IMPROVED ANALYSIS OF EARLY PACKET DISCARD

Maurizio Casoni?® and Jonathan Turner’*

& University of Bologna, mcasoni@deis.unibo.it

b Washington University, jst@cs.wustl.edu.

Appears in Proceedings of the International Teletraffic Congress, June 1997, Washington
D.C., Copyright held by Elsevier Publishing.

In a previous paper, one of the authors, gave a worst-case analysis for the Early Packet
Discard technique for maintaining packet integrity during overload in ATM switches. This
analysis showed that to ensure 100% goodput during overload under worst-case conditions,
requires a buffer with enough storage for one maximum length packet from every active
virtual circuit. This paper refines that analysis, using assumptions that are closer to what
we expect to see in practice. Our principal result is that 100% goodput can be achieved
with substantially smaller buffers, although the required buffer space can be significant
when the link speed is substantially higher than the rate of the individual virtual circuits.
These results are validated by comparison with simulation. We also give a simple analysis
to determine the amount of buffering needed to bound the probability of buffer overflow
and underflow.

1. Introduction

Early packet discard (EPD) [2] is an ATM buffer management technique to ensure
high end-to-end throughputs for bursty data applications during overload periods. EPD
addresses the problem that arises when transport level packets are discarded at a receiving
terminal, because one or more of their component cells were discarded at an overloaded
link, within the network. When ATM switches discard cells without regard for the packet-
level structure, the effective throughput experienced by users can drop during overload
periods, leading to congestion collapse. EPD attempts to avoid this by observing the
packet-level structure and discarding entire packets, when overload makes it necessary to
do so.

EPD is only one of several mechanisms that have been proposed for handling congestion
in ATM networks. In particular, rate-based flow control has now been standardized by
the ATM Forum to manage congestion for Available Bit Rate (ABR) traffic streams [3].
While the use of ABR flow control will reduce the need for techniques like EPD, it will
not eliminate them, since buffers using ABR flow control can still experience overloads
during transient periods, before rate adjustment mechanisms can react to traffic changes,

*This work was supported by the ARPA Computing Systems Technology Office, NEC, NTT, Samsung,
Southwestern Bell, Sun Microsystems and Tektronix.

and since these mechanisms will not be applied to Unspecified Bit Rate (UBR) streams.
Indeed, it is not even clear that ABR mechanisms will be universally applied, since they
are complex enough that users may choose to deploy them only at selected bottleneck
links where there is a clear payoff.

A previous paper [4] analyzes packet level discard mechanisms including Early Packet
Discard. That analysis is based on worst-case assumptions that over-state the amount of
buffering required for high effective throughputs. In this paper, we refine that analysis,
using more realistic assumptions and use this to determine the amount of buffering re-
quired to achieve 100% goodput (here, we define goodput to be the fraction of the link’s
capacity that is used to carry complete transport level packets). The analysis naturally
divides into two distinct cases. The first applies when the offered load is between one
and two times the link rate, and the second when the offered load is more than twice
the link rate. Section 2 gives the necessary definitions and modeling assumptions. The
analyses for the two cases are given in sections 3 and 4, respectively. In section 5, we give
numerical results and also give results that account for the dynamic behavior of on-off
bursty sources to estimate the long-term goodput (rather than just the goodput during
an overload period).

2. Definitions and Assumptions

We are interested in determining the amount of buffering required to obtain 100%
goodput on an overloaded link in which the buffer controller implements early packet
discard. In EPD, whenever a virtual circuit begins transmission of a new packet, a
decision is made to attempt to propagate the packet or not. In particular, if the number
of cells in the queue exceeds some specified threshold, then the packet is not propagated
into the queue. If the number of cells is below the threshold, the packet is propagated. In
addition, if any cell of the packet must be discarded due to queue overflow, the remainder
of that packet is discarded.

We consider a homogeneous situation in which r virtual circuits transmit data contin-
ually at a normalized rate of A (that is, A is the fraction of the link bandwidth required
by a single virtual circuit), and define the overbooking ratio as rA. For an overloaded
link #A > 1. We also assume that all packets contain ¢ cells and let k = |[1/A] be the
maximum number of virtual circuits that the link can handle without loss. For simplicity,
we will also assume that 1/X is an integer; although extension to non-integral values is
straightforward, it adds little new information and obscures the key issues. We let B
denote the number of cells the buffer can contain, and let b denote the threshold level.

We define a given virtual circuit to be active if cells from that virtual circuit are being
placed in the queue on arrival. Similarly, we define a virtual circuit to be inactive if its
cells are being discarded. We assume that the flow of cells on a given virtual circuit is
smooth, ignoring the effects of jitter caused by variable delays upstream of the buffer
under consideration. Under this assumption, the buffer level rises or falls in a predictable
way, depending only on the number of active virtual circuits.

It we observe the number of cells in a queue managed using EPD as a function of time,
we will observe a cyclic behavior in which the number of cells in the queue rises above
the threshold, then as various virtual circuits complete packets, the number of cells stops

increasing and drops back down. When it falls below threshold, and new packets start
arriving at the queue, the buffer level stops falling and eventually begins to rise again. In
this paper, we focus on the amount of buffering required to ensure that the buffer never
overflows and never underflows during an overload period. Under these conditions, all of
the link’s capacity is used to carry complete packets.

Our prior analysis of early packet discard was based on the worst-case assumption that
just before every threshold crossing, the first cell of a packet arrived on every virtual
circuit, meaning that the next packet boundary was delayed as long as possible after the
threshold crossing, leading to wide excursions around the threshold level. While such
worst-case synchronization of packet boundaries is possible, it is hardly likely, and would
certainly not be expected to persist over an extended period of time. Hence, in this paper
we analyze the queue behavior under another simple assumption that more closely reflects
what can be expected to happen in practice. Our new modeling assumption is that packet
boundaries on different virtual circuits are offset from one another by an equal amount,
leading to the occurrence of a packet boundary every ¢/r\ cell times. We also assume
that threshold crossings fall half-way in between a pair of packet boundaries. Simulation
results, reported in section 5, show that these simple assumptions capture the essential
performance characteristics of EPD and yield results that are accurate enough to use for
estimating buffer requirements.

3. Small Overbooking Ratios

In this section we analyze the performance of EPD when rA < 2. In particular, we want
to determine for what values of b and B — b the buffer will never overflow or underflow. To
do this, we simply assume that b and B—b are both very large and determine the maximum
excursion above and below the threshold. When rA < 2, the maximum excursion around
the threshold occurs when, at each upward threshold crossing, all r virtual circuits are
active. Packet boundaries occur at regular intervals following the threshold crossing. For
simplicity, we assume that threshold crossings fall half-way between successive packet
boundaries, meaning that packet boundaries will follow threshold crossings by (/2rA,
30/2rA, 50/2rX and so forth. Figure 1 illustrates how the buffer oscillates around the
threshold when & = 4 and r = 6. The lines at the top indicate the packets flowing on the
six virtual circuits. Heavy lines indicate packets that are accepted for transmission, while
blank spaces indicate packets discarded by the buffer controller.

At each packet boundary following an upward threshold crossing, the rate at which the
buffer level rises gets smaller. As shown in Figure 1, the slope of the curve is rA — 1
at the time the threshold is crossed, and each successive packet boundary decreases the
slope by A\. When there are exactly k£ active virtual circuits, the slope is zero and there
is no further rise in the buffer level. From this discussion, we can see that the maximum
excursion above the threshold is

1 r—k—1

l
AU =-—(rA—1)+ — — k=)A= (1/2)(r — k)*((
U= GopA =D o 2 (k== (20— R
Note that this implies AU < (k/4)(. By the worst-case analysis given in [4], the maximum
excursion above the threshold can be (r — k)¢, which is always at least four times larger
than the “even offset” analysis predicts.

slope=(Rk—r)A—1

slope= rA-1

buffer level

time

Figure 1. Buffer Range In Absence of Overflow and Underflow

To determine the excursion below the threshold, we need to know the number of active
virtual circuits at the downward threshold crossing. This can be determined by inspection
from Figure 1 and noting that the even offset assumption on the packet boundaries implies
that at the downward threshold crossing, the slope of the buffer occupancy curve has the
same absolute magnitude as at the upward threshold crossing. That is, the slope is 1 —rA
and the number of active virtual circuits is 2k — r. After crossing the threshold, the
buffer level continues to drop until all 2k — r active virtual circuits complete their packets
and new packets start on the inactive virtual circuits. At this point, packet boundaries
occur on the inactive virtual circuits at intervals of {/rA; causing the slope of the buffer
occupancy curve to increase, reaching zero when exactly k virtual circuits are active.
From the threshold crossing to the first packet boundary at which the slope changes, the
buffer level drops by

2k —r+ 1/2)(rA = 1)(l/rX) = 2k —r + 1/2)(r — k)({/7)
From the point where the slope first changes until the buffer reaches its lowest point, the
drop in the buffer level is

¢ r—k—1

Y A= (12)0 — k= (= B ()

=1

So,
Au = (1/2)(3k —r)(r — k)({/r)

Note that as r increases, Au rises initially and then falls, reaching a maximum when
r = v/3k. The maximum value of Au is thus (2— \/g)kﬁ ~ .27k(. The worst-case analysis

in [4] gives a maximum excursion below threshold of £¢. The total buffer range is thus,

AU+ Au=k(r —k)({/r)

4

and since k < r < 2k, the buffer range is < %. It’s interesting to note that the time
duration of a cycle is exactly 2¢/X which is the time it takes for exactly two packets to
arrive. This means that under our assumptions, the same virtual circuits have packets
discarded on every cycle. So the lucky virtual circuits (the top and bottom ones in
Figure 1) are able to send every packet, while the unlucky ones are able to transmit only
half their packets. While in practice, we would expect differences in packet lengths and
virtual circuit rates to prevent this pattern from persisting over long periods of time, this
does indicate the inherent lack of fairness of the simple EPD algorithm.

4. Large Overbooking Ratios

We now consider the case of overbooking ratios greater than two. Asin the last section,
we are interested in the maximum excursion around the threshold when buffers are large
enough to avoid overflow and underflow. When the overbooking ratio is larger than two,
the queue behavior changes qualitatively. In particular, the largest buffer excursion occurs
in this case when no virtual circuits remain active at a downward threshold crossing. Thus,
following such a threshold crossing, the slope of the buffer occupancy curve is initially —1,
and at successive packet boundaries, the slope increases until, when k virtual circuits have
become active, the slope is zero and the buffer level drops no further. We can determine
the excursion below the threshold using an analysis much like that in the last section. We

find

1 ¢ [, . 5
Au=c—+— ;(1 —iA) = (1/2)k*({/r)

Note that when r — oo, Au — 0 so that Awu is in the range [0, %

After the buffer level reaches its lowest level, it starts to rise as packet boundaries
occur on additional virtual circuits. The time interval during which the buffer occupancy
is below the threshold is 2k(¢/rX). Packet boundaries occurring after the buffer rises
above the threshold do not immediately cause new virtual circuits to become active, so
the slope of the buffer occupancy curve remains constant until the first virtual circuit
that became active following the previous downward threshold crossing comes to the end
of its packet. This occurs £/ cell times after it began. At this point the slope changes to
(2k — 1)A — 1 and as additional packet boundaries occur it drops to zero. Thus, the total
excursion above the threshold is:

l

AU =+ = (2k - 1/2 % Z_j 2k — i)\ — 1] = (1/2)(2r — 3k)k((/r)

When r — oo, AU — kl so AU lies within the range [%, kﬁ]. Adding Au and AU gives a

total buffer range of (r — k)k({/r). The worst-case analysis of [4] gives a maximum buffer
range of r/.

5. Numerical Results

Figure 2 shows results from our analysis. Two cases are shown, one with k£ = 4 and
one with & = 16. In the simulations, packet lengths are fixed, as in the analysis, but
the relative phases of the packets in different virtual circuits were randomized at the

45 15 —
o 14 B S—
4 /.l/’l'" 13 simulation: sum_.— o
simulation: above 12 g
< 35 " s 11 | aion: above _
iS) - B, analysis: sum I
§ 8) - analysis sum § 10 _ . - andysis above
o simulation: sum BT s 9 -
x 25 e Rk < 8
é analysis: above 2]
= 2 & 7
3 , 5 6
P 15 2 5
3 3 4
d 1 R d o, —
o / “TTTT—— simulation: below TTee——_. simulation: below
05}/’ - eI — 2 analysis: below T T e
) analysis: below 1
1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 4.5 5
Overbooking Ratio Overbooking Ratio
@ k=4 (b) k=16

Figure 2. Normalized excursion above and below the threshold

start of each simulation run and the maximum excursion above and below threshold over
the entire run was recorded. The values plotted are the average values from multiple
simulation runs (more than 100 runs per data point).

Notice that when the overbooking ratio is < 2, the maximum excursion above the
threshold is always smaller than the excursion below the threshold and that when rA > 2
this is reversed. Also notice that the analysis tracks the simulation results most closely
when k is large. This is to be expected, since for small k, there is a greater likelihood
that randomly selected phase offsets will differ substantially from the idealized even offset
assumption of the analysis.

The analysis reported here gives much better estimates of the required buffer size than
the worst-case analysis, allowing the buffers and the required threshold to be more closely
tailored to the real needs. For the two cases shown, the worst-case analysis requires a
total buffer size of 20 and 80 when the overbooking ratio is five. Notice however that
when £ is large (meaning that the peak virtual circuit rate is much smaller than the link
rate), the amount of buffering required can still be substantial. This can be problematical
for high speed links, for which cell buffers can be an expensive resource. As one example,
a buffer controller for a 2.4 Gb/s link will require a buffer of 4.8 MB to ensure 100%
goodput in the presence of an overload caused by virtual circuits carrying 4 KB packets
with a transmission rate of 2 Mb/s per virtual circuit. Of course, it’s unlikely that a
gigabit link carrying traffic from bursty virtual circuits with peak rates of 2 Mb/s will
become overloaded in the first place. In general, overload is most likely to arise in those
cases when k is small, allowing one to get by with much smaller buffers.

Suppose we have a total of n virtual circuits that are each actively sending packets with
probability p, and that we’re willing to tolerate a probability of € that the link experiences
either overflow or underflow. Let K be the smallest integer for which

> (M- s

r=K+1

(1/2)(r=k=1)(r=k)(¢/7) (1/2)(Bk—7)(r—k)(L/7)

T
I
I
|
underflow lonly no overflow

| no underflow

(1/2)(r=k)(¢/T)

overflow }and

underflow
|

overflow only

Figure 3. Idealized Goodput Map for rA < 2

Then we require that the buffer be large enough so that for all r < K., the excursion
around the threshold does not lead to underflow or overflow. For example, if we have 30
virtual circuits, each with a peak rate of 1/4 and a peak-to-average ratio of 10:1 (that is,
p = 0.1) and we let € = 0.05, we find that K = 6, meaning we only need a buffer large
enough to avoid overflow and underflow when r < 6. It is sufficient in this case to have
b=/(and B = 1.33(. As another example, suppose we have 120 virtual circuits, each
with a peak rate of 1/16, p = 0.1, ¢ = 0.05. In this case, K = 18, so we need a buffer
large enough to avoid overflow when r < 18. In this case, b = 1.67¢ and B = 1.78(are
enough. In both of these examples, the average offered load is 75% of the link capacity, so
the average carried load is at least 71%. Thus with even fairly modest buffer sizes, EPD
can achieve reasonably high throughput for bursty traffic.

6. Closing Remarks

In a companion paper [1], we have studied the performance of early packet discard
when the buffer is not large enough to ensure 100% goodput. Depending on the values
of b and B, the buffer will experience underflow, overflow or some combination of the
two. This is shown schematically in Figure 3 for the case of small overbooking ratios.
Figure 4 shows a computed version of this “goodput map” using the analysis in [1].
Notice that while decreasing either b or B — b from the values required for 100% goodput
causes a deterioration in performance, the deterioration is not monotonic. Indeed, we get
better performance for very small buffers than for intermediate values. This apparently
anomalous behavior is characteristic of early packet discard. The explanation is that
when the buffer is small enough to allow overflow (or underflow), the slope of the buffer
occupancy curve at subsequent downward (resp. upward) threshold crossings is reduced,
causing a smaller swing below (above) threshold. Because of this, reducing the amount of
buffering can actually lead to an improvement in goodput. Similar maps can be produced

400

T T 1 I ——
[0.9,1.0] L0 —r.
[0.8,0.9]
> 340
= --—-—'.-_ [
" wi 310
Pl
— - i - 280
//.-" |
250
= T [0.7.0.8] o
220
{ |r i 0 =y i n i e B-b
HH 190
i | 1
77 A 160
= - T "l
goodput m [0.6,0.7] ./’ 130
I P
T 100
70
- £
L
10
R ERESSEEESSERE8S8E25S88888¢88¢8
b

Figure 4. Computed Goodput Map for k£ = 20, r = 35, { = 100

for large overbooking ratios. This behavior has been confirmed via simulation studies
which typically show goodputs within a few percent of the values predicted by analysis.

Our earlier work also considers variants of early packet discard that provide 100%
goodput with much smaller buffers than are needed for early packet discard (one or two
packets total, under worst-case assumptions) and have better characteristics with respect
to fairness. See [4] for details.

REFERENCES

1. Casoni, Maurizio and Jonathan Turner. “On the Performance of Early Packet Dis-
card,” to appear in IEEE Journal on Selected Areas in Communications. Also available
from Washington University Computer Science Department as WUCS-96-13, 4/96.

2. Floyd, Sally and Allyn Romanow. “Dynamics of TCP Traffic over ATM Networks,”
IEEE Journal on Selected Areas in Communications, 5/95.

3. Jain, Raj. “Congestion Control and Traffic Management in ATM Networks: Recent
Advances and a Survey,” Computer Networks and ISDN Systerns, 10/96.

4. Turner, Jonathan 5. “Maintaining High Throughput During Overload in ATM
Switches”, Proceedings of Infocom, 3/96.

