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Abstract

Integrated network technologies, such as ATM, support multimedia applications
with vastly different bandwidth needs, connection request rates, and holding pat-
terns. Due to their high level of flexibility and communication rates approaching
several gigabits per second, the classical network planning techniques, which rely
heavily on statistical analysis, are less relevant to this new generation of networks.
In this paper, we propose a new model for broadband networks and investigate the
question of their optimal topology from a worst-case performance point of view. Our
model is more flexible and realistic than others in the literature, and our worst-case
bounds are among the first in this area. Our results include a proof of intractability
for some simple versions of the network design problem, and efficient approximation
algorithms for designing nonblocking networks of provably small cost. More specif-
ically, assuming some mild global traffic constraints, we show that a minimum-cost
nonblocking star network achieves near-optimal cost; the cost ratio is at most 2
if switch source and sink capacities are symmetric, and at most 3 when the total
source and sink capacities are balanced. In the special case of unit link costs, we
can show that a star network is indeed the cheapest nonblocking network.

1 Introduction

We consider optimization and combinatorial issues arising in the planning and design
of modern broadband digital networks. In order to address these questions from a
complexity-theoretic viewpoint, we first propose a new traffic model for designing these
networks. Our model is less restrictive and more flexible than other models in several
key aspects; it emphasizes the parameters that are most reliably available and eliminates



the need for overly specific traffic description. Our model is inspired by and builds upon
the classical theory of nonblocking switching networks developed by Benes [1], Clos [3],
Pippenger [12], among others, and generalized to multirate switching networks by Melen
and Turner [10]. The present paper differs from the work in switching networks in that
it addresses the design of networks with irregular topologies and traffic characteristics,
and it takes into account the costs of transmission links spanning substantial geographical
distances. It also differs from prior work in topological design of networks in allowing a
much less constrained and detailed specification of traffic requirements [8, 9, 11]. One
can think of our model as implicitly allowing the specification of a very large number of
traffic matrices.

Our research is motivated by the new generation of packet-based, virtual-circuit net-
works, such as ATM (Asynchronous Transfer Mode), capable of supporting high speed
multimedia applications. ATM networks differ from telephone and wide area data net-
works in several ways. First, they are multirate networks, meaning that their virtual
circuits can operate at any bandwidth, ranging from a few bits per second to over one
hundred megabits per second. These networks also promise to support a wide range of
applications with different bandwidth needs, different connection request rates and dif-
ferent holding times. Furthermore, unlike traditional data networks, ATM networks need
to provide connections with a guaranteed quality of service, requiring allocation of band-
width to individual virtual circuits and raising the possibility of virtual circuit blocking.
Second, ATM networks support multipoint connections, not just point-to-point virtual
circuits. Multipoint virtual circuits are essential for applications like video distribution or
multimedia conferencing and include both one-to-many and many-to-many transmission
patterns. The design of optimal networks supporting multipoint virtual circuits is largely
uncharted territory, although some point-to-point results can be usefully generalized to
the multipoint environment. Finally, ATM networks are much less predictable than tele-
phone networks or traditional low speed data networks. There is no reliable statistical
data on application characteristics and connection request patterns. Indeed, the very
flexibility that is ATM’s greatest strength also makes it highly unpredictable, and so clas-
sical network planning techniques, which rely heavily on statistical analysis, become less
relevant. In ATM networks, the whole notion of blocking probability for virtual circuit
setup must be called into question, since there is no reasonable possibility of validating
the probabilistic assumptions that must go into any analysis of blocking probability.

Therefore, we believe that the network models that rely on specifying demands between
all node-pairs are overly restrictive for designers of these networks and, given all the
uncertainties in the usage of these networks, may completely miss the mark. We propose
that a more reliable and meaningful parameter is the total amount of traffic entering or
leaving a switch, without regard to the destination or source of this traffic. These numbers
can often be estimated by looking only at the devices that use a particular switch as their
network gateway. Within this global traffic model, we study the network design problem
with the linear link costs: the cost of a link grows as a linear function of its capacity.
In addition, we set the switch costs to zero; this is not a major limitation, since the
switch costs can be distributed among its incident links. (See Concluding Remarks for



more on this issue.) Under this assumption, we are able to prove worst-case results for
a variety of network design cases, where almost no such results were known previously.
On the theoretical side, our results develop some mathematical techniques that might
be useful in establishing lower bounds on the costs of optimal nonblocking networks in
other contexts as well. On the practical side, our theorems can also be viewed as lending
mathematical support to some commonly employed network topologies. We postpone a
precise statement of our results until after we have formally introduced our model and
formulated the problem (Section 2.2).

This paper has six sections. Section 2 introduces the necessary definitions, formalizes
the network design problem considered in this paper, and briefly summarizes our main
results. Section 3 addresses the computational complexity of the problem, and shows
that the problem is NP-Complete. Section 4 describes our approximation techniques.
Section 5 describes an optimal network for the special case of unit link costs. Section 6
provides some closing remarks and discussion of some practical network design issues.

2 Owur Network Model

Our formulation of the network design problem consists of a complete digraph, G = (V, E),
where each vertex represents a switch and each directed edge represents a link group,
comprising one or more physical transmission links. The vertices and edges of G have the
following parameters associated with them:

e Fach vertex u has an integer source capacity «(u), and an integer sink capacity
w(u), representing the maximum traffic rate that can originate or terminate at w.

e Each vertex pair (u,v) has a function v,(u, v, z) representing the cost of constructing
a link of capacity x from u to v.!

We also have a switch cost function ~y,(x) giving the cost of a switch of total capacity z.
If we assign a capacity r¢(u,v) to every edge (u,v) the resulting network cost is defined

Z ’Y[(U, U, Hf(u7v)) + Z ’Vs(ﬁs(u))v (1)

(uw)EE ueV

where r4(u) is the capacity of switch u in the network and it equals

afu) +w(u)+ Y (ke(u,v) + Ke(v,u)).

veVw#u

Thus, our model does not constrain traffic on a switch-pair basis, rather only at individual
switches. The latter data is not only available more reliably, but it also gives the network
designers more flexibility.

In order to define the notion of nonblocking networks, we first need to define connection
requests and their routing in the network. A connection request R = (S, D, w) comprises

'We require that the costs satisfy the triangle inequality, meaning that the direct path of any given
capacity between two vertices is never more expensive than an indirect path with the same capacity.



a non-empty set of sources S, a non-empty set of destinations D and an integer weight
w < B, where B is a maximum connection weight. A route 1" for a request R is a
subgraph of G for which the underlying undirected graph is a tree and in which there is a
directed path from every vertex in S to every vertex in D. A collection of routes C places
a connection weight A¢(u,v) on an edge (u,v), which is defined as the sum of the weights
of all routes that include the edge (u,v). Ac(u) denotes the weight on a switch u, which
is equal to the sum of the weights of its incident edges.

A set of connection requests is valid if, for every vertex u, the sum of the weights of
the requests containing u in their source and sink sets, respectively, does not exceed a(u)
and w(u). A collection of routes C is valid if it satisfies a set of valid connection requests,
and if Ao (u,v) < ke(u,v), for every edge (u,v), and if Ac(u) < ks(u), for every vertex w.

A state of a network is a valid set of routes. A routing algorithm is a procedure
that maintains a valid set of routes under the following four operations: (1) add a new
route satisfying a specified connection request; (2) remove an existing route; (3) add a
new vertex to either the source set, the destination set, or both for some route in the
current state; (4) remove some vertex from either the source set, the destination set, or
both for some route in the current state.? We are only concerned with routing algorithms
that are incremental, meaning that they only add, delete or modify a single route when
carrying out a requested operation and that they cannot both add and remove edges from
an existing route in a single operation.

The reachable states for a routing algorithm on a network with specified link capacities
is the set of all states that can be reached by sequences of the four operations given above,
starting from the empty state. We say that a network is nonblocking under a given routing
algorithm if for every reachable state and every operation request whose completion would
not exceed the source or sink capacity of any vertex in that state, the algorithm produces
a new state satisfying the operation request.

2.1 The Nonblocking Network Design Problem

The nonblocking network design problem is to determine a set of link capacities that will
yield a nonblocking network of least cost under either a specified routing algorithm or
some routing algorithm from a specified class of routing algorithms. In the latter case,
the design problem is to produce both the link capacities and a specific routing algorithm
from the given class, for which the network is nonblocking. Figure 1 shows an instance
of the network design problem on the left and a solution on the right. On the left, the
numbers next to each vertex denote the switch capacities, a(v), w(v); the number next to
each edge denotes the link cost per unit capacity (assuming symmetric link costs). The
solution on the right shows directional capacities on links. This network is nonblocking if
connections are always routed using shortest available paths.

In many situations, some special cases of the network design problem are of interest.
In the linear cost version, switch costs are zero and all link costs satisfy v,(u,v,z) =

2A routing algorithm may fail to carry out operations of type (1) or (3), but will always carry out
operations of type (2) or (4).



Figure 1: An example of the design problem and a suboptimal solution

x X y(u,v), where y(u,v) is a constant that depends only on u and v. The symmetric
version of the problem has a(u) = w(u) for all vertices u, v¢(u,v,z) = vo(v,u,x) for all
pairs u,v and restricts the choice of link capacities so that k,(u,v) = ke(v,u). In the
balanced version of the problem, we have 3, oy a(u) = 3oy w(u).

2.2 A Summary of Our Results

In this paper, we focus on the linear link cost model, that is, v,(u,v,z) = z X y(u,v)
and switch costs are zero. In this model, we prove that networks of star topology achieve
near-optimal cost. In particular, for the symmetric case, we prove that the least cost
nonblocking network of an arbitrary topology has cost at least half the cost of the cheap-
est nonblocking star network. The ratio becomes 1/3 when the source and sink traffic
capacities are asymmetric, but balanced. For arbitrary traffic capacities, the performance
ratio of the star networks degrades gracefully (cf. Theorem 4.11). Finally, we show that
in the special case of unit link cost function, meaning ~(u, v, z) = ¢ -z for some absolute
constant ¢, a star network is indeed optimal.

Even in our simplified linear link cost model, the problem of computing a least-cost
nonblocking network turns out to be NP-Complete, meaning that approximation algo-
rithms are the only recourse for designing nonblocking networks of provably good cost
ratios. We show several hardness results. In the usual RAM model of computation, we
can compute a least-cost nonblocking star network in O(n?) time, where n is the number
of switches. We start by addressing the computational complexity question first.

3 Computational Complexity of the Problem

A solution to the network design problem asks for a cheapest set of link capacities as
well as an incremental strategy for setting up valid connections. In general, the routing
problem in itself is a hard problem. In networking literature, a variety of routing strategies
are used: (1) fixed path routing, (2) alternate path routing, and (3) shortest available
path routing. In the fixed path routing, a precomputed routing table stores a directed



path between each pair of nodes (u,v), and if this path has insufficient bandwidth to add
a connection request from u to v, the connection is refused. In alternate path routing,
each node pair has two paths, a primary path and a secondary path, and the secondary
path is tried in case the primary path is unable to route the connection. If the secondary
one cannot route the connection either, the connection blocks.

Both the fixed path and alternate path routing algorithms can block a connection even
when there exists a path of sufficient bandwidth between u and v. The shortest available
path algorithm is able to route a connection as long as there is some path in the network
of sufficient bandwidth. As its name suggests, the shortest available path algorithm uses,
among all valid paths, a least cost path. It is not difficult to see that even with shortest
available path routing, connections can block when a simple rearrangement of routes will
free up enough bandwidth to accept the new connection. The following theorem, proved
in [4], shows that determining whether a given network blocks some sequence of switch
capacity-compliant connection requests is NP-Hard.

Theorem 3.1 [}] Let V be a set of switches, let a(u),w(u) be their source and sink
capacities, and let ke(u,v) be the capacity of link (u,v). Suppose that all connection
requests have weights that are multiples of a minimum weight b and connections are routed
using the shortest available path. Then the problem of deciding whether a sequence of point-
to-point requests compatible with the switch capacities blocks 1s NP-Hard in the strong
sense.

The intractability of checking whether a network is nonblocking does not imply that
designing one is also hard. However, we show below that several simple versions of the
design problem are indeed intractable. In the first theorem, we let the source and sink
capacities be arbitrary, with no constraints of symmetry or balance. In this version, the
well-known Steiner tree problem in graphs with edge costs in {1, 2} turns out to be special
case of the network design problem. (Let G = (V, F) be a graph, w(e) € {1,2} be weights
on edges, R C V be a subset, and B a positive integer bound. The Steiner tree problems
asks if there is a subtree of GG spanning all nodes of R with a total cost of at most B? This
version of the Steiner tree problem was proved MAXSNP-Hard by Bern and Plassman [2];
see also the book by Garey and Johnson [7].)

Theorem 3.2 Given a set of switches V', their source and sink capacities a(v), w(v),
and a linear link cost function v(u,v) for each switch-pair in V', the problem of finding a
minimum cost, nonblocking network for (V,o,w,~y) is MAXSNP-Hard.

Proo¥r. The set of switches V' is the set of nodes V. The link costs are the same as the
edge costs in G, namely, v(u,v) = w(u,v). Observe that the link costs satisfy triangle
inequality. We pick an arbitrary “root” node r € R, from the Steiner subset B C V.
Set a(r) = 1 and w(r) = 0. For the remaining Steiner nodes u € R, we set a(u) = 0
and w(u) = 1. All other nodes of V' have a(v) = w(v) = 0, where v € V' — R. Thus,
the root node can originate one unit of traffic, but it has no termination capacity. Every
other node of the Steiner subset R has one unit of termination capacity and no origination
capacity. The nodes in V' — R have no origination/termination capacity at all.
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Let N* be a minimum cost nonblocking network for the above instance. It is easily
seen that V' admits a Steiner tree of cost B on R if and only if cost(N*) < B. In particular,
every Steiner tree spanning R can be turned into a nonblocking network, by directing all
edges away from the root node and assigning unit capacity to each link. Conversely, every
nonblocking network is a Steiner tree of R. O

Next, we show that the network design problem even with symmetric switch capacities
is hard, for a slight variation of the linear link cost model. In particular, assume that
setting up a link from u to v of capacity k¢(u,v) has cost

c(u,v) + y(u,v) X Ke(u,v),

where c(u,v) is a fixed installation cost, independent of the link capacity. In this case,
we show a polynomial time reduction from the following well-known set cover problem
to the network design problem:

Given a finite set X and a family F = {51, Ss,..., S} of subsets of X, find
a minimum cardinality subset J C {1,2,...,m} such that U;c;S; = X.

We construct a bipartite graph with elements of X and F as node classes, and put
an edge between x and S if x € S. Thus, we have n nodes labeled z1,25,...,x,, and m
nodes labeled Si, Sy, ..., Sy. There is an edge between x; and S; if and only if z; € S;.
Finally, we add a new node z( that is joined to each set S;, 7 = 1,2,...,m. We assign
capacities as follows:

a(z;) =1, wx)=0 i=12...,n
a(S;) =0, w(S;)=0 j=1,2,....m
a(z) =0, w(xo) =m

The link costs are defined as follows:

o(Sym0) =1, ASpa0) =0 j=1.2,....m

All other link costs are defined by using the shortest path metric in this graph. (With
an appropriate interpretation of what it means to set up a link along some shortest path,
these costs obey the triangle inequality.) Figure 2 illustrates the construction.

Lemma 3.3 The network design problem formulated above has a solution of cost 2n+|J*|
if and only if (X, F) admits a set cover of cardinality |J*|.

ProOOF. In order to prove the “if” part, consider a set cover of size .J*, and let S*;, 5%,
..., Sy« denote the member sets of this cover. We can construct a nonblocking network
of cost 2n + |J*| as follows: for each z;, assign capacity one to the edge (z;, S*;), where j
is the lower-indexed set containing x;. (Since S*;’s form a set cover, each w; is joined to
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some S*; by this rule.) Next, for each S*;, assign capacity |S*;| to the edge (5*;,x¢). The
total cost of this network is 2n+ 3¢« 1 = m+|J*|, completing the forward implication.

In order to prove the “only if” part, consider a nonblocking network A* of cost at
most 2n + |J*|. We will exhibit a set cover of size |J*|. All the connections of the form
(z;,S;) must cost at least 2n, since each x; is connected to some S;, and each such link
has a fixed cost of 1 and a per unit cost of 1. Thus, the number of connections of the form
(S, o) is no more than |J*|. Since all z; must be able to reach z, via some S;, these S;’s
must be joined to all x;’s, and hence form a set cover of X. This completes the proof. O

Figure 2: The proof of NP-Completeness.
We have the following theorem.

Theorem 3.4 Let V' be a set of switches, let a(v), w(v) be their source and sink capaci-
ties, y(u,v) be the linear link cost for each switch-pair (u,v), and let ¢ be a fived cost per
link. Then, the problem of finding a minimum cost, nonblocking network is NP-Complete
even with o(u) = w(u) for each node and ¢ € {0,1}.

We point out that our approximation results hold for the modified link cost function
of the preceding theorem. In view of these hardness results, we focus our attention on
efficient algorithms for designing nonblocking networks of provably small cost.

4 Designing Low-Cost Nonblocking Networks

We show that star networks produce nearly optimal results. In particular, we prove that
there exists a star network, rooted at one of the nodes of V', that is nonblocking and has
a cost at most twice the minimum cost in the symmetric case (i.e., a(v) = w(v)). In
the balanced case, the same network is also shown to be within a factor 3 of optimal. As
the balance condition worsens, the quality of approximation degrades gracefully: we prove

that there is a star network with cost no more than 2+ % times the optimal, where we

assume without loss of generality that > «(u) > 3 w(u). An optimal nonblocking star can



be found algorithmically in O(n?) time, where n is the number of switches. (The routing
strategy for star networks is obvious: use the unique path between two communicating
nodes.)

We will bound the cost of an optimal star network in terms of a quantity D defined
below, and then derive a lower bound on the cost of a cheapest nonblocking network also
in terms of D to establish our results. We will frequently need to refer to the total source
and sink capacities. For convenience, let us introduce the following shorthand notation:

A= a(v) and Z = w).

veV veV

Throughout the following discussion, we assume without loss of generality that A > Z.
The quantity D is defined as follows:

D =Y > alu) xwv) x y(u,v). (2)

We are now ready to proceed with our proof of the approximation bound; we first establish
the general upper bound, and then sharpen it further for the symmetric case of switch
capacities.

4.1 General Switch Capacities

In establishing the upper bound, we use an intermediate network that has the form of a
double star. The double star S(vk, v;) corresponding to an ordered pair (v, v;) is defined
by the following link capacities:

L. &(v;,v) = a(v;), for i # I
2. k(vg,v;) = w(vy), for i # k;
3. kv, v) = 2 — w(y).

All other links in S(vg, v;) have zero capacity. See Figure 3 for an illustration. We will
show that the cheapest double star achieves the desired cost. But first let us show that
the double star described above is indeed a nonblocking network.

Lemma 4.5 The double star S(vy,v;) is a nonblocking network for (V, a,w, ).

ProoOF. The link (v;,vy) clearly has sufficient bandwidth to route all valid connections,
since the maximum traffic to all receiving switches, other than v; itself, cannot exceed
Z — w(v;). Since each v; has outgoing link capacity o(v;) and each v; has incoming link
capacity w(v;), it is easily seen that no valid connection request is blocked. O

In order to complete our proof of the approximation bound, we show below that there
exists a double-star in B(V') whose cost is within a factor 2 4+ g of the cost of an optimal
network.



Figure 3: Illustrating a double star.

Lemma 4.6 A minimum cost double star of V' has cost no greater than

(A+2Z)D
A-Z

ProoF. We prove the lemma by considering a multiset of double stars of V' and arguing
that the cost of an average double star in this multiset has the claimed bound. Since the
minimum of a set cannot exceed its average, the lemma follows. So, let M denote the
multiset of double stars, in which S(vg,v;) appears a(vx) X w(v;) times. The family M
has size

Vi V|

M = D0 alv) x wu)
k=11=1

= Ax2Z. (3)

Let us now count the total cost of all the double stars in this multiset. We do this
by counting the contribution of each edge (vg,v;), and summing over all pairs. An edge
(vg, v;) contributes costs in three ways:

1. In the double star S(uv,v;), the oppositely directed edge (v;,vy) has capacity Z —
w(v;). This double star appears a(vg) X w(v;) times, and, by symmetry of the link
cost, Y(vg, v) = v(v, v). Thus, the the total contribution is

a(vg)w () (v, ve) (2 — w(v)) .

2. In each of the double stars S(vy,v;), it appears with capacity w(v;). The total

number of these double stars in M is a(vg) X Z'}Qlw(vj), which implies the total
contribution at most

a(vg)w(v)y(vg,v) X Z
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3. In each of the double stars S(v;,v;), it appears With capacity a(vg). The total

number of these double stars in M is w(v;) X M a(vl) which implies the total
contribution at most

a(vg)w(v)y(vg, vy) x A.

Recalling that D = Y, >, a(vg )w(v;)y(vg, 1), we obtain that the total cost of all the
double star in M is at most

(A+22)D. (4)

Thus, we get an upper bound on the cost of an average double star in M by dividing

the quantity in Eq. (4) by the quantity in Eq. (3), which gives the bound claimed in the

lemma. This completes the proof. O

Finally, we show that triangle inequality implies that the cost of a cheapest nonblocking
star cannot exceed the cost of a cheapest double star. In particular, we show that the
double star S(vk, v;) can be converted to a star rooted at v; with no increase in cost. In the
double star S(uvg,v;), we leave all incoming links of v; the same, but transfer all outgoing
links of v;, to v;. Clearly, this yields a nonblocking star rooted at v;. The following lemma
proves the bound on the cost.

Lemma 4.7 The cost the cheapest nonblocking star rooted at v; does not exceed the cost

of S(vk,vy).

ProOF. In modifying the double star into the star network, we effectively replace the
path (v, vg, v;) with the direct path (v;,v;). The total capacity of all outgoing links at v
is Z — w(y;). By triangle inequality,

(Z —w(w)) X y(v,v6) + D w(v) X y(ve, v;) < D> wlvi) X v(vy, ;).
1 £l i#l

The leftover term w(v;)v(v;, vg) is used to charge the link from v, to vy of capacity w(v;).
This completes the proof. O

4.2 An Improved Bound for Symmetric Switch Capacities

In this case, we can directly bound the cost of an optimal star network. Consider the
least cost nonblocking star rooted at node w. It has cost

> (a() +w©)y(u,v) = 3 20(v)y(u, v
VEYU vAu

where we use the fact that a(v) = w(v). Let M denote the multiset of stars in which the
star with root u appears exactly a(u) times. An edge (u,v) contributes a total cost of
27v(u,v) in each of the a(u) + a(v) stars. Thus, the total cost of all the stars in M is

> 29(u,v) x afu) x w(v) = 2D.

Since | M| = A, it follows that the cheapest star in M has cost no more than 2D/ A,
giving the following lemma.
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Lemma 4.8 Let V be a set of switches, with symmetric source and sink capacities,
a(v) = w(), and link costs y(u,v) for all switch- pairs u,v. Then, the cost of a cheapest
nonblocking star network for (V,a,w, ) is at most 2.

In order to show that these star networks are near optimal, we need to establish a lower
bound on the cost of any nonblocking network. We do this in the following subsection.

4.3 A Lower Bound on the Cost of an Optimal Network

Suppose AN'* is a nonblocking network for the switch capacities a(v), w(v) and link costs
v(u,v), where u,v € V. Being a nonblocking network, N* is able to route any set of
switch capacity-compliant connections. Consider a feasible connection between u and v
at data rate f(u,v), where feasibility dictates that f(u,v) < min{a(u),w(v)}. Then, by
triangle inequality, the route(s) used by N'* to set up this connection must cost at least
v(u,v) x f(u,v). Now, if there are two simultaneously feasible connections, one from u
to v at rate f(u,v) and another from x and y at rate f(x,y), then the linearity of link
costs implies that the network has cost at least

Y(u,v) X f(u,v) + v(z,y) X f(x,y). (5)

Thus, any set of simultaneously feasible connections implies a lower bound of the form
Eq. (5) on the cost of N*. In order to get the best lower bound, we seek connections of
maximum cost.

The problem of finding a set of simultaneous connections maximizing the cost is es-
sentially a mazimum-cost multi-commodity flow problem. However, for our purpose, we
are interested in a quantitative, and not numerical, estimate of the cost. In particular,
we would like a lower bound in terms of the quantity D, so as to relate it to the upper
bound of the preceding subsections. One possibility to derive such a lower bound is to use
a maximum cost matching in the network. But, due to varying switch capacities, a valid
connection between u and v has rate at most min{a(u),w(v)}. We, therefore, may need
to set up multiple connections from u to exhaust its capacity. In order to find these mul-
tiple connection conveniently, we carry out a node-splitting transformation, which splits
a node u into a(u) source nodes and w(u) sink nodes, each with unit capacity.

More formally, let v; € V be a switch with source capacity «; = «(v;) and sink capacity
w; = w(v;). We replace v; with «; copies of itself labeled source nodes a;1,a;, ..., Giq;,
and with w; copies labeled sink nodes z1, zi2, . . . , Ziw;. Assign afa;;) =1 and w(a;;) =0,
and «a(z;) = 0 and w(z;;) = 1. Thus, each source node has send capacity of one and
receive capacity of zero, while each sink node has the send capacity of zero and receive
capacity of one. Construct a bipartite graph by joining each a-node to each z-node and
“inheriting” the link cost from the original problem. Specifically, we assign

Y @ij, ze1) = v(vi, i), for j=1,2,...,04, and [ = 1,2, ..., w;.

An example of our graph transformation is shown in Figure 4. We call this bipartite
graph B(V'). Observe that B(V) has A+ Z nodes and A x Z edges, where recall that

12



A=%Y,a(v)and Z2 = ¥, w(v), and we assume that A > Z. In order to simplify the

notation, let us renumber the nodes so that the source nodes are labeled aq,ao, ..., a4,
and the sink nodes are labeled 2z, 29, ..., 2z.
a <11
O d O a Z
Yi Y 12 21
(2,1 (1,2)
a5 %)

Figure 4: Tllustrating the graph transformation. In the figure, a(vy) = 2, w(v;) = 1, and
O[(UQ) = 1, W(Ug) = 2. Edges (CL117211), (alg,zu), (0,21,211), and ((121,222) have link costs
zero; others have cost d.

Let M denote an arbitrary matching in B(V'); recall that a matching is a collection of
vertex disjoint edges. We claim that a maximum-weight matching in B(V') has weight at
least D/ A, where the weight of the matching is the total cost of its edges.

Lemma 4.9 Let M be a mazimum-weight matching in B(V). Then, cost(M) > D/ A.

PRrROOF. First, observe that
z

’}/((IZ', Z])a
=1

A
D =Y

i=1j
this follows because the node-splitting transformation makes «(u) x w(v) copies of the
edge (u,v). The number of different matchings in B(V') is (é) - Z!. (The first term counts
the number of ways to pick which Z source nodes to match with the sink nodes, and the
second term counts the number of ways to do this matching.) Every edge of B(V) gets
counted (A_l) -(Z — 1)! times over all the matchings. Thus, the total weight of all the

zZ-1
matchings is (2:}) -(Z — 1)!'- D. Since the maximum of a set is at least as large as its

average, the maximum-weight matching satisfies

(2)-(z-11-D
(;) . 2!

Y

cost(M)

IS

which completes the proof. O

A matching in B(V') corresponds (uniquely) to a set of valid connections, with the
same total cost as the matching, giving the following corollary.
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Corollary 4.10 Let V' be a set of switches with source and sink capacities a(v),w(v), for
v €V, and assume that the link cost y(u,v), for all switch-pairs (u,v) € V- X V, satisfies
the triangle inequality. Then, a minimum-cost nonblocking network for (V,a,w,v) has
cost at least %.

4.4 Approximation Ratios for Star Networks

Comparing the cost of a cheapest star network to the lower bound of Corollary 4.10, we
can bound the approximation factor of our star network. The approximation factor is
given by

cost(cheapest star) < iz
cost(N*) - -

IN

IN

(N]

_|_
|

< 3 itA=2Z.

Thus, in the balanced case, namely A = Z, there exists a nonblocking star network for
the network design problem (V, a,w,y) whose cost does not exceed three times the cost
of an optimal network. Without any balance condition, the cost of the best star network
is within 2 + é times of the optimal. For the symmetric capacity case, the ratio of the
star to optimal network is 2 (cf. Lemma 4.8). We conclude with the following theorem.

Theorem 4.11 Let V' be a set of switches, with source and sink capacities a(v) and
w(v), and link costs v(u,v) for all switch pairs u,v. Then, the ratio between the cost of a
cheapest nonblocking star and an optimal network is at most 2 if the switch capacities are
symmetric, at most 3 if the switch capacities are balanced, and at most 2 + é in general,
where A > Z.

4.5 How tight is the lower bound?

We have shown that a nonblocking network of cost at most twice (resp. three times)
the optimal can be found in polynomial time for the symmetric (resp. balanced) case
of switch capacities. Whether these approximation factors can be improved, remains an
open problem. We can exhibit examples, however, showing that the ratio between the
cheapest star and the lower bound in Corollary 4.10 is tight.

Figure 5 shows an example where the ratio of maximum-cost matching to minimum-
cost nonblocking star is 2 + %, which comes arbitrarily close to the bound stated in
Theorem 4.11. Similarly, Figure 6 shows an example where the ratio is tight even for the
symmetric case.

Consider the example shown in Figure 5. We have A switches with a(v) = 1 and

w = 0, and Z switches with a(v) = 0 and w = 1. Call the switches in the former

14



group source nodes and the ones in the latter group sink nodes. We label the source
nodes uq, Ug, ..., u4 and sink nodes vy, vs,...,vz, and let us assume that A > Z 4+ 2. To
complete the description of the problem, we specify the link costs as follows:

7(“2’77}3') =1 VZ,j
’Y(UZ'7U]‘) = 2 VZ,j
V(Ubvj) = 2 VZ,]

Yy V2 V3 vV,

Figure 5: An example showing that the ratio between the cost of a cheapest star and a
maximum-weight matching is tight. The links costs are 1 for a u—v pair, and 2 otherwise.
A minimum-cost nonblocking star is also shown, having a cost of A+ 2(Z —1).

Thus, the links joining a source node to a sink node have costs one; all others have
cost two. Clearly, the link costs satisfy the triangle inequality. Tt is easy to see that
maximum-weight matching in this graph has cost Z—each sink node can have one edge
incident to it from a source node, at the cost of one. Thus,

cost(M) = Z.

Next, the cheapest nonblocking star has cost A4 + 2(Z — 1); such a star is obtained
by picking one of the sink nodes and connecting it to all others, with edges directed
appropriately. Such a star is illustrated in Figure 5. It follows that the ratio between the
cheapest star and the maximum-weight matching is

A+2Z -2
- Z
A—2
- 942 =
+ Z
which comes arbitrarily close to the approximation bound stated in Theorem 4.11.
To show that the bound in Lemma 4.8 is also tight, consider the example in Figure 6,
which has n nodes, each with a(v) = w(v) = 1, and 7(u,v) = 1, for all u,v € V. In this
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case, it is easily seen that the maximum-weight matching has cost n: every node can send
and receive one unit of data at the cost of one. On the other hand, every nonblocking
star has cost 2(n — 1): connect a root node to all others, with two unit-capacity edges
directed oppositely. See Figure 6. It follows that the ratio between the cheapest star and
maximum-weight matching is 2 — %, which approaches the bound of Lemma 4.8.

Figure 6: Approximation bound is tight even for symmetric case. The links costs are 1
for all pairs. A maximum-weight matching has cost at most A, while a minimum-cost
nonblocking star, such as the one shown in the figure, has cost 2(A — 1).

5 Unit Link Costs

We now consider the case when all link costs are the same, and show that a star network
is optimal when the switch capacities are balanced. Despite being a specialized case,
it applies to practical situations where the link costs are dominated by the cost of the
terminating electronics, or where there is a single type of link from which larger link
groups must be constructed.

Since all links have the same cost, without loss of generality, we assume that v(u,v) =
1, for all u,v. In this case, the problem can be specified with three parameters: (V, a,w).
We first prove the following lemma, which is useful in the proof of the main theorem.

Lemma 5.12 Suppose V' is a set of switches, with balanced source and sink capacities
a(v) and w(v), and unit link cost function between pairs of switches. Let N be a nonblock-
ing network for (V,a,w) such that ke(u,v) > min{a(u),w(v)}, for all (u,v) € V x V.
Then, the following holds:

cost(N') > Y (a(v) +w(v)) — max(a(v) +w(v)).

Proor. We note that the bound on the right hand side is the cost of a nonblocking star,
rooted at the node with a maximum capacity; unit link costs imply that the cost of a
network equals its total link capacity. In counting the link capacities in N, we charge
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each link to its destination node. Let v,, denote the switch with the maximum capacity
(source or sink) of all switches, and without loss of generality assume that

w(vm) = max{a(v), w(v)}.

Considering any other node v;, where i # m, we get
ke(vi, vm) 2 alvi), (6)

since a(v;) < w(vy,). All these links are charged to vy, and they sum to >, a(v) — a(vy,).

Next, if the total incoming link capacity at each v;, for i # m, is at least w(v;), then
we get the desired bound on the overall cost of the network, completing the proof. So,
assume that the incoming link capacity falls short at some node, say, v;. Since we must
have k¢(v;,v;) > min{a(v;),w(v;)}, for all v; # v;, the total incoming link capacity at v;
fails to add up to w(v;) only if the following holds:

w(v;) > > a(v) — a(v);

v

that is, the sink capacity of v; exceeds the combined source capacity of all other nodes.
When this happens, we conclude that

alv) + w(v) > > a(v). (7)

We now re-apply the argument, using v; in place of v, as the purported root of the
star. Since w(v;) > Y,ev @(v) — a(v;), it follows that each incoming link (vy,v;) at v
has capacity k¢(vg,v;) = a(vg). We charge these links to v;, and consider the incoming
links at any other node v,. Can it happen again that at some node vy, for k # i, we find

wlvg) > Y alv) — a(v)? (8)

v

Suppose it did. Then, inequalities (7) and (8) together imply that

(avi) +w(vi)) + (a(ve) +w(vr)) > 23 a(v)

veV

= 2 (a() +w()), (9)

veV

which is clearly not possible. Thus, the incoming links at each node vy, for i # k, sum to
w(wvy), and thus the total link capacity of A is at least

> (a(v) +w(v)) — max(a(v) + w(v)),

v

and the proof is completed. O

We can now prove the result that, for unit link costs, a star network is optimal.
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Theorem 5.13 Let V be a set of switches, with source and sink capacities a(v) and w(v),
and assume unit link cost function between pairs of switches. Then, for balanced switch
capacities, a minimum cost nonblocking star network is an optimal network.

ProoOF. We show that any nonblocking network must have a total link capacity at least

> (a(v) + w(v)) — max (a(v) +w(v)). (10)
veV veV
It is easy to see that this matches the cost of a cheapest nonblocking star network, obtained
by choosing as root the switch with the maximum source plus sink capacity. Let N* be
an optimal nonblocking network, and let ry(u,v) denote the capacity of the link (u,v);
if there is no link between u and v, this capacity is zero. Consider any pair of nodes
(u,v) € V x V for which the following inequality holds:

ke(u,v) < min{a(u),w(v)}. (11)

We set up two connections from u to v, first at the rate of k;(u,v), and second at the
rate f(u,v) = min{a(u),w(v)} — ke(u,v). Due to the capacity constraint, the second
connection must use an indirect path, requiring at least two links. We now tear-down the
first connection, freeing up switch capacities k¢(u, v) at both « and v.

Since connection rerouting is not permitted in nonblocking networks, the second con-
nection continues to be routed along the indirect path. This connection consumes f(u,v)
units of source (resp. sink) capacity of u (resp. v). It also consumes at least 2 f(u,v) link
capacities in N*, by virtue of being an indirect path. Subtract f(u,v) from the switch
capacities of u and v, and link capacities of all the links in the indirect path used by
the connection. Observe that this modification keeps the switch capacities balanced. (In
order not to introduce extra notation, we continue to use «(v), w(v), and r¢(u, v) for the
residual capacities of switches and links.)

We now repeat the connection setup procedure at any other link for which the condition
in Ineq. (11) holds, until no such link exists. Suppose that the total source capacity
consumed by the indirect connections is A;; an equal amount of sink capacity is also
consumed. By the simultaneous connection argument used in Eq. (5), these (indirect)
connections saturate at least

24, (12)
units of link capacity in A/*.
When the condition in (11) no longer holds, every node-pair (u,v) € V x V satisfies:
ke(u,v) > minf{a(u), w(v)},

and the total residual source capacity is A — A;. We now invoke Lemma 5.12 on
the residual network, which must be nonblocking for the residual (balanced) capacities.
Combining the lower bound of Lemma 5.12 with the bound in (12), we conclude that

cost(N*) = 241 + 2(A = A1) — max (a(v) + w(v))
> > (a(v) +w(v)) — max (a(v) + w(v)),

v

which completes the proof. O
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6 Discussion and Future Research Directions

Our approximation algorithms have focused exclusively on star networks. These networks
have a tremendous practical and theoretical appeal: they are extremely simple to build
and maintain, and require very little overhead in setting up or tearing down connections.
One potential disadvantage of the star networks is the huge transit capacity needed at
the root switch. There are known switch architectures, however, whose cost grows as a
function ¢; L + ¢y Llog L, where L is the total capacity of all links incident to the switch.
The constants ¢; and ¢y are technology-dependent, but currently ¢; > c¢o, and so the
majority of the switch cost can be effectively combined with the link costs whenever L
is too large—see Turner [16]. Thus, having a provable cost guarantee for star networks
has a lot of appeal, and it remains a tantalizing problem to determine the best possible
approximation bound for a star network.

The examples presented in Section 4.5 show that we cannot hope to improve the ap-
proximation bound using the maximum-weight matching as a lower bound. Interestingly
enough, a star network is indeed optimal for the examples in Figures 5 and 6, and so the
weakness is on the lower bound side.

The linear link cost model ignores the fact that a communication link of an arbitrary
capacity must be constructed by combining links from a limited set of types, each with
its own fixed capacity. In theory, the problem of even determining the cheapest combina-
tions of links to achieve a particular bandwidth is equivalent to the well-known knapsack
problem, and therefore intractable. In practice, however, the small set of available choices
permit an efficient dynamic programming solution. We are currently working on extend-
ing our results to multiple (fixed number of) links types. A major source of difficulty is
that, without the linearity of link costs, the combination equation for the lower bound
Eq. (5) does not hold. Details on some practical heuristics and their performance can be
found in [5, 6].

Finally, while global traffic constraints are clearly appealing to network designers,
they can lead to overly expensive network designs. There is a trade-off here between
minimizing the amount of information required of the network manager and providing
enough information to yield the most cost-effective designs. We are currently exploring
additional constraints that can improve the quality of network designs without placing an
undue burden on the network manager. Some examples include hierarchical clustering,
distance-bounded clusters, and node-set pair constraints.
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