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Abstract

This paper estimates the link costs of constraint based nonblocking ATM networks on a
sphere. Analytical results are obtained when switches are uniformly distributed on the
surface of a unit sphere and every switch has source and sink capacity of one, and the
results are compared with simulations.
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1. Introduction

Integrated network technologies, such as ATM, supports multimedia applications with vastly differ-
ent bandwidth needs, connection request rates, and holding patterns, and makes traditional network
planning techniques less relevant. A constraint-based network design model [1] is proposed, which
can help create networks that can handle any combination of traffic that lies within user-specified
constraints.

Previous research has shown the hardness of network design problem [2, 3, 4], and a network
design tool is implemented in Java to help design networks on a Euclidian plane [1]. Because of the
importance of global ATM networks, this paper studies the costs of constraint-based ATM networks
on a sphere.

In the simplest case, switches are uniformly distributed on the surface of a unit sphere, and
the source and sink capacity of every switch is equal to one. The impact of a specific constraint is
studied, which limits the traffic between any two switches to be p(u,v) = =7 exp(—d/D), where ¢
is a relaxation factor, d is the distance between switches u and v, and D is a constant. This means

that there are less traffic between far apart switches.

An analytical result on the lowerbound is obtained for this case. A simulation is done on a
network with fifty switches randomly distributed on a sphere. Lowerbounds with constraints are
calculated by linear programming. The simulation agrees with the analytical result very well.

2. Analytical Results

When the number of switches, n, is very large, we can think of the switches as continuously spread
on the surface, with a surface density of p = n/4r, where 47 is the total surface area of the unit
sphere. Label the switch at the south pole as S, the distance between a switch of angle # with north
pole NV and switch S is d = 7 — 8, the number of switches within angles # and 6 + d@ is

dn=p ds= —2rsin8d0 = = sin 6df
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A nonblocking star network can be costructed by connecting all switches to the south pole with
link capacity of one in each direction. The cost is
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We define the lowerbound to be the maximum cost of traffic flow. The flow which maximizes
the cost is that every switch receive traffic from the most remote switch with as much capacity as
possible, then from the second remote switch, ..., until all the sink capacity of this switch is used.

Think of switch S at the south pole. Flow from one switch to $ is limited to

C ~(x-8)/D
n

Here, we replace n — 1 with n as n — co. Start from 8 = 0, send as much flow as allowed to switch
S, until # = 6p, when the total flow to S equals to its sink capacity. So we have
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Given D and ¢, # can be calculated numerically. 8o will appear in Eqn. 3 for the lowerbound.

For combinations of small D and small ¢, 6y obtained from Eq. 2 may be greater than =, which
Just means that switch S can receive from all other switches without exhaust its sink capacity. In
this case, we shall use 7 instead of # in Eqn. 3. We argue that the source capacity of every switch is
used up exactly at §p. Think of the swith N at north pole. It sends -,%e“”/ D of traffic to the switch
S at south pole, £e=%/P to a switch at 8, ..., so # for source capacity is exactly the same as 6 for
sink capacity.

Suppose the link cost is linear to capacity and length, and ignore the constant factor, the total
cost of this flow is
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Here, for every switch, we only consider links terminating at it. Because every link must terminate
somewhere, the links are counted exactly once.

When D — oo, Eqn. 2 is reduced into
cosfy =1—2/e (4)

and Eqn. 3 is reduced into

cost = nm + %(30 cos By — sin p)) (5)
When ¢ = oo and ¢/n < 1, 8y = sinfy = 2/+/¢, Eqn. 5 can be further reduced into
cost = n(r — 2//¢) (6)

So, as ¢ = oo, lowerbound — nn, the cost of a star network. This is achieved when switches in
exactly opposite positions are paired up. There are n/2 pairs and link cost of two way traffic for
each pair equals to 2x.



When the number of switches is not large enough, the simplification which treats the switches
as having a surface density of p may not apply. When there is only flat traffic constraint, the
lowerbound can be estimated by pairing up every switch with its most distant neighbor. The
probability of finding the most distant neighbor between 8 and ¢ + df equals to the probability of
finding one switch between # and § + df, and finding the n — 2 other switches between & + d@ and .
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The average distance to the most distant switch is
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Here, 2k!! = 2k(2k ~ 2)---2 and (2k — 1)!! = (2k — 1){2k — 3) - - - 1. The adjusted lowerbound is
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When there is only flat traffic constraints, the average lowerbound is

cost = nwll — -g:_;g::] (8)

3. Simulation

Fifty switches are randomly distributed on the unit sphere, the limit on the traffic between two
switches is calculated from p(u,v) = nile“” D . The lowerbound is obtained by calculating the
maximum flow using linear programming. The result fits Eqn. 7 very good. In Fig. 3, the solid lines
are calculated from Eqn. 3, normalized over nx, and the dotted lines are simulation, normalized over
nr[l — %%L::] = 0.92n~.

Simulation also shows that with flat traffic constraint, the average lowerbound changes with the
number of switches n just as predicted by Eqn. 8. This is plotted in Fig. 3

4. Closing Remarks

A formula is obtained for the average lowerbound on link costs of constraint based networks on a
sphere, and fits with the simulation very well.
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Figure 1: Lowerbound as calculated from Eqn. 3, compared with simulation on a network with 50
switches. The costs are normalized. Solid lines are calculations, dotted lines are simulations.
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Figure 2: Lowerbound with flat traffic constraints. * is simulation, solid line is from Eqn. 8. The
cost is normalized over nr,
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