dynamically assigned subchannels within each virtual circuit. When the start
cell of a packet arrives at a merge point, the packet is assigned an outgoing
subchannel, a local mapping i1s created and subsequent cells in that packet are
forwarded on the assigned subchannel. The outgoing subchannel is released when



the end cell of the packet is received, or on expiration of a timeout. If all outgoing
subchannels are in use when the start cell of a packet arrives, then the packet is
discarded.

To implement subchannels, we need to add a subchannel identifier to every
cell. Because the subchannel field is required in data cells as well as start and
end cells, it needs to be kept small so as not to take away too many bits from
other parts of the ATM cell header. Fortunately, it does not take a large number
of subchannels to give good performance. If we have n sources in a many-to-one
virtual circuit, h subchannels and an average of m busy sources, the proba-
bility of a burst being blocked due to the unavailability of any subchannels is

approximately
n—1

> (n B 1)#(1 —p)r

i=h

When n = 1000, A = 15 and m = 1 the probability of a burst being discarded is
less than 10712, If we increase m to 4, this becomes .00002. For m = 8, it is .02.
To accommodate applications in which we expect more simultaneously active
sources, we can use multiple virtual circuits with sources randomly selecting
a virtual circuit on which to transmit. While the subchannel remapping takes
place only within each virtual circuit, the number of virtual circuits needed to
give low collision probabilities is less than the average number of active sources.

With 15 subchannels, a subchannel number can be encoded in four bits,
making it possible to use the GFC field of the ATM cell header to carry the
subchannel number (we leave one value unused, as an idle subchannel indica-
tion). At each merge point, a switch must store the status of all the outgoing
subchannels. This status information includes the incoming subchannel number
of the burst using the given output subchannel (if no incoming burst is currently
using the output subchannel, the stored value is the idle subchannel value), the
incoming branch that the burst is coming in on and timing information used
to determine when a given entry has been idle for more than the subchannel
timeout period.

To make the reliable multicast mechanism useful in a general setting, 1t’s im-
portant that there be some strategy for interoperability between switches that
implement reliable multicast and those that don’t. For the one-to-many mech-
anisms described in the previous section, interoperability is easy, since all that
is required of switches that do not support the reliable multicast is that they
be capable of forwarding the control cells and data on point-to-point virtual
circuit segments. For the many-to-one case, the subchannel remapping mecha-
nism can interfere with interoperability. For switches that propagate the GFC
field without change along point-to-point virtual circuit segments, there is direct
interoperability. However for switches that overwrite the GFC field (the usual
case), some alternative approach is needed. The simplest way to address this
is to allocate a block of consecutive virtual circuit identifiers on the link from
a reliable multicast switch to a “standard” switch, and remap the virtual cir-
cuit subchannels to distinct virtual circuits. This is done by simply adding the
subchannel number of forwarded cells to the first virtual circuit identifier in the



allocated range. Similarly, when coming from a standard switch to a reliable mul-
ticast switch, distinct virtual circuits can be remapped to a single virtual circuit
with subchannels. This mechanism for converting virtual circuit subchannels to
consecutive virtual circuits i1s particularly useful in the context of delivery to
end-systems, where the network interface circuitry will typically not be able to
directly interpret the subchannel information. The use of distinct VCs at this
point allows conventional network interface circuitry to properly demultiplex the
arriving packets into separate buffers.

The collision resolution mechanism allows senders to transmit packets to the
relay efficiently, but we still need a way for the relay to send acknowledgements
back to the sender of a packet, without requiring a point-to-point virtual circuit
for each sender. The most straightforward way we have found to do this is to
implement a simple trace-back mechanism, that allows a cell sent in reply to
a cell previously received on the many-to-one path to be returned to the same
place. The trace-back mechanism requires a one-to-many virtual circuit that
has the same branching structure as the many-to-one virtual circuit that it is
used with. Control cells sent on the many-to-one path (i.e. start of packet cells)
include a trace field that switches on the path can insert trace information into.
The relay includes the same trace information in cells it sends on the upstream
path back to the sender and each switch along the path uses this information to
forward the cell to the proper upstream branch.

4 Many-to-Many Multicast Without a Relay

If one is not concerned with the provision of consistent delivery order to all
receivers in a reliable multicast connection, it is possible to directly combine
a many-to-one connection with a one-to-many connection, eliminating the in-
tervening relay node. This requires extending the acknowledgement suppression
mechanism to recognize different subchannels. The main cost of this extension
is that for each of the 15 subchannels, the switch entry must keep track of which
transmission slot the last start cell on that subchannel specified (so that the data
cells for the subchannel can be forwarded to the proper downstream branches).

Now, because this allows multiple sources to send packets directly into the
one-to-many part of the connection, sources that are sending information con-
currently must use distinct transmission slot numbers. The end systems can
handle this in a variety of different ways. One is to simply assign slot numbers
to sources statically. This is a reasonable approach when the number of senders
1s small. The other option is for the senders to allocate transmission slot numbers
dynamically, using any general distributed resource allocation algorithm.

The elimination of the relay node makes it possible to structure a multicast
connection that does not funnel through some common point and then funnel
out again to all the receivers. Instead we can have a more distributed situation in
which data flows from senders through the multicast connection tree, branching
at various points to reach the receivers.



5 Implementation in WU Gigabit Switch

The mechanisms described above are being implemented in the Washington Uni-
versity Gigabit Switch (WUGS). This section provides some of the implementa-
tion details. Readers are referred to [4] for background on the WUGS architec-
ture and to [13] for a more detailed account of the reliable multicast mechanisms.

The WUGS architecture breaks large multicast connections into binary copy
steps. For example, suppose we have a multicast connection in which each cell
arriving at a given switch i1s to be forwarded to four outputs. In the WUGS
architecture, we would select two ports of the switch to act as recycling ports for
the connection, and send arriving cells, not directly to the output ports, but to
the recycling ports, instead. Now, every output port of the switch has a direct
data path back to its corresponding input port (that is, there is a data path
from output ¢ back to input ¢), allowing cells to be recycled. So, when the two
copies of the cell in the example arrive at the recycling ports, they are sent back
to the input side of the interconnection network, and sent through the network
again with the four copies produced in this pass forwarded to the four required
outputs. To accomplish this, a virtual circuit table lookup 1s performed at the
input port where the cell first arrives and at each of the two recycling ports,
before it is sent back through the interconnection network. The table entries, in
each case, specify the pair of switch output ports that the cell is to be sent to
next and the virtual circuit identifier that is to be used to access the next table
entry.

The use of binary copying and recycling, together with the particular in-
terconnection network design used in the WUGS architecture yields a system
that has optimal scaling properties. Moreover, it makes the implementation of
reliable multicast particularly straightforward. With binary copying, the one-to-
many mechanism described in section 2 has d = 2, which means that for each
transmission slot defined for a given virtual circuit, we need just two bits of state
information for positive acknowledgements and a third bit to suppress negative
acks as well. This allows one to implement one-to-many multicast connections
supporting large end-to-end transmission windows without using much memory
in the switch’s virtual circuit tables. If one considers the overall reliable multi-
cast connection, the memory required is 3 bits per transmission slot for every
receiver in the reliable multicast. Since each end-system maintains buffers that
consume far more memory than this, the overhead in the switches 1s acceptably
modest.

Collision resolution is also handled most easily when the merging of data flows
from different senders is done on a binary basis. The ability to recycle cells from
outputs back to inputs, makes it possible to do this as well. With binary merging
the subchannel mapping information can be kept quite small. In particular, for
each of 15 outgoing subchannels we require 1 bit to specify the upstream branch
using that outgoing subchannel, 4 bits to specify the input subchannel number
and two bits of timer information, used to ensure that subchannels are eventually
released, in the event of a lost end-of-packet cell.

There are several cell types that make up the reliable multicast protocol:



One—to—many

TYP—3,RC,CYC,CS,UD,SC,RCO,BR] | UADR
DADR
DVXI1 BDI1
DVXIZ2 BDI2
UVXI ———
MAXSLOT | CURRSLOT

ACKSET[0].. ACKSET[63]

Many—to—one/merge
TYP=5,RC,CYC,CS,UD,SC,RCO,BR] [NSC | SCXT
DADR
DVXI | BDI

SCXT

Fig. 5. Virtual Path/Circuit Table Formats for Reliable Multicast

start cells, end cells, acknowledgement cells, negative acknowledgement cells,
reject cells and data cells. The start, end, ack, nack and reject cells are all
encoded using the ATM Resource Management cell type (PTI=110), with the
first byte of the payload equal to the Reliable Multicast Protocol ID (123). The
second byte of the payload contains a cell type field (0 for NOP, 1 for start, 2
for end, 3 for ack, 4 for nack and 5 for reject). The next two bytes contain the
transmission slot number used for the one-to-many part of the protocol. The first
bit of this two byte field is taken as the current color bit. The next eight bytes
contain trace information, the subsequent eight bytes are reserved for future
use, and the remainder of the payload is available for end-to-end information
and is passed through by the switches without modification. In both data cells
and control cells the GFC field of the standard ATM cell header is replaced by
a subchannel field in which values 0-14 represent valid subchannels and 15 is
reserved as an idle subchannel indicator.

There are several different virtual circuit table entry formats. Figure 5 shows
the two key formats for reliable multicast. The first of these 1s used in a one-to-
many connection, as described in section 2. The second is used in a many-to-one
connection as described in section 3. The one-to-many format implements one
node in a binary tree. UADR and UVXI identify its parent in the tree and DADR
and DVXI1 and 2 identify its children in the tree. MAXSLOT is the maximum
number of transmission slots that the connection can support and CURRSLOT is
the current transmission slot number. Since different connections may require



different numbers of transmission slots, we allow a given reliable multicast virtual
circuit to use multiple consecutive table entries. The control software that sets
up the virtual circuit is responsible for allocating these table entries. As shown
in the figure, each entry contains six words of four bytes each, so each added
table entry supports 64 transmission slots.

The many-to-one format implements one binary merge point in the many-
to-one part of a connection. It stores a complete subchannel mapping table (tt
SCXT) as shown in Figure 5. When a start cell is received on a connection, the
VXT entry is read and an unused outgoing subchannel is selected from the SCXT
stored in the VXT entry. The identity of the incoming branch and subchannel
is stored in the entry. When data cells are received, their input branch and
subchannel number are used to select the right entry from the SCXT. Their
subchannel field is then modified appropriately and they are forwarded to the
downstream node in the tree.

As discussed in section 3, start cells in a many-to-one connection acquire
trace information to allow acknowledgement cells to be efficiently returned to
the proper sender. This is done by adding one bit of trace information to the
trace field of the start cell as it passes through a binary merge point. Acknowl-
edgement cells flow back on a separate one-to-many connection with the same
branching structure as the one-to-many connection and are routed using the
trace information.

The two virtual circuit table entry types described here are also used in gen-
eral many-to-many connections. The complete implementation requires several
other entry types which cannot be described here due to space limitations. A
more complete description of the implementation can be found in [13].

6 Performance Analysis

If a packet is delivered to all receivers in a one-to-many connection the first
time it is sent, the amount of work done by the sender is about the same as for
sending a point-to-point packet. Similarly, for each of the receivers. Furthermore,
no matter how many times a given packet is lost, the receivers who got it the
first time need do no extra work on behalf of other receivers. In fact, the amount
of work that a receiver must do per packet received is essentially the same as
for point-to-point transmission, since the probability of any single receiver not
receiving the packet is essentially the same as in a point-to-point connection
(there can be some difference, since the multicast connection path length may
be longer than would be used in a point-to-point connection). However, in large
multicast connections, the sender may have to send packets multiple times before
they are received at all receivers. This is true of any protcol in which the network
elements do not buffer and retransmit lost packets. The remainder of this section
assesses the magnitude of this effect on the scalability of the reliable multicast
mechanism.

Consider a multicast connection with n receivers;, a maximum sender-to-
receiver path length of d links and a probability of packet loss of at most € on



any single link. Let z; be the number of receivers that have not received a given
packet following the -th transmission (we assume that packet losses on different
links and in different ‘rounds’ are independent). For any particular receiver, the
probability that it fails to receive a packet when 1t is first transmitted is < ed,
hence the expected value of z; is < edn. Similarly, the expected value of x5
is < edry < (ed)?n. Similarly, the expected value of z; < (ed)in. Since z; is a
non-negative random variable, the probability that z; is > 1 is less than or equal
to its expected value. Using this, one can show that for

Inn+1Inl/e
Inl/ed

the probability that =; > 1 is at most ¢. For n = 1000, ¢ = 107° and d = 6,
this implies that with probability 1 — ¢, all endpoints receive the packet after
two transmissions. For n = 10%, ¢ = 10* and d = 10, four transmissions are
enough. For still larger connection sizes, it might be necessary to have some end
systems act as repeaters, buffering packets for retransmission to smaller subsets.
However, it’s hard to imagine a real application that would require this.

7 Closing Remarks

We have shown that the mechanisms proposed for reliable one-to-many multi-
cast are highly scalable. Indeed, it does not appear possible to do better unless
the switches store packets and retransmit them when lost or unless the end sys-
tems play a more active role. For the many-to-one case, a single virtual circuit
can support an arbitrary number of senders with uncoordinated bursty trans-
missions, so long as the average number of packets arriving concurrently at the
receiver is small (ideally, an average of one or two). Since many-to-many multi-
cast connections are naturally constrained by the ability of the recipients to sink
data, we believe that even very large many-to-one connections will rarely have
more than a few simultaneous senders.

This paper does not address the issues of flow control and congestion con-
trol, in the reliable multicast context. For a one-to-many reliable multicast, one
can use adaptive windowing techniques like those used in point-to-point proto-
cols to adapt the sender’s rate to accommodate slow receivers and/or congested
links. Similar techniques are applicable to a many-to-one connection. The use
of flow/congestion control on a one-to-many multicast does have the effect of
slowing the connection data rate to that of the slowest receiver or most con-
gested link. For distributed computing applications, this may well be the right
thing to do. For information distribution applications, it’s not clear that this is
an appropriate approach. Indeed, there may be no single approach that is really
suitable for all applications, as argued in [6].

We have neglected the problem of dynamically updating a reliable multicast
connection in progress. Adding a new endpoint requires proper initialization of
the acknowledgement state information for the new branch. The most straight-
forward way to accomplish this is as follows. When requested to add a new



endpoint, the network signaling system can allocate the appropriate resources
for the new branch, clearing all the acknowledgement information, but not link-
ing the new branch into the connection. It then asks the connection “owner” to
inform 1t when it is safe to update the connection. When all outstanding packets
have been acknowledged, the owner can signal to the network to perform the
update. While the update is in progress, all senders must refrain from sending
any new packets on the connection. If pausing a connection during updating is
unacceptable, an alternative is to maintain two parallel connections, one for nor-
mal use and one for transitional purposes. When a new endpoint is to be added,
it’s first added to the second connection. After the new endpoint has been added
to the second connection, the senders begins shifting transmission to the second
connection. When there are no outstanding packets on the first connection, the
owner signals to the network to add the new endpoint to that connection as well.

References

1. Armstrong, S. A. Freier and K. Marzullo. “Multicast Transport Protocol,” RFC
1301, 2/92.

2. Braudes, R and S. Zabele, “Requirements for Multicast Protocols,” RFC 1458,
5/93.

3. Chang, J. and N. Maxemchuk. “Reliable Broadcast Protocols,” ACM Transactions
on Computer Systems, 8/84.

4. Chaney, Tom, J. Andrew Fingerhut, Margaret Flucke and Jonathan S. Turner.
“Design of a Gigabit ATM Switch,” Washington University Computer Science
Department, WUCS-96-07, 2/96.

5. Crowcroft, J. and K. Paliwoda. “A Multicast Transport Protocol,” Proceedings
ACM SIGCOMM, 1988.

6. Floyd, S.; V. Jacobson, S. McCanne, L. Zhang, C. Liu. “A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing,” Proceedings
of ACM SIGCOMM, 9/95.

7. Holbrook, H., S. Singhal and D. Cheriton. “Log-Based Receiver-Reliable Multicast
for Distributed Interactive Simulation,” Proceedings of ACM SIGCOMM, 9/95.

8. Papadopoulos, Christos and Guru Parulkar. “Error Control for Continuous Media
and Multipoint Applications,” Washington University Computer Science Depart-
ment, WUCS-95-35, 12/95.

9. Pingali, S., D. Towsley and J. Kurose. “A Comparison of Sender-initiated and
Receiver-initiated Reliable Multicast Protocols,” Proceedings of SIGMETRICS,
1994.

10. Shacham, N. “The Design of a Heterogeneous Multicast System and its Implemen-
tation Over ATM,” Proceedings of the IEEE Workshop on Computer Communi-
cations, 9/95.

11. Whetten, B., S. Kaplan and T. Montgomery. “A High Performance Totally Ordered
Multicast Protocol,” Proceedings of Infocom, 1995.

12. Turner, Jonathan S. “An Optimal Nonblocking Multicast Virtual Circuit Switch,”
Proceedings of Infocom, 6/94.

13. Turner, Jonathan S. ”Extending ATM Networks for Efficient Reliable Multicast,”
Washington University Computer Science Department, WUCS-96-16, 11/96.



